12-369

Объединенный институт ядерных исследований дубна

P10-92-369

П.В.Зрелов, В.В.Иванов, В.И.Комаров, А.И.Пузынин, А.С.Хрыкин

МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТА ПО ИЗУЧЕНИЮ ПРОЦЕССОВ ПОДПОРОГОВОГО РОЖДЕНИЯ К⁺-МЕЗОНОВ

Направлено в журнал "Математическое моделирование"

1992

1 Введение

Изучение процессов рождения адронов в нуклон-ядерных или ядроядерных столкновениях при энергиях налетающих частиц ниже порога рождения в свободном нуклон-нуклонном соударении является интересной вадачей современной ядерной физики. Такие реакции возможны при условии, если нуклоны ядра участвуют в процессе коллективно. В частности, они могут иметь место в столкновениях налетающего нуклона с нуклоном мишени, приобретшим большой ферми-импульс ва счёт части нуклонов ядра, либо когда в процесс взаимодействия вовлечён кластер нуклонов ядра-мишени. Таким обравом, исследование подпорогового рождения адронов может дать информацию как о коллективных ядерных и субъядерных явлениях, так и о высокоимпульсной компоненте многочастичной волновой функции.

Подпороговое рождение изучалось для нескольких типов адронов, таких, как антипротоны, пионы и каоны. Однако механизм рождения до конца ещё не ясен и не проведён достаточно чёткий анализ влияния ядерной среды на указанные процессы. Имеющиеся в настоящее время данные очень ограничены из-за малых сечений процессов и из-за трудностей, возникающих при изучении короткоживущих продуктов реакций.

В [1] рассмотрено предложение эксперимента по изучению подпо-

OBBERNECTRIER RHETETYY ианиных исследований **ENSINOTERA**

рогового рождения К⁺-мезонов в столкновениях протонов с лёгкими ядрами (²H, ¹²C) путём проведения инклюзивных и эксклюзивных измерений дифференциальных сечений на ускорителе COSY – COoler SYnchrotron (Julich, Germany), позволяющем ускорять лёгкие и средние ядра (от водорода до серы) до импульсов в пределах от 270 до 3300 МэВ/с. Светимость, ожидаемая при использовании внутренних мишеней, составит около 10³²[1/(см² · сек)].

2 Эксперимент

Для проведения указанных экспериментов необходимо (см. [1]):

- обеспечить измерения при углах рассеяния около 0⁰ по отношению к направлению первичного пучка;
- сделать возможным импульсный анализ К⁺-мезонов, а также коррелирующих с ними лёгких фрагментов;
- использовать тонкие мишени во избежание взаимодействий продуктов реакции с ядрами мишени и уменьшения искажений, вносимых многократным рассеянием;
- обеспечить высокую светимость, так как исследуемые процессы имеют малые сечения;
- иметь малое расстояние между мишенью и детекторами, с целью уменьшения потерь каонов из-за их распадов;
- использовать набор детекторов, которые сделают возможной идентификацию К⁺-мезонов прп интенсивном фоне, особенно от пионов и протонов.

Для этих экспериментов предлагается сконструировать установку (получившую предварительное название "0⁰ Facility"), которая позволит проводить измерения на внутренних мишенях (что обеспечит высокую светимость) при малых углах рассеяния, отвечающих максимальным эначениям дифференциальных сечений. Однако

Рис.1. Схема экспериментальной установки 0° Facility

для изучения угловых распределений будут необходимы измерения вплоть до углов рассеяния 60⁰ по отношению к направлению налетающего пучка, что можно обеспечить идентифицикацией продуктов реакции с разными импульсами и под разными углами с хорошим разрешением. Положение и совокупность детекторов должны обеспечить подавление фона от вторичных частиц на несколько порядков и однозначную идентификацию редких каонов. Пространство, отведённое для установки миненей, достаточно для использования сложных газовых мишеней.

Схема экспериментальной установки "0⁰ Facility" представлена на рис.1.

Тонкие мишени планируется поместить в позиции M, где при прохождении пучка через мишень может быть достигнута высокая светимость. Максимальная величина индукции магнитного поля в спектрометрическом магните составляет около 16 кГс. В случае ана-

2

лиза каонов, рождённых протонами с Т_р ≤ 1.5 ГэВ, соответствующее вначение $B \times L = 16$ кГс $\times 1,5$ м будет достаточным для отклонения вторичных частиц с импульсами до $p_0/2$ (1,2 ГэВ/с) в "область фокусировки" магнита.

Так как светимость достаточно велика, а диапазон импульсов вторичных частиц составляет $(p_{max}/p_{min} \sim 10)$, то система детекторов должна обеспечить анализ больших потоков информации и позволять эффективно регистрировать частицы в указанном интервале импульсов. Для восстановления импульсов регистрируемых частиц необходимо определять место и угол их выхода из магнита. Для решения этой задачи будут использоваться пропорциональные или дрейфовые камеры. Предварительные расчеты показали, что их размеры должны быть приблизительно 1,2 м × 0,6 м. Для идентификации частиц по измерениям ионизационных потерь и скорости будут использоваться сцинтилляционные и черенковский счётчики. Этого достаточно для отделения протонов от пионов и лептонов. Однако для надёжной идентификации К+-мезонов необходимо измерять также и их время пролёта. Дополнительное подавление фона может быть достигнуто регистрацией мюонов, образовавшихся при распаде К+-мезонов, остановившихся в черенковском счётчике.

3 Моделирующая программа

Основная задача настоящей работы состояла в создании программы *КМЕSON*, позволяющей моделировать рождение вторичных частиц, их прохождение через экспериментальную установку, имитировать "отклики" детекторов, а также для графического представления спектрометра и траекторий частиц на экране дисплея.

Все работы по созданию и отладке программы проводились на персональном компьютере IBM PC АТ386. В качестве основы использовался разработанный в CERN пакет GEANT3.14/16 [2], который был адаптирован в ЛВТА ОИЯИ для работы на IBM PC АТ386 под управлением MS DOS. Кроме того, использовались адаптированные для этих целей библиотеки программ общего назначения (KERNLIB, GENLIB) [3], пакет статистического анализа данных HBOOK [4] и графического представления результатов моделирования и обработки данных GKS [5], HIGZ [6].

Ниже представлена блок-схема программы KMESON:

<u>KMESO</u>N

— GZEBRA инициализация системы распределения памяти
— UGINIT инициализация GEANT и данных пользователя
— GRUN моделирование событий

3.5

— UGLAST завершающая фаза – результаты

На этапе инициализации программы КМЕSON вадаются геометрические параметры экспериментальной установки. При этом спектрометр представляется в виде совокупности геометрических объемов определённой формы (и вещества), которые "размещаются в ЭВМ" в системе координат, выбранной в GEANT. Кроме того, указываются объёмы, в которых присутствует магнитное поле. Каждому отдельному объёму присваивается конкретный номер, который используется затем при моделировании прохождения частиц черев установку.

3.1 Аппроксимация магнитного поля

В качестве приближения, задающего распределение поля во всём объёме между полюсами анализирующего магнита, было взято его распределение в медианной плоскости. Поскольку в этой плоскости нет горизонтальных составляющих вектора магнитной индукции (в системе координат магнита B_y , $B_z = 0$), распределение поля полностью характеризуется вертикальной составляющей вектора $\vec{B}(B_x)$. В свою очередь, для описания поля в медианной плоскости была принята модель, согласно которой поле практически постоянно между полюсами и начинает спадать на его краях. Уменьшение поля на краях магнита учитывается введением коэффициентов экспоненциального типа [7]

 $F = \frac{1}{1 + \exp[P(s)]},$

где s – расстояние от рассматриваемой точки до границы полюсов магнита, а P(s) – полином с требующими подбора коэффициентами.

Таким образом, вависимость составляющей B_x от координат (y, z) может быть выражена через максимальное значение индукции поля B_0 и коэффициенты F_x и F_z для соответствующих граней проекции магнита на плоскость YOZ

$$B_x(x,y,z) = B_x(0,y,z) = B_0 \cdot \frac{1}{1 + \exp[P(s_y)]} \cdot \frac{1}{1 + \exp[P(s_z)]},$$

где B_0 – максимальное вначение B, равное 16 кГс, а $P(s_i)$ -полиномы

$$P(s_i) = C_0^i + C_1^i(s_i/\lambda) + C_2^i(s_i/\lambda)^2 + C_3^i(s_i/\lambda)^3, \quad i = y, z,$$

коэффициенты которых были подобраны следующим образом :

$$C_0^y = 0,427, \quad C_1^y = 3,586, \quad C_2^y = -3,76, \quad C_3^y = 3,04,$$

 $C_0^z = 0,53, \quad C_1^z = 4,2, \quad C_2^z = -3,84, \quad C_3^z = 2,4,$

вначение параметра λ воято равным 20 см.

На рис.2 представлено пространственное распределение магнитного поля: по осям OY и OZ отложены расстояния от центра магнита (в см), а по оси OX — величина индукции магнитного поля B_x (в кГс).

В процессе похождения частицы черео установку подпрограмма GUSWIM обращается к одной из подпрограмм:

— GRKUTA (в случае неоднородного магнитного поля, IFIELD=1), или

-- GHELIX (для квазиоднородного магнитного поля, IFIELD=2). GRKUTA или GHELIX, в свою очередь, вызывают подпрограмму GUFLD, в которой пользователем вадаются компоненты индукции магнитного поля в текущей точке между полюсами магнита.

3.2 Генерирование вторичных частиц

Для изучаемых процессов в рассматриваемой области энергий не существует легко адаптируемых для использования программой *GEANT*

Рис.2. Пространственное распределение основной компоненты спектрометрического магнита.

7

генераторов вторичных частиц. Поэтому в этом варпанте моделирующей программы был разработан простейший генератор испускания из мишени вторичных протонов, π^+ -мезонов и K^+ -мезонов для реакции p(A,h)X, где $h = \pi^+, K^+, p$.

Общая схема генератора включала последовательно розыгрыш сорта вылетающей частицы в соответствии с предполагаемыми вкладами $N_{\pi^+}/N_p/N_{K^+} \approx 1,5/0,5/0,001$ и моделирование её кинематических характеристик. Решение задачи второго этапа этой схемы имело свои особенности для частиц конкретного сорта.

1) Генерирование π^+ -мезонов

В качестве исходной информации использовались дифференциальные сечения рождения пионов в реакции р +¹² С $\longrightarrow \pi^+ + X$ при энергии налетающего протона $T_p = 800$ МэВ, взятые из работы [16]. В таблице 1 приведены данные о кинетической энергии T вторичных пионов, испущенных под полярным углом θ .

Таблица 1

Дифференциальные сечения рождения π^+ -мезонов в реакции $p + {}^{12}C \longrightarrow \pi^+ + X$, $(T_p = 800 M_{\Theta}B)$

 $\frac{d^2\sigma}{dTdO}$, [MK6/(M9B·cp)]

Т	0 ⁰	7 ⁰	15 ⁰	200	30 ⁰
50	13	$11,7\pm5,0$	$10,0\pm1,0$	$9,0\pm 6,0$	$10,0\pm4,0$
100	28	$26, 2 \pm 5, 0$	$24,2\pm4,2$	$20,8\pm4,2$	$23,3\pm2,5$
150	31	$29,2 \pm 5,0$	$28,3\pm4,2$	$25,8\pm3,0$	$28,3\pm5,0$
200	42	$40,0\pm4,2$	$36,7\pm4,2$	$30,0\pm6,0$	$35,0\pm6,0$
250	44	$42,5\pm4,0$	$40,8\pm4,2$	$41,7\pm5,8$	$27,1\pm5,0$
300	53	$50,0 \pm 5,0$	$45,0\pm4,0$	$43,3\pm6,7$	$22,5\pm4,2$
350	43	$42,1\pm6,0$	$31,7\pm5,8$	$35,0\pm6,0$	$18,0\pm5,0$
400	40	$38,3\pm5,0$	$24,2\pm5,0$	$25,5\pm5,0$	$19,6\pm4,2$
450	19	$17,5 \pm 6,0$	$14, 2 \pm 4, 2$		

Интерпретируя T и θ как случайные величины, взаимосвязь которых задаётся указанной таблицей, определим плотность вероятности $p(T, \theta)$ рождения π^+ -мезона с өнергией T и испускаемого под углом θ по отношению к направлению первичного пучка. Для увеличения выхода пионов в нужную кинематическую область будем считать, что $p(T, \theta)$ удовлетворяет условию нормировки:

$$\frac{2\pi}{\sigma} \cdot \int_0^{\pi/6} \int_{50}^{450} f(T,\theta) \cdot \sin\theta \, d\theta \, dT = 1,$$

где $f(T, \theta)$ – функция, аппроксимирующая табличные значения $\frac{d^2\sigma}{dTd\Omega}$, а σ – нормировочный множитель.

Функция $p(T, \theta)$ аппроксимировалась полиномом третьей степени по T, в котором кооффициенты при степенях T также представлялась в виде полинома третьей степени по θ . Степени полиномов выбирались исходя из минимума величины χ^2 .

В соответствии со стандартной процедурой розыгрыша двумерной случайной величины (см., например, [8]), совместная плотность $p(T, \theta)$ представлялась в виде

$$p(T,\theta) = p_1(\theta) \cdot p_2(T \mid \theta),$$

где $p_1(\theta)$ – плотность вероятности испускания пиона под углом θ , а $p_2(T \mid \theta)$ – условная плотность вероятности испускания пиона с өнергией T в случае его вылета под фиксированным углом θ . Случайные величины угла вылета $\theta = \theta(\gamma_1)$ и кинетической энергии $T = T(\gamma_1, \gamma_2)$ π^+ -мезона определялись по системы двух уравнений

 $\begin{cases} F(\theta) = \gamma_1, \\ F(T \mid \theta) = \gamma_2, \end{cases}$

где

$$F(\theta) = \int_0^{\theta} p_1(\theta') \, d\theta', \qquad F(T \mid \theta) = \int_{50}^T p_2(T' \mid \theta) \, dT'.$$

а γ_1 , γ_2 – равномерно распределённые на [0,1] случайные числа. Азимутальный угол φ вылета π^+ -мезона из-за симметрии процесса относительно оси первичного пучка задавался в виде

 $\varphi = 2\pi \gamma_3,$

где γ_3 - случайная величина, равномерно распределённая на [0,1].

2) Генерирование протонов

В этом случае использовалась аппроксимация распределения протонов по множественности в реакции p + A — p + X для достаточно широкой области энергий налетающего протона [9]

$$\frac{d^2N}{dT\,d\Omega} = f(A, T_0, T) \cdot g(A, T, \theta), \tag{1}$$

где A – атомный вес ядра мишени, T_0 – кинетическая энергия налетающего протона, T – кинетическая энергия вторичного протона, θ – полярный угол, под которым испускается вторичный протон. Функция $f(A, T_0, T)$ не вависит от угла θ и нормирована на полное число вторичных протонов. Её вависимость от кинетической энергии представляется суперпозицией двух экспонент:

$$f(A, T_0, T) = \frac{n_{1p} \exp(-T/\alpha_{1p})}{\alpha_{1p}(1 - \exp(-T_0/\alpha_{1p}))} + \frac{n_{2p} \exp(-T/\alpha_{2p})}{\alpha_{2p}(1 - \exp(-T_0/\alpha_{2p}))}, \quad (2)$$

где n_{1p} , n_{2p} , α_{1p} и α_{2p} – параметры, вависящие от A и T_0 . Распределение угла вылета протона определяется в вависимости от его кинетической энергии в виде

$$g(A,T,\theta) = \begin{cases} N \exp(-\theta^2/\lambda), & 0 \le \theta \le \pi/2; \\ N \exp(-\pi^2/4\lambda), & \pi/2 \le \theta \le \pi, \end{cases}$$
(3)

где $\lambda = (0.12 + 0.00036A)/T$, а N – константа нормировки.

Указанная аппроксимация испольвовалась для розыгрыша вылета вторичных протонов в реакции $p + {}^{12}C \longrightarrow p + X$ в той же кинематической области, что и для π^+ -мезонов. При этом учитывалось то обстоятельство, что моделируемый спектрометр "вахватывает" однозарядные частицы в импульсном интервале от 150 до 350 MoB/c, в соответствии с которым и выбирались предельные вначения кинетической энергии вторичных протонов. Это потребовало перенормировки функций (1) и (2). В результате кинетическая энергия испускаемого протона разыгрывалась согласно плотности $p_1(T)$, представляющей из себя преобразованную функцию (2), а угол вылета θ – в соответствии с условной плотностью $p_2(\theta | T) = g(A = 12, T, \theta)$.

Случайные величины $T = T(\gamma_1), \ \theta = \theta(\gamma_1, \gamma_2),$ определяемые из системы уравнений, аналогичной п.1, моделируют кинетическую энергию и полярный угол вылета вторичного протона, а $\varphi = 2\pi\gamma_3$ – его

азимутальный угол ; здесь $\gamma_1, \gamma_2, \gamma_3$ – случайные величины, равномерно распределённые на [0,1].

3) Генерирование К⁺-мезонов

Поскольку сведения о дифференциальном сечении рождения K^+ мезонов в реакции $p + {}^{12}C \longrightarrow K^+ + X$ при энергии налетающего протона порядка 1ГэВ практически отсутствуют, то при моделировании параметров вылета K^+ -мезонов импульс p и угол θ разыгрывались как равномерно распределённые случайные величины, при этом $\theta \in [0, \pi/6], p \in [150, 350].$

Для вадания начальной кинематики в подпрограмме GUKINE (см. ниже) параметры T, θ , φ преобразовывались следующим образом. Величина импульса для каждой частицы вычислялась из соотношения

$$T = \sqrt{p^2 + m^2} - m,$$

а его проекции на оси координат OX, OY и OZ как

 $p_x = p \sin \theta \cos \varphi = p_x(\gamma_1, \gamma_2, \gamma_3),$ $p_y = p \sin \theta \sin \varphi = p_y(\gamma_1, \gamma_2, \gamma_3),$ $p_z = p \cos \theta = p_z(\gamma_1, \gamma_2, \gamma_3).$

3.3 Моделирование событий

На рис.3 приведена схема моделирования событий, включающая генерирование вторичных частиц, их трассировку через установку, моделирование откликов детекторов на прохождение через них заряженных частиц, регистрацию ионизационных потерь в сцинтилляционных счёчиках, определение времён пролёта и восстановление масс варегистрированных частиц, заполнение статистических распределений и т.д.

4 Результаты

Созданы два варпанта программы КМЕSON:

<u>GRUN</u> моделирование событий

- GTRIGI инициализация счёта
- <u>GTRIG</u> моделирование одного события

- GUKINE генерация начальной кинематики

- GUTREV трассировка события

- GTREVE цикл по всем трекам события

— GUTRAK трассировка одной частицы

— GTRACK трассировка текущего трека

- GMEDIA определение текущего объёма, среды

- GTVOL трассировка в текущей среде

- GTGAMA/GTELEC/ трассировка в соответствии с типом частицы — GUSTEP регистрация пересечений и вапись координат треков
- GUDIGI оцифровка и запись в ZBOOK-банки

— GUOUT выдача информации о текущем событии

— GTRIGC подготовка памяти для нового события

Рис.3. Схема моделирования событий в программе *КМЕSON*

а) Диалоговая версия с удобными графическими средствами на базе пакета HIGZ (см. [6]) и системы GKS (см. [5]), используемая для графического представления модели экспериментальной установки, а также трассировки генерируемых частиц через детекторы спектрометра. Этот вариант используется на этапе разработки алгоритмов и отладки программы.

6) Пакетная версия программы, используемая для набора статистики и получения одно- и двумерных статистических распределений, позволяющих сделать предварительные выводы о работе отдельных элементов и всей установки в целом.

Для накопления статистических распределений используется пакет НВООК (см. [3]). Результирующие распределения записываются в RZ – файл [10], что позволяет проводить их дальнейший анализ с помощью мощного пакета анализа и представления данных PAW [11].

4.1 Отбор событий по измерениям ионизационных потерь

Для отработки процедуры отбора редких событий с пороговыми K^+ -мезонами генерировались вторичные протоны, пионы и каоны и моделировалось их прохождение через магнитное поле и детекторы спектрометра. Для частиц, попавших в установку, фиксировались:

а) два времени пролёта t_1 и t_2 на пролётной базе между "гребёнкой" сцинтилляционных счётчиков C1 – C7 и сцинтилляторами счётчиков C8 и C9 (см. схему установки на рис.1), соответственно;

б) ионизационные потери ΔE в счётчиках C8 и C9, толщины сцинтилляторов которых взяты равными 1 см.

Так как попадающие в детектор протоны имеют импульсы от 150 до 350 МәВ/с, то они могут быть эффективно дискриминированы по величине пробега. Поэтому ниже будут рассмотрены проблемы, связанные с отбором редких событий с подпороговыми K^+ -мезонами в условиях интенсивного фона от пионов. Предварительные оценки [1] говорят о том, что соотношение пионов и каонов может составить $N_{K^+}/N_{\pi^+} \approx 10^{-5}$.

На рис.4а представлен спектр ионизационных потерь для π^+ и K^+ в сцинтилляционном счётчике C8 (а). Для получения

Рис.4а. Спектры ионизационных потерь для π^+ - и K^+ -мезонов в сцинтилляционном счётчике С8.

представления о форме и положении распределений выборка для частиц каждого сорта составляла 2000 событий. На рис.46 приведены кривые зависимости величины накопленной вероятности $F(\Delta E_t) = Pr\{\Delta E < \Delta E_t\}$ от значения порога ΔE_t при регистрации K^+ -мезонов и кривые зависимости $1-F(\Delta E_t)$ в случае детектирования π^+ -мезонов в счетчике С8. При выборе порогового значения ионизационной потери энергии в счетчике C8, равного $\Delta E_t = 4,5$ МоВ, регистрируется $\approx 99,7\%$ K^+ -мезонов и отбрасывается такое же количество π^+ -мезонов. Близкие результаты были получены для счетчика C9.

Таким образом, используя информацию с отдельного счётчика, можно подавить фон от π^+ -мезонов примерно в 3,3 · 10² раз, что недостаточно для эффективного отбора полезных событий.

Для дальнейшего подавления фона от пионов воспользуемся методом отбора минимального импульса [12], суть которого состоит в том, что если слабоионизирующая варяженная частица последовательно пересекает телескоп из N идентичных детекторов (в нашем случае, сцинтилляционных счетчиков) и отбирается минимальный из всех выходных импульсов A, то плотность распределения минимального импульса P(A) выражается следующим образом:

$$P(A) = Np(A)[1 - \int_0^A p(a)da]^{N-1}$$

где p(A) – плотность исходного распределения. При этом плотность P(A) имеет более узкое распределение, чем распределение p(A). В частности, для распределения Ландау п N = 5 полная ширина на половине высоты (FWHM) распределения P(A) примерно в два раза меньше соответствующей величины для распределения p(A) [13].

На рис.5а представлены совместные спектры ионизационных потерь для π^+ и K^+ при отборе минимального из импульсов в сцинтилляционных счётчиках C8 и C9. Видно, что эти распределения несколько уже распределений, приведённых на рис.4а. На рис.56 приведены кривые зависимости величины накоплённой вероятности $F(\Delta E_t) = Pr{\Delta E < \Delta E_t}$ для K^+ -мезонов и кривые зависимости $1-F(\Delta E_t)$ для π^+ - мезонов, отвечающие распределениям минимального импульса. Если взять пороговое значение для минимального импульса равным $\Delta E_t = 4,4$ МэВ, будут регистрироваться $\approx 99,7$ % K^+ -мезонов и отбрасываться $\approx 99,95$ % π^+ -мезонов.

Рис.5а. Спектры ионизационных потерь для π^+ - и K^+ -мезонов при отборе минимального из импульсов в сцинтилляционных счётчиках С8 и С9.

Таким образом, проводя отбор событий по минимальному значению импульса с двух счетчиков, можно подавить фон от π^+ -мезонов примерно в 2·10³ раз. Эта методика может быть реализована в триггере 1-го уровня, что, учитывая первоначальное соотношение π^+ - и K^+ -мезонов, позволит регистрировать их в соотношении 50:1.

4.2 Отбор частиц по измерениям времени пролета

Для надёжного выделения событий с подпороговыми K⁺-мезонами из совокупности зарегистрированных событий использовалась методика идентификации частиц по их массам. Массы частиц восстанавливались по измерениям времён пролёта с помощью формулы

$$m_i = p_{\sqrt{\left(\frac{t_i}{t_{0i}}\right)^2 - 1}}, \quad i = 1, 2,$$
 (4)

где р – импульс частицы, t_i – время её пролёта на базе длиной ℓ_i , $t_{0i} = \ell_i/c$, с – скорость света m_i – масса частицы. В нашем случае ℓ_1 и ℓ_2 – расстояния от одного из сцинтилляторов "гребёнки" до сцинтилляторов С8 или С9, соответственно. Во времена t_i , i=1,2 вносились поправки, связанные с конечным разрешением системы измерения времени пролета, которое полагалось равным $\sigma_i = 250$ пс (см., в частности, [14]). Кроме того, полагалось, что погрешность восстановления импульсов вторичных частиц (см. [1]) составляет $\sigma_p = 2,5$ МәВ/с.

На рис.6а представлен спектр масс вторичных π^+ . и K^+ -мезонов, восстановленных по измерениям времён пролета между одним из счётчиков "гребёнки" и счетчиком С8; на рис.6б для наглядности этот же спектр представлен в другом масштабе. Так как соотношение регистрируемых π^+ - и K^+ -мезонов составляет 50:1, то это приводит к вначительному вкладу π^+ -мезонов в область распределения K^+ -мезонов. Он достигает $\approx 30\%$ от общего числа событий с $m > 0,35\Gamma$ эВ (выбор такой границы обеспечивает незначительную потерю событий, вызванных K^+ -мезонами).

С целью дополнительного уменьшения фона от π^+ -мезонов варегистрированные события подвергались двухэтапной обработке в

16

Рис.6. Спектр масс вторичных π^+ - и K^+ -мезонов, восстановленных по измерениям времён пролета между одним из счётчиков "гребёнки" и счётчиком C8 (а); для наглядности тот же спектр представлен в другом масштабе (б). соответствии со статистической процедурой, основанной на интегральном критерии согласия ω_n^3 [15]. При этом в качестве исходной информации о каждой частице использовались значения масс m_1 и m_2 , полученные с помощью соотношения (2). Каждый этап различался по характеру используемой в критерии нулевой гипотезы. На первом этапе в качестве нулевой гипотезы использовалось распределение пионов; события с K^+ -мезонами выделялись в критической области. На втором этапе выделенные события подвергались повторной обработке, при которой в качестве нулевой гипотезы для критерия ω_n^3 бралось распределение каонов.

На рис.7а приведено полученное в результате второго этапа обработки распределение случайных величин ω_n^3 , вычислявшихся по формуле [15]

$$\omega_n^3 = \frac{\sqrt{n}}{8} \sum_{i=1}^n \left[2\Phi(\lambda_i) - \frac{2i-1}{n} \right] \left\{ \left[2\Phi(\lambda_i) - \frac{2i-1}{n} \right]^2 + \frac{1}{n^2} \right\};$$

здесь n = 2 – объём выборки, $\Phi(\lambda)$ – функция распределения плотности $N(0,1), \lambda_1 < \lambda_2$ – упорядоченная выборка величин

 $\lambda_i = \frac{m_i - \bar{m}_i}{\sigma_i}, \qquad i = 1, 2,$

где m_i – измеренная масса частицы, $\bar{m_i}$ – среднее вначение, а σ_i – стандартное отклонение для распределений спектров масс частиц, относимых к каонам и выделенных на первом этапе обработки.

Выбрав в качестве критической границы $Z_{xp} = |\omega_n^3| = 0,3$ (чему отвечает уровень значимости $\alpha = 0,04$ для двустороннего критерия ω_n^3), для событий, понавших в донустимую область, получим спектр масс вторичных частиц, изображённый на рис.76. Вклад π^+ -мезонов теперь составляет около 14%. Это означает, что применение методики отбора событий на основе критерия согласия ω_n^3 позволило вдвое снизить уровень фона от пионов, сохранив при этом практически все события, вызванные K^+ -мезонами.

5 Заключение

Создана программа моделирования эксперимента по изучению про-

ð

Рис.7а. Распределение случайных величин ω_2^3 , полученное в результате второго этала обработки (см. текст).

Рис.76. Спектр масс вторичных частии, попавших в допустимую область критерия ω_2^3 с уровнем вначимости $\alpha = 0,04$. цессов подпорогового рождения K^+ -мезонов на ускорителе COSY(Julich, Germany). С её помощью разработана методика отбора событий, связанных с рождением подпороговых K^+ -мезонов, которая может быть реализована в триггере 1-го уровня (с использованием измерений ионизационных потерь).Показано,что надежное выделение K^+ -мезонов из спектров масс вторичных частиц может быть выполнено с применением статистической процедуры, основанной на критерии согласия ω_n^3 .

Литература

- [1] W. Borgs et al. Proposal for K^+ -Meson Spectroscopy with 0^0 Facility at TP2 in COSY.
- [2] R. Brun et al.: GEANT3 Program Library CERN, Data Handling Division DD/EE/84-1, 1987.
- [3] Program Library. CERN Computer Centre, 1989.
- [4] R. Brun and D. Lienart: *HBOOK User Guide*. CERN Computer Centre Program Library, Y250, 1987.
- [5] D.R. Myers: GKS/GKS-3D Primer CERN/DD/US/110, 1989.
- [6] R. Bock et al.: HIGZ High level Interface to Graphics and Zebra. CERN Computer Centre Program Library, Q120, 1988.
- [7] H.A.Enge: Deflecting Magnets in Focusing of Charged Particles. ed. A.Septier, v.II, Academic Press Inc., 1967, p.203-264.
- [8] И.М. Соболь. Численные методы Монте-Карло. Издательство "Наука", 1973.
- [9] J. Ranft, J.T. Routti: Hadronic Cascade Calculation of Angular Distribution of Integrated Secondary Particle Fluxes from External Targets and New Emperical Formulae Describing Particle Production in Proton - Nucleus Collisions. Particle Accelerators, Vol.4, 1972, 101.

- [10] R. Brun and J. Zoll: ZEBRA. Date Structure Managment System. CERN Computer Centre Program Library, Q100, 1987.
- [11] R. Brun et al.: PAW Physics Analysis Workstation. The Complete CERN Program Library, Version 1.07, 1989.
- [12] G.Igo, R.M.Fisberg. Review of Scientific Instruments, 25, 1954, 450.
- [13] K.Nagata. Nuclear Instruments and Methods, 77, 1970, 218.
- [14] А.С. Ажгирей и др. Системы измерения времени пролёта в магнитном спектрометре с проволочными камерами. Препринт ОИЯИ, Р1-85-749, Дубна, 1985.
- [15] P.V.Zrelov, V.V.Ivanov. The Relativistic Charged Particles Identification Method Based on the Goodness-of-Fit $\omega_n^3 Criterion$. Nucl. Instr. and Meth. in Phys. Res., A310, 1991, 623.
- [16] P.Denes, B.D.Dieterle et al. Phys. Rev., vol.27C, Num.3, 1983, p.1339.

Рукопись поступила в издательский отдел 27 августа 1992 года.

P10-92-369

Зрелов П.В. и др. Моделирование эксперимента по изучению процессов подпорогового рождения К⁺-мезонов

Создана программа моделирования экспериментов по изучению процессов подпорогового рождения К⁺-мезонов на ускорителе COSY (Julich, Germany). С ее помощью разработана методика отбора событий, связанных с рождением подпороговых К⁺-мезонов, которая может быть реализована в триггере 1-го уровня (с использованием измерений ионизационных потерь). Показано, что надежное выделение К⁺-мезонов из спектров масс вторичных частиц может быть выполнено с применением статистической процедуры, основанной на критерии согласия ω_n^2 .

Работа выполнена в Лаборатории вычислительной техники и автоматизации и Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1992

Перевод авторов

P10-92-369

Zrelov P.V. et al. Simulation of the Experiment for Investigation of Subthreshold K⁺-Production

The program for simulation of the experiment for investigation of subthreshold K⁺-production with a 0^o Facility at TP2 in COSY (Julich, Germany) was created. It gave the possibility to elaborate the method for selection of events connected with subthreshold K⁺-production which may be realized in the 1-st order trigger (using the ionization energy losses measurements). It was shown that the reliable detection of K⁺ from the secondary particle mass spectrum can be performed with the help of the statistical procedure based on the gooc'ness-of-fit criterion ω_n^2 .

The investigation has been performed at the Laboratory of Computing Techniques and Automation and the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1992