00 00

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

9

P10-90-83

1990

В.Б.Виноградов, Ю.А.Кульчицкий ¹, Л.Б.Литов, В.Г.Одинцов, Л.А.Пермякова, М.Н.Сергеенко¹, С.Токар, Й.Ференцей ²

АНАЛИЗ ИНФОРМАЦИИ С УСТАНОВКИ "ГИПЕРОН" В ЭКСПЕРИМЕНТЕ ПО ИССЛЕДОВАНИЮ ИНКЛЮЗИВНОГО ОБРАЗОВАНИЯ К⁰- И К*⁰(892)-МЕЗОНОВ

¹ Институт физики АН БССР, Минск

² Институт экспериментальной физики САН ЧССР, Кошице

1. ВВЕДЕНИЕ

В работе описываются общая схема обработки и основные алгоритмы, используемые для анализа экспериментальной информации, регистрируемой установкой "Гиперон"¹¹ в экспериментах по исследованию процессов инклюзивного образования К°-, К *° (892)-, ϕ -мезонов в пучках различного кваркового состава (π , K, р) на водородной и ядерных мишенях при энергии 11,2 ГэВ.

Установка "Гиперон", расположенная на 18 канале серпуховского ускорителя, состоит из пучкового спектрометра (рис. 1а) и спектромет-

ра вторичных чaстиц (рис. 1б). В ее состав входят система искровых $(\mathbf{M}\mathbf{\Pi}\mathbf{K})$ и пропорциональных (IIK) камер, черенковские (С) и сцинтилляционные (S) счетчики, годоскопы (Γ) , электромагниты (СП-129, МС-12). Сбор данных осуществляется в режиме он-лайн с помошью ЭВМ ЕС-1010.

На этапе планирования эксперимента было проведено моделирова-

Рис. 1. Установка "Гиперон": а) пучковый спектрометр, б) спектрометр вторичных частиц.

ние для оптимизации расположения аппаратуры, регистрирующей события исследуемых реакций.

С целью изучения процессов

$$h + A \rightarrow K^{\circ} + X$$
, $K_{g}^{\circ} \rightarrow \pi^{+} \pi^{-\gamma}$; (1)

$$h + A → K^{*\circ}(892) + X$$
, $K^{*\circ}(892) → K^{+}π^{-}$; (2)

$$h + A \rightarrow \phi + X$$
, $\phi \rightarrow K^+ K^-$;

$$\mathbf{A} = \mathbf{p}, \mathbf{B}\mathbf{e}, \mathbf{C}\mathbf{u}, \mathbf{P}\mathbf{b} \tag{3}$$

установка экспонировалась в пучках *п*-мезонов, К-мезонов и протонов. На магнитные ленты были записаны 5 миллионов событий, удовлетворяющих григгерному условию: регистрация пучковой частицы до мишени и двух заряженных частиц в детекторах — пропорциональной камере ПК-7, годоскопах Γ_1 , Γ_2 , Γ_3 — после мишени.

Извлечение физической информации производилось в ОИЯИ с помощью описываемого комплекса программ*.

2. СХЕМА ОБРАБОТКИ ИНФОРМАЦИИ

Общая схема анализа информации в режиме эфф-лайн приведена на рис.2.

Процесс обработки разделяется на ряд этапов:

- теометрическая реконструкция событий;
- определение импульсов заряженных частиц;
- статистический анализ событий;
- анализ спектров;

расчет дифференциальных сечений.

Для решения этих задач на ЭВМ CDC-6500 был создан комплекс программ. Кроме того, для функционирования этой системы необходим набор дополнительных программ, с помощью которых определяется:

пространственное положение трековых детекторов;

— коэффициенты магнитного поля;

^{*}Альтернативная система программ для обработки этих данных была разработана в ИФВЭ (Серпухов) / 2/. Для получения физических результатов использовались обе системы программ.

- геометрическая эффективность (аксептанс) установки:
- эффективности отдельных детекторов и установки в целом;
- эффективности программы геометрической реконструкции событий.

Такой набор программ был также разработан и введен в действие на ЭВМ CDC-6500.

Записанные в специальной экспозиции установки (с выключенным электромагнитом MC-12) треки пучковых частиц служили для определения координат трековых детекторов установки (геометрическая калибровка).⁽³⁾. Полученные значения координат записывались на диско-

вую память и использовались программой геометрической peконструкции. Зарегистрированная vстановкой информация о событиях, записанная на магнитных лентах, читается и обрабатывается программой геометрической реконструкции многотрековых событий '4'. При реконструкции выделяются события со следующей топологией: не менее двух вторичных разноименно заряженных частиц. Время обработки этих лент было уменьшено 30%на благодаря предварительной проверке информации о событии на наличие достаточного для реконструкции события

Рис. 2. Схема анализа экспериментальной информации.

требуемой топологии количества сработавших элементов трековых детекторов. Информация о реконструированных событиях вместе с исходной информацией об этих событиях записывалась на магнитные ленты — банк треков. Информация о мониторных числах записывалась на дисковую память.

После определения импульсов пучковой и вторичных частиц и восстановления вершины взаимодействия. (или точки распада К^о-мезона) на магнитные ленты суммарных результатов (ЛСР) производилась запись банка событий. При статистическом анализе событий с ЛСР отбирались события, удовлетворяющие ряду критериев, и проводилось построение гистограмм по физическим переменным. Созданные файлы гистограмм для каждой ЛСР записывались на диск. После обработки всех ЛСР эти файлы суммировались и создавался пакет суммарных гистограмм.

Полученные в результате анпроксимации спектров числа событий исследуемых процессов, поправленные на геометрическую эффективность (аксептанс) и эффективность регистрации событий, позволяют получить дифференциальные сечения.

3. ОПРЕДЕЛЕНИЕ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ТРЕКОВЫХ ДЕТЕКТОРОВ

Трековые детекторы установки "Гиперон" (искровые проволочные камеры, пропорциональные камеры, сцинтилляционные годоскопы) представляют собой набор параллельных проволок (пластин годоскопов), расположенных в одной плоскости. Пространственное положение детекторов определяется координатами Х, Ү, Z середины первой (сигнальной) проволоки и углами поворота α, β, у плоскости детектора вокруг осей Х, Ү, Ζ. Перед началом набора данных на установке производится юстировка камер, то есть в пределах заданных допусков плоскости камер выстраиваются перпендикулярно оси Z, а сигнальные проволоки — параллельно осям Х или У, а также геодезические измерения Х-, Ү-, Z-координат детекторов с точностью ±1 мм. Указанной точности недостаточно для Х-, У-координат. Поэтому, используя методику /3/, на основе специальной экспозиции, в которой регистрировалась информация о пучковых частицах, путем минимизации отклонений координат треков от прямых линий уточнили Х-, Ү-координаты трековых детекторов. В результате обработки более 10 тысяч пучковых частиц точность в определении Х-, У-координат детекторов составила ±30 мкм.

4

4. ГЕОМЕТРИЧЕСКАЯ РЕКОНСТРУКЦИЯ СОБЫТИЙ

Целью геометрической реконструкции является распознавание треков события и определение их параметров. Разработанный оригинальный алгоритм распознавания треков ^{/4/} в значительной степени использует особенности регистрируемых установкой "Гиперон" событий: малые углы разлета продуктов распада ϕ -, К *° (892) - и К°-мезонов, общие точки и частичное совпадение треков, присутствие фоновых искр и треков.

Треками считались совокупности точек, образующих в пределах заданных допусков (± 2.4 мм) прямые линии. Требовалось, чтобы количество точек на треках было больше заданных минимальных величин как для блоков камер, так и для отдельных подблоков, составляющих блок. Требование о нахождении точек на подблоках, с одной стороны, гарантировало заданную минимальную длину трека, а с другой — позволяло уменьшить общее количество точек на треке и тем самым увеличить эффективность распознавания трека. Найденные "трековые" точки не вычеркивались из общего массива точек. Это уменьшало скорость распознавания, но гарантировало отсутствие потерь треков из-за появления ложных треков в результате присоединения точек трека к фоновым точкам.

Распознавание треков начиналось в области за магнитом MC-12, где лучшие фоновые условия и треки от отрицательно и положительно заряженных частиц хорошо разделяются ⁷⁵⁷. Информация о треках за магнитом использовалась для распознавания треков до магнита.

В результате работы программы геометрической реконструкции для каждой заряженной частицы, проходящей через магнит, становятся известны ее траектория в пространстве до магнита:

$$X = A'_{X}Z + B''_{X}, \quad Y = A'_{Y}Z + B'_{Y},$$

$$Y = A'_{Y}Z + B'_{Y},$$
(4)

и У-проекция после магнита:

$$\mathbf{Y} = \mathbf{A}_{\mathbf{Y}}^2 \mathbf{Z} + \mathbf{B}_{\mathbf{Y}}^2 \,. \tag{5}$$

Параметры A и B находятся методом наименьших квадратов. С помощью данной программы ^{/4/} одно событие анализировалось в среднем за 0,25 с на ЭВМ CDC-6500.

5. ОПРЕДЕЛЕНИЕ ИМПУЛЬСОВ ЗАРЯЖЕННЫХ ЧАСТИН

Восстановление импульсов заряженных частиц осуществлялось с помоцью метода, предложенного в ⁷⁶⁷ и адаптированного к нашим условиям ⁷⁷⁷. Импульс частицы Р определяется по формуле

 $\xi_{5} = \sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} \sum_{k=1}^{N_{3}} \sum_{\ell=1}^{N_{4}} \sum_{m=1}^{N_{6}} C_{ijk\ell m} - T_{i}(\xi_{1}) T_{j}(\xi_{2}) T_{k}(\xi_{3}) T_{\ell}(\xi_{4}) T_{m}(\xi_{6}) .$ (6)

Здесь $\xi_n = \frac{2X_n - A_n - B_n}{B_n - A_n}$, =1,...,6 — переменные, изменяющиеся в

интервале -1,1; (A_n, B_n) — границы изменения параметров x_n (параметры траектории); $x_1, x_2 - X_r, Y$ -координаты траектории в середине мишени (Z = 3525 мм); $x_3 - Y$ -координата траектории в центре (Z=0); $x_4 - X$ -координата траектории на выходе из магнита (Z=2000 мм). Величины координат $x_1 - x_4$ определяются из уравнений (4). $x_5 = 1/P$; $x_6 - Y$ -проекция углов отклонения частицы, прошедшей через магнит; $T_n (x) = \cos \{n \cdot \arccos(x)\}$ — полиномы Чебышева, $C_{ijk}\ell_m$ — набор коэффициентов, рассчитываемый по программе /7/. Для достижения точности восстановления импульсов $\Delta P/P = 0,1\%$ оказалось достаточно 3 тысяч коэффициентов, которые эффективно заменят карту магнитного поля электромагнита MC-12/8/, измеренную в 400 тысячах точек.

6. ОПРЕДЕЛЕНИЕ КООРДИНАТ ВЕРШИНЫ СОБЫТИЯ

Реконструкция координат вершины события осуществлялась с помощью подпрограммы, описанной в работе ^{/9/}. В ней для определения координат вершины п-трекового события $X = (X_v, Y_v, Z_v)$ минимизировался функционал

$$\mathbf{S} = (\mathbf{A}\mathbf{X} - \mathbf{B})^{\mathrm{T}} \ \mathbb{W} (\mathbf{A}\mathbf{X} - \mathbf{B}) \,. \tag{7}$$

Решение имеет вид

$$\mathbf{X} = (\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{B} , \qquad (8)$$

где

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & -\mathbf{A}_{X1} \\ \mathbf{0} & \mathbf{1} & -\mathbf{A}_{Y1} \\ \cdots & \cdots & \cdots \\ \mathbf{1} & \mathbf{0} & -\mathbf{A}_{Xn} \\ \mathbf{0} & \mathbf{1} & -\mathbf{A}_{Yn} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_{X1} \\ \mathbf{B}_{Y1} \\ \cdots \\ \mathbf{B}_{Xn} \\ \mathbf{B}_{Yn} \end{bmatrix}, \quad \mathbf{W} = \begin{bmatrix} \mathbf{1}/\sigma_{\mathbf{X}}^2 & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}/\sigma_{\mathbf{Y}}^2 & \cdots & \mathbf{0} & \mathbf{0} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}/\sigma_{\mathbf{X}}^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1}/\sigma_{\mathbf{Y}}^2 \end{bmatrix}.$$

Считалось, что треки принадлежат одной вершине, если

$$<\mathbf{r}> = \left(\sum_{i} r_{i}^{2}/n\right)^{1/2} < r_{Makc}$$
, (9)

где

$$\mathbf{r}_{i}^{2} = \left[\mathbf{X}_{v} - (\mathbf{A}_{\mathbf{X}_{i}} \mathbf{Z}_{v} + \mathbf{B}_{\mathbf{X}_{i}}) \right]^{2} + \left[\mathbf{Y}_{v} - (\mathbf{A}_{\mathbf{Y}_{i}} \mathbf{Z}_{v} + \mathbf{B}_{\mathbf{Y}_{i}}) \right]^{2}$$

— расстояние от і-го трека до вершины (X_v, Y_v, Z_v) -события.

Используемая величина г_{макс} = 6 мм была получена эмпирическим путем на основе анализа выделенного числа К°-мезонов из данной выборки триггерных событий в зависимости от величины г_{макс}

7. СТАТИСТИЧЕСКИЙ АНАЛИЗ СОБЫТИЙ

Основной задачей статистического анализа является построение распределений по физическим переменным для событий исследуемого процесса, отобранных с ЛСР по ряду критериев. Использовались следующие критерии отбора:

а) отбор событий по топологии вершины, соответствующий исследуемому процессу: два вторичных трека для реакции (1); один пучковый и два вторичных трека для реакций (2) и (3); один пучковый и три вторичных трека для распада пучкового K^+ -мезона по моде $\pi^+\pi^+\pi^-$;

б) вершина события для реакций (2) и (3) должна находиться в области мишени. Точка распада для реакции (1)и пучкового К⁺-мезона должна находиться в распадной зоне;

в) при выделении процессов (2) и (3) требуется отсутствие сигнала для К -мезона в соответствующем сегменте счетчика \check{C}_6 .

Для отобранных событий исследуемых процессов определялись значения фейнмановской переменной (x_F), поперечного импульса (p_T) и эффективной массы (M). Эта информация использовалась при построении около сорока спектров по эффективной массе заряженных частиц в разных интервалах значений переменных х_F и р_T для каждого исследуемого процесса. Гистограммирование отобранных событий ироводится с использованием пакета программ НВООК ¹⁰. Для облегчения работы вместо большого количества одномерных гистограмм (более 100 штук) применялись двумерные гистограммы (20 штук).

Для устранения фона, связанного со взаимодействиями падающих частиц с веществом в пучке установки, из гистограмм, полученных в экспозиции с мишенью, вычитались соответствующие гистограммы из экспозиции без мишени.

8. ОБРАБОТКА СПЕКТРОВ

Аппроксимация спектров эффективных масс проводилась с помоиљю программы минимизации функционалов FUMILI ^{'117} выражением

$$\frac{dN}{dM} = BG(M) + \alpha R(M) \epsilon(M), \qquad (10)$$

где R(M) — функция Гаусса для $(\pi^+\pi^-)$ -спектров или релятивистская функция Брейта-Вигнера для $(K^+\pi^-)$ -спектров, $\epsilon(M)$ — геометрическая эффективность, имеющая вид $\exp(-6M)$, BG(M) — фон, который параметризовался в виде

BC(M) =
$$a_1 (M - M_{h^+} - M_{h^-})^{\alpha_2} \exp(-a_3 M)$$
, (11)

где a_i — параметры. Отметим важность учета в формуле (10) зависимости аксептанса от эффективной массы. Без учета $\epsilon(M)$ измеренная величина массы K^{*°}(890) мезона отличается от среднемирового значения.

Выходы частиц определялись по формуле

$$M_{Makc} = \alpha \int R(M) \epsilon(M) dM, \qquad (12)$$

где М_{мин}, М_{макс} являются границами области аппроксимации спектров. Для ($\pi^+\pi^-$) -спектров границами являются 450 и 540 МэВ, для ($K^+\pi^-$) -спектров — 640 и 1240 МэВ. Погрешности в (12) определялись с учетом корреляции между параметрами аппроксимирующей функции. При анализе парциальных спектров, полученных в отдельных интервалах (x_F , p_T), установлено отсутствие систематических смещений в массе и ширине К[°]- и К^{*°} (892)-мезонов. Поэтому при фите спектров значение массы К[°]- и К^{*°} (892)-мезонов было зафиксировано на средне-

мировом значении, а ширины — на значении, полученном при аппроксимации суммарных спектров. Все парциальные спектры описывались функцией (10) с вероятностью Р(χ^2) лучше 5%.

9. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ УСТАНОВКИ

Для расчета геометрической эффективности (аксептанса) установки на базе программы FOWL ^{/12/} была разработана специальная программа. В этой программе методом Монте-Карло моделировались события, имитирующие изучаемый процесс, прослеживалось прохождение частиц через спектрометр с учетом критериев отбора событий в программе геометрической реконструкции. В качестве имитирующего процесса был выбран

$$K^{+} + N \rightarrow K^{\circ}(K^{*\circ}(892)) + \pi + N$$

-

Аксептанс рассчитывался как функция фейнмановской переменной (x_F), поперечного импульса (p_T), а для К*°-и эффективной массы продуктов распада.

(13)

С целью повышения скорости расчета кинематическая область изучаемых процессов ($0,4 \le x_F \le 1$ и $p_T \le 0,5$ ГэВ/с) была разделена на ячейки с шагом 0,1 по x_F и p_T , в которых имитирующий процесс был генерирован с использованием метода существенной выборки /13/ Полученные результаты приведены на рис. 3.

Рис. 3. Геометрическая эффективность установки для процессов инклюзивного образования а) K° - и б) $K^{*\circ}$ (892)-мезонов.

Рис. 4. Эффективность регистрации вторичного трека в блоке камер между мишенью и спектрометрическим магнитом в зависимости от времени (1 деление по шкале ^t соответствует 4 часам).

Рис. 5. Полный спектр эффективных масс системы $(\pi^+\pi^+\pi^-)$ -мезонов.

Эффективности отдельных трековых детекторов были определены с использованием треков пионов от распада К в → π⁺π⁻. Этот способ позволяет определить эффективность рабочей зоны детектора в отличие от процедуры определения эффективности по пучковым частицам. Для разных детекторов она составила 75÷95%. Эффективность регистрации пространственного трека в разных блоках камер составляет 93-98%. На рис. 4 в качестве иллюстрации приведены значения эффективности регистрации трека в блоке камер между мишенью и магнитом МС-12 для различных экспозиций. Видно, что в течение набора статистики эффективность регистрации трека оста-

валась постоянной и составила в среднем 93%. На основе информации о работе трековых детекторов методом Монте-Карло проведен расчет эффективности установки, которая составила 78 ± 2%.

Для расчета эффективности триггера был использован распад пучкового каона по моде $K^+ \to \pi^+\pi^-\pi^-$. Топология такого процесса отличается от топологии исследуемых процессов наличием дополнительного трека от одного из π^+ -мезонов в области между мишенью и спектрометрическим магнитом. Триггерная эффективность была определена на основе 50 тысяч реконструированных случаев распада К⁺→ π⁺π⁺π⁻ (рис. 5) и составила 40%±3%±7% (статистическая и систематическая ошибки соответственно).

10. ПРОВЕРКА ПРОГРАММ ОБРАБОТКИ

Проверка комплекса программ для анализа данных проводилась на основе смоделированных событий. Для их расчета была разработана специальная программа моделирования искусственных событий методом Монте-Карло, позволяющая получать события исследуемых реакций в рамках определенной геометрии установки с учетом многократного кулоновского рассеяния, геометрического разрешения и эффективности работы детекторов.

Банк смоделированных событий, в котором каждое событие представлено информацией о сработавших элементах трековых детекторов, использовался как входная информация для программ анализа данных. Выходная информация, полученная в результате обработки событий, сопоставлялась с исходными данными по количеству событий и их координатам, угловым и импульсным характеристикам.

Обработка искусственных событий с известными характеристиками показала, что в процессе обработки не происходит существенных искажений и потерь событий. Эффективность программы геометрической реконструкции событий оказалась равной 97%.

11. РЕЗУЛЬТАТЫ

Приведем точностные характеристики, полученные при обработке двух миллионов триггерных событий, соответствующих процессам К⁺ + A → K[°](K^{*°}(892)) + X. В результате обработки были выделены 9 тысяч К[°]-мезонов и 16 тысяч К^{*°}(892)-мезонов.

На рис.6-8 приведены спектры эффективных масс $(\pi^+\pi^-)$ -, $(K^+\pi^-)$ и $(\pi^+\pi^+\pi^-)$ -мезонов, а в таблице — величины M_0 , σ (Γ для K^{*o}), полученные в результате аппроксимации спектров по формуле (10). Измеренные величины масс M_0 для K° -, K^{*o} (892)- и K^+ -мезонов согласуются с соответствующими среднемировыми значениями /14/. С учетом разрешения по массе согласуется со среднемировым значением и измеренная ширина K^{*o} (892)-мезона. Это свидетельствует о том, что определение импульсов и углов заряженных частиц производится без существенных систематических ошибок.

Обработка искусственных событий, описанная в пункте 10, позволила также определить точностные характеристики событий. Так, по-

Рис. 6. Спектры эффективных масс системы ($\pi^+\pi^-$)-мезонов.

Рис. 7. Спектры эффективных масс системы(К⁺ п⁻)-мезонов.

Рис. 8. Спектр эффективных масс систем ($\pi^+\pi^+\pi^-$) мезонов в случае, когда определены импульсы всех π -мезонов.

грешности в определении параметров А и В треков вторичных частиц равны $\sigma_{A,y} =$ = 0,5 мрад, $\sigma_{A,y} = 0,5$ мрад, $\sigma_{B,x} = 1,5$ мМ, $\sigma_{B,y} = 1,5$ мМ. Координаты точек взаимодействия и вершин распадов К°-мезонов определяются с точностью $\sigma_X = 0,5$ мМ, $\sigma_y = 0,5$ мМ, $\sigma_z = 10$ мМ. Импульсы вторичных частиц восстанавливаются с точностью 0,8%. Разрешение по эффективной массе для К°-мезона составляет 4 МэВ, что хорошо согласуется с экспериментальной величиной.

Таблица

Частица	Мишень	М ₀ (МэВ)	σ,Γ(МэВ)
κ°	Be Cu Pb	$\begin{array}{c} 497,6\pm0,1\\ 497,5\pm0,1\\ 497,5\pm0,2\end{array}$	$3,9 \pm 0,1$ $3,9 \pm 0,1$ $3,6 \pm 0,2$
K ^{*°} (892)	Be Cu Pb	$896,4 \pm 0,6$ $895,5 \pm 1,1$ $896,1 \pm 1,2$	$52,4 \pm 2,0 \\ 53,8 \pm 4,0 \\ 56,8 \pm 4,7$
K+		493,9±0,5	6,0±0,5

ЗАКЛЮЧЕНИЕ

Описан комплекс программ, разработанный для анализа экспериментальной информации с установки "Гиперон". Приведены основные алгоритмы этих программ. Показано, что данная система программ обеспечивает получение несмещенных оценок импульсных и угловых характеристик событий. С помощью этих программ обработано 5 миллионов триггерных событий, зарегистрированных для исследования инклюзивного образования К°- и К *° (892)-мезонов в адрон-ядерных взаимодействиях, и получены физические результаты, опубликованные в работе ^{/15/} Созданное программное обеспечение может быть использовано при обработке данных с других электронных спектрометров, в том числе и проектируемых на УНК.

Авторы благодарны Ю.А.Будагову, В.М.Кутьину и В.Б.Флягину за постановку задачи и ценные советы, С.А.Акименко и А.П.Павлинову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Антюхов В.А. и др. ПТЭ, 1985, № 5, с.35; ОИЯИ, Р13-84-562, Дубна, 1984.
- 2. Акименко С.А. и др. Препринт ИФВЭ 89-96, Серпухов, 1989.
- Виноградов В.Б. и др. ОИЯИ, Р10-85-77, Дубна, 1985;
 Виноградов В.Б. и др. ОИЯИ, Б1,10-85-84, Дубна, 1985.
- Виноградов В.Б. и др. ОИЯИ, Р10-85-704, Дубна, 1985;
 Виноградов В.Б. и др. ОИЯИ, Б1,10-86-302, Дубна, 1986;
 Виноградов В.Б. и др. ОИЯИ, Б1,10-85-651, Дубна, 1985.
- 5. Кульчицкий Ю.А. и др. ОИЯИ, Б1,10-83-137, Дубна, 1983.
- 6. Lechanlone C. et al. NIM, 1969, 69, p.122.
- 7. Виноградов В.Б. и др. ОИЯИ, Р1-85-390, Дубна, 1985.
- 8. Акименко С.А. и др. ОИЯИ, P13-80-155, Дубна, 1980.
- 9. Виноградов В.Б. и др. ОИЯИ, Б1,10-86-27, Дубна, 1986.
- 10. Brun R. et al. HBOOK, CERN PD/77/9, Geneve, 1979.
- 11. Silin I.N. FUMILI, CERN Program Library D510(1971).
- 12. James F. FOWL CERN Program Library, W505.
- 13. Juzaitis R.J. Thesis, LA-8546-T, Los Alamos, 1980.
- 14. Review of Particle Properties. Phys.Lett., 1988, B204.
- 15. Акименко С.А. и др. Препринт ИФВЭ, 90-10, Серпухов, 1990.

Рукопись поступила в издательский отдел 7 февраля 1990 года.