

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

P10-86-832

Б.Словинский, Э.Мулас, В.Н.Жмыров

ПРИМЕНЕНИЕ СТАТИСТИКИ **©**² ДЛЯ РАЗДЕЛЕНИЯ БЫСТРЫХ ЧАСТИЦ ПО ЭЛЕКТРИЧЕСКОМУ ЗАРЯДУ

В настоящей работе описан критерий эффективного разделения по электрическому заряду /далее – заряду/ быстрых фрагментов (р, d,t,³ Не и ⁴ Не), испускаемых во взаимодействиях *а*-частиц с легкими ядрами и регистрируемых под углом 140 мрад магнитным спектрометром МАСПИК^{/1/}. Импульс первичных *а*-частиц равен 4,5 ГэВ/с/N.

Ранее ^{/2/} был предложен критерий усредненной амплитуды, при помощи которого можно надежно сепарировать по заряду релятивистские частицы, проходящие через систему из нескольких сцинтилляционных счетчиков /С/. Использовалось при этом следующее свойство амплитуды A, сигнала от і-го C /далее - амплитуды/:

$$A_{i} \sim \int_{0}^{a_{i}} \left(-\frac{dE}{dx}\right)_{\mu \Theta H} dx \sim z^{2}, \qquad (1/$$

где d_i – толщина сцинтиллятора C_i , $(-\frac{dE}{dx})_{ион}$ – ионизационные потери энергии частицы с зарядом z в C_i . Критерий амплитуды, усредненной по всем пяти счетчикам, дает возможность разделять по заряду z частицы на уровне значимости ~ $10^{-4} \div 10^{-5}$, причем вероятность принять в качестве однозарядной частицу с z = 2 составляет примерно ~ 10^{-2} - 10^{-4} , в зависимости от режима работы счетчи-ков /2/.

1. КРИТЕРИЙ ω²

Из /1/ вытекает, что амплитуды A_i от частиц с зарядом z = 2будут систематически смещены относительно амплитуд от однозарядных частиц. Следовательно, для сепарирования этих частиц по zможно применять порядковую статистику, чувствительную именно к такого рода смещению. На практике в качестве статистического критерия, обладающего названным свойством, чаще всего используется величина ω^2 , которую в данном случае целесообразно представить в виде /см., например, $^{/3/}$:

$$\omega_{j,k}^{2} = \frac{1}{12k^{2}} + \frac{1}{k} \sum_{i=1}^{k} \left[F(Y_{i}^{(j)}) - \frac{2i-1}{2k} \right]^{2}.$$
 /2/

Здесь $Y_i^{(j)}=(A_i^{(j)}-A_i^{HB})/\delta A_i$, A_i^{HB} – наиболее вероятное значение амплитуды, $A_i^{(j)}$ – распределения для C_i , δA_i – половина

© Объединенный институт ядерный исспедовании Дубна 1986. Басратых восследования Дубна 1986.

1

ширины на половине высоты максимума ${\rm A}_{i}^{(j)}$ - спектра /индекс ј означает ј-ю реализацию А, или, что то же, ј-е событие/, F функция накопленной вероятности для гипотезы z = 1. Важно подчеркнуть, что соответствующая ей функция плотности вероятности $P(A_{i}^{(j)})$ случайной переменной $A_{i}^{(j)}$ получается непосредственно экспериментальным путем и практически не содержит никаких дополнительных предположений. Стоит также отметить, что статистические выводы, основанные на критерии ω^2 , не зависят от распределения F, которое может претерпевать довольно значительные изменения в зависимости от режима работы счетчика. С точки зрения свойств А^(j) -распределения этот режим можно охарактеризовать коэффициентом вариации $x_i = \Delta A_i / \overline{A}_i$, где \overline{A}_i - среднее значение амплитуды, ΔA_i - среднеквадратичный разброс амплитуд $A_i^{(j)}$ /все для гипотезы z = 1/. Оказалось, что величина x_i в процессе работы аппаратуры может подвергаться изменениям в 2 и более раз /для разных наборов данных или так называемых файлов/.

На рис. 1 приведено распределение величины $\omega_{j,5}^2$, определенной по пяти счетчикам для гипотезы z = 1, а также в предположении, что среди зарегистрированных частиц имеется двухпроцентная

Рис. 1. Распределение величины 2^{2} , определение соотношением /2/. Сплошная линия соответствует гипотезе z = 1, штриховая линия — сложной гипотезе: 98% событий с z = 1 и 2% событий с z = 2.

примесь двухзарядных частиц. Эти распределения получены путем моделирования на ЭВМ 200000 событий ($\omega_{j,5}^2$) на основании эмпирических $A_i^{(j)}$ -распределений с учетом /1/ для выборки

данных с $\bar{x} = 0,53+0,06$. Видно, что двухзарядные частицы группируются на шкале $\omega_{j,5}^2$ в интервале $\omega_{j,5}^3 > 0,3$, в то время как для частиц с $z = 1 \omega_{j,5}^2 < 0,3$. Можно также заметить, что интервал критических значений ω_1^2 критерия $\omega_{j,5}^2$ довольно узок и расположен около точки 0,3. Поскольку отношение у-сечений образования двухзарядных частиц к однозарядным для исследуемой реакции мало / $\gamma = 10^{-3}$ /, целесообразно рассмотреть прежде всего интервал критических значений $\omega_L^2 = /0,3\div0,315/$. В таблице для этого интервала приведены значения уровня значимости

$$a_{5} \approx \sum_{j:(\omega_{j,5}^{2} > \omega_{i}^{2})}^{P} P_{z=1} (\omega_{j,5}^{2})$$
 (3/

правостороннего критерия для z = 1 и вероятности

$$\beta_{5} = \sum_{j:(\omega_{j,5}^{2} < \omega_{i}^{2})} P_{z=2}(\omega_{j,5}^{2})$$
 (4/

принять двухзарядную частицу за однозарядную /левосторонний критерий для гипотезы z = 2/.

Таблица

Значения ω_i^2 критической статистики $\omega_{j,5}^2$ /2/ и соответствующие им значения уровня значимости a_5 /3/ и вероятности β_5 /4/ принять двухзарядную частицу за однозарядную. Численные данные получены по выборке экспериментально полученных амплитудных спектров, для которой коэффициент вариации $\overline{x} = 0,53+0,06$. Розыграны 200000 событий

ω_i^2	0,300	0,305	0,315	
a ₅	3.10-7	4.10-8	2.10-9	
β_5	2.10-9	4.10-8	2.10-5	

2. КОРРЕЛЯЦИЯ МЕЖДУ ω^2 И УСРЕДНЕННОЙ АМПЛИТУДОЙ

Представляет интерес изучить корреляцию, а также статистическую зависимость между $\omega_{j,5}^2$ -статистикой, определенной соотношением /2/, и $\omega_{j,5}^2$ -статистикой, усредненной по пяти счетчикам амплитудой $\overline{A}^{(j)}$, 5 /2/. В случае, когда эта корреляция /или зависимость/ невелика, можно было бы пользоваться в качестве критерия сепарации частиц двумерной величиной ($\omega_{j,5}^2$; $\overline{A}^{(j)}$), повысив тем самым мощность применяемого теста. Такая возможность тем более соблазнительна, что равным образом $\omega_{j,5}^2$, как и $\overline{A}^{(j)}$, слабо чувствительны к изменению режима работы счетчиков.

На рис. 2 приведено распределение переменных $\omega_{j,5}^2$ и $Y^{(j)}$, отнормированных на соответствующие средние значения: $\bar{\omega}^2$ и \bar{Y} . Данные получены по выборке экспериментальных данных с $\bar{x} = 0,53 + +0,06$. Эмпирический коэффициент корреляции для этой выборки равен 0,3. Аналогичная величина для другой выборки / $\bar{x} = 0,30 + 0,05$ / равняется 0,4. Оценено также значение так называемого коэффициента зависимости δ между величинами $Z_1^{(j)} = \omega_{j,5}^2$ / ω^2 и $Z_2^{(j)} = Y^{(j)}/Y$, определяемого следующим образом /4/:

Рис. 2. Двумерное распределение событий из выборки экспериментальных данных с $\bar{x} = 0,53+0,06$ по нормированным тестовым статистикам $\omega^2/\omega^2 \equiv \omega_{j,5}^2/\omega^2$ и Y/Y \equiv Y^(j)/Y.Обозначения: — - более 25 точек, буквы от A до Z соответствуют числу точек от 10 до 35, + - одна точка, цифры обозначают одновременно число точек.

$$\delta = \left\{ \frac{1 - \sum_{k,\ell} \min(p_{k\ell}, p_{k}, p_{\ell})}{1 - \frac{1}{\min(t, s)}} \right\} \frac{1}{4},$$
 (5/

где $p_k\ell$ - вероятность пары значений ($Z_1^{(k)}$, $Z_2^{(\ell)}$), p_k и p_ℓ - маргинальные распределения величин Z_1 и Z_2 соответственно; t = = k_{max} , $s = \ell_{max}$. Коэффициент δ , аналогично коэффициенту корреляции, принимает значения от 0 до 1. Для рассматриваемых нами двух выборок экспериментальных данных δ не превышает 0,2. Таким образом, статистическая связь между случайными переменными невелика. Следовательно, двумерное распределение ($Z_1^{(j)}$, $Z_2^{(j)}$) содержит больше информации, чем $Z_1^{(j)}$, и $Z_2^{(j)}$ спектры в отдельности, и может быть использовано при решении обсуждаемой в данной работе задачи о разделении по заряду быстрых фрагментов ядерных реакций. В частности, на рис. 2 четко выделяются две группировки событий, вызванных одно- и двухзарядными частицами соответственно.

3. РЕЗУЛЬТАТЫ

Наиболее наглядным результатом действия критериев разделения одно- и двухзарядных релятивистских частиц является распределение по массам. Оно показано на рис. 3. Сплошная линия – спектр масс в предположении, что все частицы однозарядные. Пунктирная линия соответствует только двухзарядным частицам ($^{3}{\rm He}$ и $^{4}{\rm He}$), выделенным по критерию ω^{2} . В спектрах не учтены поправки на флуктуацию амплитуд импульсов от ФЭУ $^{/5/}$, что в данном случае несущественно.

Следует отметить, что результат сепарирования не зависит от конкретного значения критической статистики ω_ℓ^2 в интервале 0,300÷0,315 и практически полностью совпадает с аналогичным результатом, полученным ранее $^{/2/}$ при помощи статистики усредненной амплитуды. Этот результат не должен вызывать удивления, так как в использованном нами экспериментальном материале уровень

Рис. 3. Спектр масс быстрых частиц, испускаемых в реакции a -частиц с легкими ядрами и регистрируемых системой из 5 сцинтилляционных счетчиков магнитного спектрометра МАСШИК^{/1/}. Сплошная линия соответствует гипотезе, что все частицы однозарядные, штриховая линия – распределению по массам двухзарядных частиц, выделенных по критерию ω^2 . Спектры не учитывают поправок на флуктуацию амплитуд импульсов от ФЭУ^{/5/}.

значимости названных тестов на один – два порядка величины меньше, чем отношение у сечений рождения двухзарядных час-

тиц к однозарядным. Вместе с тем вероятность β отнести двухзарядную частицу к однозарядным как для критерия усредненной амплитуды, так и для ω^2 -критерия невелика.

В заключение авторы выражают благодарность директору ЛВТА члену-корреспонденту АН СССР М.Г.Мещерякову за постоянный интерес к данной работе и поддержку, а также сотрудникам научноэкспериментального сектора ЛВТА за полезные дискуссии.

ЛИТЕРАТУРА

- Ажгирей Л.С. и др. В кн.: Труды Совещания по исследованиям в области релятивистской ядерной физики. ОИЯИ, Д2-82-568, Дубна, 1982, с.83.
- 2. Словинский Б., Мулас Э., Жмыров В.Н. ОИЯИ, Р10-86-831, Дубна, 1986.
- 3. Крамер Г. Математические методы статистики. М.: Наука ,1983.
- 4. Хеллвиг 3. Элементы теории вероятностей и математической статистики /на польском яз./. Варшава, 1977, с.142.
- 5. Ажгирей Л.С. и др. ОИЯИ, Р1-85-749, Дубна, 1985.

Рукопись поступила в издательский отдел 23 декабря 1986 года.

4

5

Словинский Б., Мулас Э., Жмыров В.Н. Применение статистики ω² для разделения быстрых частиц по электрическому заряду

Описано применение порядковой статистики ω^2 к задаче о разделении по электрическому заряду z быстрых фрагментов ядерных реакций, регистрируемых системой из пяти сцинтилляционных счетчиков магнитного спектрометра МАСПИК. Приведены оценки уровня значимости для гипотезы z = 1 и вероятности принять двухзарядную частицу за однозарядную. Численные результаты получены для экспериментальных дзнных по облучению легких ядер a-частицами с импульсом 4,5 ГэВ/с/N.

P10-86-832

٤

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Słowiński B., Mulas E., Zhmyrov V.N. P10-86-832 Separation of Relativistic Particles on the Basis of Their Electrical Charge Using ω^2 Statistics

 ω^2 statistics is used to separate on the basis of electrical charge the relativistic nuclear fragments by a set of 5 scintillation counters of the MASPIC magnetic spectrometer. Estimations of significance level for the hypothesis of z = 1and probabilities to take a particle with z = 2, for a one having the charge z = 1 have been performed. Numerical results are obtained using experimental data concerning reactions of α -particles with light nuclei at 4.5 GeV/c/N.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986