M-247

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

T XIGHEIT

MODUODX

Million and

Дубна

P10 - 4574

13/x-69

Б.А.Манюков, П.В.Шляпников

НИЖНЯЯ ГРАНИЦА ДИСПЕРСИИ ОЦЕНКИ КРИВИЗНЫ ТРЕКА ИЗ-ЗА МНОГОКРАТНОГО РАССЕЯНИЯ

1969

P10 - 4574

Б.А.Манюков, П.В.Шляпников

НИЖНЯЯ ГРАНИЦА ДИСПЕРСИИ ОЦЕНКИ КРИВИЗНЫ ТРЕКА ИЗ-ЗА МНОГОКРАТНОГО РАССЕЯНИЯ

Направлено в ЯФ

4 2/4694

Ошибки кинематических параметров треков в пузырьковых камерах с тяжелыми жидкостями в основном определяются многократным рассеянием. Поэтому как при разработке новых методов вычисления кинематических параметров треков, так и при планировании физических экспериментов полезно знать нижние границы дисперсий оценок параметров и прежде всего нижнюю границу дисперсии $\sigma^2(\rho)$ кривизны трека в его первой точке, связанную с многократным рассеянием, и ее зависимость от плотности среды, числа точек трека п и т.п.

Выберем систему координат ху таким образом, чтобы ось х совпадала с направлением движения частицы в первой точке трека. Тогда функция распределения $\Phi(y, \rho)$ случайного вектора у равна^{/1/}

$$\Phi(\mathbf{y}, \rho) = (2\pi)^{-(n-1)/2} |\mathbf{G}^{-1}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\Delta \mathbf{y}^{\mathrm{T}} \mathbf{G} \Delta \mathbf{y}\right), \tag{1}$$

где Δy = y - < y > , G⁻¹ - матрица многократного рассеяния ^{/2/}. Пусть $\tilde{\rho}$ - несмещенная оценка кривизны трека ρ для выборки (y₁,..., y_n) . Тогда, по определению,

$$\int \left(\stackrel{\sim}{\rho} - \rho \right) d\Phi(\mathbf{y}, \rho) = \mathbf{0}.$$
(2)

3

Дифференцируя (2) по ho , получим

$$\int \left(\tilde{\rho} - \rho \right) S(y, \rho) d\Phi(y, \rho) = 1, \qquad (3)$$

где

$$S(\mathbf{y},\rho) = \frac{\partial}{\partial\rho} \ln \Phi(\mathbf{y},\rho) = -\frac{1}{2} |\mathbf{G}^{-1}|^{-1} \frac{\partial}{\partial\rho} |\mathbf{G}^{-1}| - (\Delta \mathbf{y}^{\mathrm{T}} \mathbf{G} \frac{\partial \Delta \mathbf{y}}{\partial\rho}) - \frac{1}{2} (\Delta \mathbf{y}^{\mathrm{T}} \frac{\partial \mathbf{G}}{\partial\rho} \Delta \mathbf{y}). \quad (4)$$

Для нахождения нижней границы дисперсии кривизны теперь остается воспользоваться обычным способом ^{/3/}, применив к (3) неравенство Шварца:

$$\mathbf{1} = \left(\int (\tilde{\rho} - \rho) \mathbf{S}(\mathbf{y}, \rho) \, \mathrm{d} \, \Phi(\mathbf{y}, \rho)\right)^2 \leq \left(\int (\rho - \tilde{\rho})^2 \, \mathrm{d} \, \Phi(\mathbf{y}, \rho)\right) \left(\int \mathbf{S}^2(\mathbf{y}, \rho) \, \mathrm{d} \, \Phi(\mathbf{y}, \rho)\right). \tag{5}$$

Поскольку, по определению, $\int (\rho - \tilde{\rho})^2 d\Phi(y, \rho) = \sigma^2(\tilde{\rho})$, то из (5) непосредственно следует, что

$$\sigma^2 (\tilde{\rho}) \ge 1 / \langle S^2 \rangle$$
.
Введем_обозначение $G = f(\rho) g$, где $f(\rho) = \frac{12X_0}{E_s^2}$.
 $p = (0,03 \text{ H}) / \rho$, $g_{ik}^{-1} = t_i^2 (3t_k - t_i)$. Здесь $E_s = X_0$ -радиационная длина среды, H – индукция магнитного

21 Мэв.

поля, т,

р и Е – масса, импульс и энергия частицы, а t_i – длина трека в i -ой точке. Тогда, как нетрудно показать,

$$\left(\frac{1}{|\mathbf{G}^{-1}|} \frac{\partial}{\partial \rho} |\mathbf{G}^{-1}|\right)^{2} = (\mathbf{n} - \mathbf{1})^{2} (\mathbf{f}'/\mathbf{f})^{2},$$

$$< (\Delta \mathbf{y}^{T} \mathbf{G} - \frac{\partial \Delta \mathbf{y}}{\partial \rho})^{2} > = (\mathbf{B}^{T} \mathbf{G} \mathbf{B}),$$

$$< (\Delta \mathbf{y}^{T} - \frac{\partial \mathbf{G}}{\partial \rho} \Delta \mathbf{y})^{2} > = (\mathbf{n}^{2} - \mathbf{1})(\mathbf{f}'/\mathbf{f})^{2},$$

$$\frac{1}{|G^{-1}|} \left(\frac{\partial}{\partial \rho} |G^{-1}| \right) < (\Delta y^{T} G \frac{\partial \Delta y}{\partial \rho}) > = < (\Delta y^{T} G \frac{\partial \Delta y}{\partial \rho}) (\Delta y^{T} \frac{\partial G}{\partial \rho} \Delta y) > = 0,$$

$$\frac{1}{|G^{-1}|} \left(\frac{\partial}{\partial \rho} |G^{-1}| \right) < (\Delta y^{T} \frac{\partial G}{\partial \rho} \Delta y) > = -(n-1)^{2} (f'/f)^{2}$$

и, следовательно,

$$\sigma^{2}(\tilde{\rho}) \geq 1 / ((B^{T}GB) + \frac{2(n-1)}{\rho^{2}}(1 + \frac{m^{2}}{E^{2}})^{2}), \qquad (6)$$

где использовано обозначение $\mathbf{B} = \partial \Delta \mathbf{y} / \partial \rho$.

В том случае, когда в (6) имеет место равенство, оценка ρ является эффективной и $\sigma^2(\tilde{\rho})$ представляет нижнюю границу дисперсии оценки.

Для отыскания оценок кинематических параметров треков применяется либо метод максимального правдоподобия (ММП), либо метод наименьших квадратов (МНК). В рассматриваемом случае ММП сводится к решению уравнения S = 0 относительно ρ . В МНК первым и третьим членами в (4) пренебрегают и решают уравнение $(\Delta y \ G \frac{\partial \Delta y}{\partial \rho}) = 0^{x/}$. Пусть $\tilde{\rho}$ -эффективная оценка для истинного значения кривизны ρ_0 , а $\hat{\rho}$ - несмещенная оценка для ρ_0 , получаемая одним из этих методов (ММП или МНК). Тогда эффективность $\hat{\rho}$ для оценивания ρ_0 определяется соотношением

eff
$$(\hat{\rho} | \rho_0) = \sigma^2(\hat{\rho}) / \sigma^2(\hat{\rho})$$
.

x/Заметим, что в обоих случаях $\langle S \rangle = 0$, так как $\langle (\Delta y^T G \frac{\partial \Delta y}{\partial \rho}) \rangle = 0$. и $\langle (\Delta y \frac{T}{\partial \rho} \frac{\partial G}{\partial \rho} \Delta y) \rangle = -|G^{-1}|^{-1} \frac{\partial}{\partial \rho} |G^{-1}|$, и оценка ρ оказывается несмениенной. Как уже отмечалось в /4/, пренебрежение коэффициентом $|G^{-1}|^{-1/2}$ перед показателем экспоненты функции распределения (1) в ММП недопустимо, так как при этом $\langle S \rangle \neq 0$ и, следовательно, оценки параметров становятся смещенными. Из предыдущих формул следует, что в МНК $\sigma_{MHK}^2(\hat{\rho}) = (\mathbf{B}^T \mathbf{G} \mathbf{B})^{-1}$ и, следовательно,

$$eff_{MHK}(\hat{\rho}|\rho_0) = 1/(1 + \frac{2(n-1)}{\rho^2(B^T G B)} (1 + \frac{m^2}{E^2})^2) \approx 1 - \frac{2(n-1)}{\rho^2(B^T G B)} (1 + \frac{m^2}{E^2})^2 (7)$$

В ММП получить простое аналитическое выражение для $\sigma^2(\rho)$ удается, если предположить, что **m** \ll **E** и вектор $\langle y \rangle$ линейно зависит от $\rho^{-/4/}$. При этих предположениях

$$\sigma_{MM\Pi}^{2}(\hat{\rho}) = (1 - \frac{2(n-1)}{\rho^{2}(B^{T}GB)} + \frac{(n-1)^{2}}{\rho^{4}(B^{T}GB)^{2}})/(B^{T}GB)$$
(8)

и, значит, с точностью до третьего члена в (8)

eff
$$_{MM\Pi}$$
 $(\hat{\rho} \mid \rho_0) = 1$.

Таким образом, ММП позволяет получить эффективную оценку кривизны трека, а эффективность МНК определяется соотношением (7).

Наглядное представление о величине нижней границы дисперсии оценки кривизны трека и эффективности МНК дает приводимая ниже таблица. В ней относительная ошибка $\sigma(\tilde{\rho}) / \rho_0$ (где $\sigma(\tilde{\rho})$ определена по (6)) и eff _{мнк} $(\hat{\rho} | \rho_0)$ (7) вычислена для двух сред: пропана ($X_0 = 108$ см) и легкого фреона ($X_0 = 24,2$ см) – для треков протонов при нескольких значениях импульса и магнитном поле H = 1,67 тл. Импульс трека считался постоянным, поэтому $\langle y \rangle =$ = $\rho t^2 / 2! - \rho^3 t^4 / 4! + \rho^5 t^6 / 6!$. Число точек трека n = 20, расстояния между точками трека одинаковы; L – полная длина трека. Таблица

C ₃ H ₈				$C_2 F_5 Cl$		
р (Гэв/с)	L(см)	σ(p̃)/ρ ₀	eff _{мнк}	L (см)	$\sigma(\tilde{\tilde{\rho}})/\rho_0$	eff MHK
0,5	20	0,0763	0,30	10	0,0890	0,05
1,0	67,5	0,0461	0,83	25	0,0923	0,30
1,5	100	0,0345	0,93	50	0,0798	0,60
2,0	100	0,0319	0,95	100	0,0618	0,80
3,0	100	0,0300	0,96	100	0,0593	0,84
4,0	100	0,0293	0,96	100	0,058 3	0,86
5,0	100	0,0289	0,97	100	0,0578	0,87

Как видно из таблицы, оценка кривизны, найденная по МНК, приближается к эффективной оценке при увеличении импульса частицы. При уменьшении числа точек трека и для частиц меньшей массы эффективность МНК сильно возрастает. Так, например, при тех же условиях для π -мезонов с импульсом 0,5 Гэв/с eff $_{MHK}(\rho/\rho_0)=0.83$ для пропана и 0,36 - для фреона. При решении вопроса о применении МНК или ММП следует учитывать и то обстоятельство, что для частиц небольшой энергии, когда эффективность ММП по сравнению с МНК особенно велика, импульс частиц, останавливающихся в камере, может быть с еще большей точностью определен по пробегу.

В заключение авторы благодарны проф. В.П. Джелепову за поддержку работы и постоянное внимание.

7

6

X/ Этот же результат можно получить и не вводя дополнительных предположений, но ценой достаточно сложных выкладок.

- 1. Б.А. Манюков, П.В. Шляпников. Препринт ОИЯИ, Р10-4256, Дубна, 1969; ПТЭ (в печати).
- 2. И.М. Граменицкий, Л.А. Тихонова, П.В. Шляпников. Препринт ОИЯИ, Р-2146, Дубна, 1965.
- 3. С. Уилкс. Математическая статистика. Изд-во "Наука", Москва, 1967.
- 4. Г.А. Ососков, П.В. Шляпников. Препринт ОИЯИ, Р10-4261, Дубна, 1969; ПТЭ (в печати).

Рукопись поступила в издательский отдел

1 июля 1969 года.