СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

15/x1-76

P1 - 9964

Л.С.Золин, А.Б.Кайдалов, В.А.Свиридов, Л.Н.Струнов, И.В.Чувило

4599/2-76

<u>C346.6</u>e 3-793

> ПРЕДЛОЖЕНИЕ ЭКСПЕРИМЕНТА ПО ПОИСКУ НОВЫХ ЧАСТИЦ С ВРЕМЕНЕМ ЖИЗНИ В ИНТЕРВАЛЕ 10-11 ÷ 10-12 СЕК

P1 - 9964

Л.С.Золин, А.Б.Кайдалов, В.А.Свиридов, Л.Н.Струнов, И.В.Чувило

ПРЕДЛОЖЕНИЕ ЭКСПЕРИМЕНТА ПО ПОИСКУ НОВЫХ ЧАСТИЦ С ВРЕМЕНЕМ ЖИЗНИ В ИНТЕРВАЛЕ 10-11 ÷ 10-12 СЕК

Открытие ψ -частиц стимулировало интерес к экспериментам по поиску и исследованию новых частиц, в том числе с ненулевым квантовым числом "очарование". Основным методом для поиска новых частиц является анализ продуктов взаимодействия частиц высокой энергии и измерение по этим данным спектра масс рожденных частиц.

Среди новых частиц предсказываются такие, время жизни которых лежит в интервале 10⁻¹³ - 10⁻¹¹с. Методов измерения таких времен жизни редких частиц, для поиска которых нужна светосильная электронная аппаратура, не существует. Поэтому измерение времени жизни порядка и меньше, чем 10⁻¹¹с, в исследованиях, выполняемых электронной методикой, не проводится. Тем не менее возможность постановки таких экспериментов имеется.

Измерение времени жизни частиц существенно не только потому, что дает информацию о свойствах частиц, но и потому, что позволяет увеличить эффективность поиска новых частиц /снизить фон эксперимента/. Ниже рассматривается схема эксперимента, позволяющая проводить поиск частиц с временем жизни $> 10^{-12}$ с и, если такие частицы существуют, измерять время их жизни.

1. Теоретические предпосылки для постановки эксперимента

Существование значительного числа стабильных частиц /распадающихся только за счет слабого взаимодействия/ и резонансов в системах сильно взаимодействующих частиц с массами $M > 2 \Gamma_3 B/c^2$, многие из которых могли бы быть весьма узкими, предсказывает-

3

ся рядом теоретических моделей. Среди них следует прежде всего отметить модели, основанные на использовании калибровочных теорий поля и позволяющие с единой точки зрения рассматривать слабые, электромагнитные и сильные взаимодействия /1/. В рамках таких моделей, являющихся обобщением модели Вайнберга-Салама, предполагается, что, наряду с адронами, состоящими из обычных р, п, λ -кварков, существуют т.н. суперзаряженные или очарованные частицы, состоящие из p⁻, n⁻, λ -кварков /или антикварков/ и с(p')кварка /1,2,3/. Существование с -кварков необходимо для устранения нейтральных токов с изменением странности.

Большое число новых частиц предсказывается в моделях, где имеются кварки нескольких сортов /т.н. цветные кварки/, которые в этом случае могли бы обладать целочисленными зарядами^{/4,5/}. В частности, сами кварки могли бы проявиться как нестабильные частицы ^{/6,7/} с массами 1,7-2 $\Gamma \mathcal{B}/c^2$ и временем жизни 10⁻¹⁰ - 10⁻¹² с.

В моделях с очарованными частицами ψ -бозоны обычно рассматриваются как связанные состояния (сс), а в моделях с цветными кварками как цветные частицы, в отличие от обычных адронов, которые считаются "белыми". Если принять, что ψ -бозоны являются (сс) состояниями, то должны существовать суперзаряженные частицы типа (с \bar{p}), (с \bar{n}), (с $\bar{\lambda}$) с массами 1,7-2,3 $\Gamma_{3}B/c^{2}$. Эти частицы могут быть как векторными, так и псевдоскалярными. Если суперзаряд, как это обычно считается, сохраняется в сильных и электромагнитных взаимодействиях, то наиболее легкие из этих частиц будут распадаться только за счет слабого взаймодействия. Оценки времени жизни таких частиц дают величину ~ $10^{-12}c^{/3/}$.

Таким образом, поиск долгоживущих частиц, а также определение их времени жизни представляется важным для выяснения фундаментальных свойств элементарных частиц.

Остановимся несколько подробнее на оценке времени жизни суперзаряженных частиц. В дальнейшем мы будем предполагать, что наиболее легкими среди таких частиц являются псевдоскалярные частицы /если ими окажутся векторные частицы, то оценки сильно не изменяются/. Эффективное слабое взаимодействие, ответственное за их распады, имеет вид /1-3/:

$$\frac{G}{\sqrt{2}} [(-\bar{c}n\sin\theta + \bar{c}\lambda\cos\bar{\theta})(\bar{\mu}\nu_{\mu} + \bar{e}\nu_{e} + \bar{n}p\cos\theta + \bar{\lambda}p\sin\theta) + 3.c.],$$

где θ - угол Кабиббо ≈1/4.

Поскольку член $\bar{c}\lambda$ входит с множителем $\cos\theta$, то главными при распадах суперзаряженных частиц будут переходы с изменением странности. Поскольку массы суперзаряженных адронов довольно велики, то со значительной вероятностью могут происходить лептонные распады гиперонов. Так, для состояния (c \bar{n}) $\Gamma((c \bar{n}) \rightarrow \bar{K}^{\circ} e^{-} \nu) \approx$ ~1,6x10¹¹ c⁻¹/³. Можно ожидать, что для (c \bar{p})-, (c \bar{n}) состояний будут иметь место и нелептонные распады на K π , K $\pi\pi$ / K* π , K ρ и др./, K $\pi\pi\pi$ и т.д. Грубую оценку вероятности распада (c \bar{p}) $\rightarrow K^{+}\pi^{-}$ можно получить, сравнивая ее с вероятностью распада К° $\rightarrow \pi^{+}\pi^{-}$

$$\Gamma(c\bar{p}) \rightarrow K^{+}\pi^{-}) \sim ctg^{2} \theta \frac{P_{k}}{P_{\pi}} \cdot \Gamma(K_{g}^{\circ} \rightarrow \pi^{+}\pi^{-}) \approx 10^{12} c^{-1}.$$
 (1.2/

Эту оценку, по-видимому, следует считать завышенной, в связи с наличием форм-факторов. Однако существование ряда других возможных каналов с образованием большого числа π -мезонов, которые при М~ ~2 $\Gamma \beta B/c$, по-видимому, более вероятны, чем двухчастичная мода распада, дает основание думать, что время жизни суперзаряженных частиц может быть $10^{-12} - 10^{-13}c$. Несколько большее время жизни может иметь частица $(c \lambda)$, которая должна распадаться с образованием двух странных частиц КК, КК π , К*К, КК $\pi\pi$ и т.п.

При распадах кварков /в рамках схемы цветных частиц/, которые также, как правило, должны сопровождаться образованием странных частиц, времена жизни могут быть значительно большими. Однако в настоящее время их трудно оценить в связи с отсутствием в таких моделях последовательной схемы слабых взаимодействий.

2. Метод измерения

Известен способ определения времени жизни частиц по измерению их пробега от точки рождения до точки распада и измерению их скорости /например, через энергию и импульсы продуктов распада/. Подобный способ может быть применен с использованием различных детекторов /ядерные эмульсии, пузырьковые камеры, трековые электронные детекторы и т.д./. Недостатком первых двух типов детекторов является малая скорость анализа событий, что затрудняет обнаружение частиц с малым сечением рождения. Применение электронных детекторов при работе на выведенных пучках ускорителей также встречает трудности при поиске частиц с малым временем жизни и с малым сечением генерации из-за противоречивости требований к размерам мишени и пространственному разрешению: увеличение выхода событий требует увеличения размеров мишени, а это вызывает потерю точности в определении вершины распада, т.е. времени жизни.

Целью предложения является увеличение точности измерения длины пробега распадающихся частиц с малым сечением рождения путем использования мишени очень малых размеров, экспонируемой на внутреннем пучке ускорителя в режиме многократных прохождений протонов через мишень /8/. Применение этого способа обеспечивает получение большой светимости / $L \sim 10^{34} cm^{-2} c^{-1}$ / в сочетании с точечностью области взаимодействия / Δx -~ 10⁻³см/. Точность фиксации точки распада частиц определяется пространственным разрешением координатных детекторов, регистрирующих продукты их распада. Точность, достигнутая в настоящее время на быстродействующих электронных детекторах /дрейфовые ка-меры/, составляет О,8.10⁻² см при времени памяти де-тектора меньше 200 нс^{/9}. Детекторы подобного типа позволяют измерять длины распада ~10⁻¹ см при высокой скорости набора событий, что делает возможным регистрацию частиц с временем жизни больше, чем 10⁻¹²с.

3. Сечение генерации и кинематика рождения новых частиц

Рассмотрим теперь вопрос о том, как образуются новые частицы в процессах столкновения адронов. Поскольку суперзаряд /как и цвет/, считается сохраняющимся, то такие частицы должны образовываться ассоциативно. Относительно частиц, которые в силу законов сохранения могут образовываться только ассоциативно /например, К, \vec{p} / известно, что их спектры в pp -столкновениях имеют резкий максимум при $x = 2p/s^{1/2} = 0$, т.е. такие частицы, как правило, являются медленными в цсистеме. Естественно предположить, что это свойство /которое объясняется, например, мультипериферической моделью/ сохранится и для суперзаряженных частиц. Поэтому инклюзивное сечение образования новых частиц будем записывать в виде

E
$$d^{3}\sigma/dp^{3} = A \exp(-B |x| - Cp_{\perp}^{2})$$
 /3.1/
B~10, C~4

К сожалению, в настоящее время довольно трудно оценить величину сечения инклюзивного образования таких частиц. Поскольку должна образоваться пара суперзаряженных частиц, то масса такой системы достаточно велика, а инклюзивные сечения быстро падают с ростом массы /с ростом энергии такие сечения обычно быстро растут/. Так как массы таких частиц должны быть ~2 ГэВ, то сечения их образования могли бы быть сравнимы с сечениями образования антидейтронов, то есть составлять при энергии 70 ГэВ величины~1,5.10⁻³² см^{2/10}/

Для электронной методики регистрации предпочтительны двухчастичные моды распада нестабильных частиц, схема регистрации и кинематический анализ в этом случае наиболее просты. Выберем реакцию рождения пары нейтральных псевдоскалярных мезонов D°, с квантовым числом "чарм" с= ±1 /гиперзаряд Y=±1 /:

$$p + N \rightarrow D^{\circ} + \overline{D}^{\circ} + \dots$$
 /3.2/

При массе D°-мезона $M_e = 2,1$ $\Gamma \Im B/c^{2/11}\mu$ энергии первичного пучка протонов $E_0 = 50$ $\Gamma \Im B$ углы вылета Ки *п*-мезонов /распад под 90° в с.ц.м./ в лабораторной системе равны $\phi_{2}10^{\circ}$ относительно направления внутреннего пучка протонов. Угол ϕ задает оптимальное расположение плеч регистрирующей установки. Значение его мало меняется с увеличением M_e и геометрическая эффективность установки остается приблизительно постоянной в интервале масс $M_e = 2-5 \Gamma \Im B/c^2$.

Поиски двухчастичных адронных распадов чармованных частиц были выполнены группой Тинга в БНЛ /12/ При энергии протонного пучка 28,5 ГэВ получено ограничение на верхнюю границу сечений рождения частиц с массой ~ 2,25 ГэВ

с массон 2,20 г 35 $\sigma_{\rm C} \cdot 32 - 10^{-33} \, cm^2$. Результаты $^{12/}$ не исключают необходимости поиска адронных распадов при более высоких энергиях ускорителя ИФВЭ. Указание на рождение новых частиц со слабой модой распада, полученное прианализе лептонных пар $^{13/}$, повышает интерес к исследованию полулептонных мод распада С $\rightarrow h\ell \nu$. Геометрическая эффективность установки для регистрации таких распадов будет меньше, чем для случая двухчастичной заряженной моды распада, однако оптимальные углы регистрации останутся примерно такими же.

4. Техника регистрации

Схема размещения установки на прямолинейном промежутке ускорителя ИФВЭ показана на *рис.* 1.

Предполагается регистрировать распады частиц на адроны С - К $_{\pi}$ +...и лептоны С - К $_{\mu}$ +...(С-Ке+...)с заряженным каоном среди продуктов распада. Точный ($\Delta p/p \sim 10^2$) импульсный анализ частиц предусматривается только в одном плече установки для идентификации каона.

В качестве мишени используется нить диаметром 20 мкм. Под углом 11° в направлении вперед от мишени расположены два тонких окна (W_1 , W_2) для вывода частиц

распада. В первом плече установки размещены: дрейфовые камеры ДК₁, ДК₂, ДК₃; пороговый черенковский счетчик С₁, настроенный на регистрацию π -мезонов с импульсом свыше 3 ГэВ/с, ливневый детектор электронов ED/сэндвич из нескольких слоев "свинец + сцинтиллятор"/ с разрешением $\Delta p/p \sim \pm 15\%$ для электронов с нмпульсом порядка $p \sim 5 \Gamma \beta B/c^{/14}$ детектор мюонов с использованием в качестве поглотителя адронов железа магнита ускорителя, измеряющий с помощью годоскопа H₁ импульс мюона с точностью $\sim 20\%$ / $p > 3 \Gamma \beta B/c$, сцинтилляционные счетчики S₁, S₂, S₃, входящие в логику запуска.

Плечо II осуществляет идентификацию К -мезонов с импульсом р = 3,5-5 ГэВ/с и состоит из следующих элементов: дрейфовые камеры ДК₄, ДК₅, ДК₆: пороговые черенковские счетчики C_2 , C_3 для выделения К -мезонов с импульсом р> 3,5 ГэВ/с; сцинтилляционные годоскопы H_2, H_3 для грубого импульсного анализа, включенные в логику запуска совместно со счетчиками C_2 , C_3 ; сцинтилляционные счетчики S_4 , S_5, S_6 ; анализирующий магнит М.

Фиксация вершины распада осуществляется путем регистрации траекторий частиц распада в двух плечах установки дрейфовыми камерами ДК₁, ДК₂, ДК₄, ДК₅. При пространственном разрешении дрейфовых камер ~70 мкм, распад на расстоянии > 1,5 мм от мишени /при угле вылета 11°/ может быть надежно идентифицирован как происходящий в вакууме. Сигналы детекторов ED и MD дают соответствующие метки полулептонных мод распада.

Угловой захват установки определяется апертурой магнита и черенковских счетчиков и составляет $\Delta\Omega \sim 2.10^3$ ср /в каждом плече/.

5. Фоновые условия эксперимента

5.1. Фоновые условия в кольцевом зале ускорителя были изучены экспериментально. Основная компонента фона обусловлена, по-видимому, нейтронами с энергией 7 1 МэВ. Число взаимодействий в сцинтилляторе объемом 1 см³ вблизи камеры ускорителя ~ $10^5 I/cm^2 c$. Эта компонента фона убывает приближенно пропорционально расстоянию от камеры ускорителя.

Поток быстрых заряженных частиц вдоль камеры ускорителя, вызывающих срабатывание телескопа счетчика /10° к оси камеры ускорителя/, имеет интенсивность около $2.10^4 \ 1/cp$ с/. Обе приведенные цифры относятся к случаю, когда интенсивность ускоряемых протонов была $10^{12} \ 1/цикл/$.

Установлено, что обе компоненты обусловлены в основном ядерным взаимодействием протонного пучка с остаточным газом в камере ускорителя, и могут быть снижены при локальном улучшении вакуума. Фон, обусловленный активацией камеры ускорителя, существенно меньше /~ 10^3 - 10^4 частиц/см² с/.

Таким образом, фон рассеянного излучения не превосходит фона от мишени /~ 10^5 частиц/см²с/.

5.2. Распадный фон вызывается следующими эффектами, которые могут приводить к имитации распадов искомых нестабильных частиц вблизи мишени:

1/ Взаимодействие пучка протонов с остаточным газом в камере ускорителя.

2/ Конечное угловое разрешение системы дрейфовых камер /~O,1 *мрад*/ приводит к тому, что зарегистрированные направления траекторий /"мнимые" траектории/ двух частиц, идущих от мишени, могут пересекаться вне мишени в пределах объема пространственного разрешения детекторов.

3/ Эффект, подобный /2/, обусловленный многократным рассеянием двух частиц, идущих от мишени.

4/ Распад известных частиц с временем жизни больше 10⁻¹² с.

5/ Случайные совпадения событий типа /2-3/ с распадами /4/.

Результаты оценок перечисленных выше эффектов приведены в *табл.* 1.

Таблица 1

Доля фоновых триггеров для распадной области, соответствующей интервалу времени $\Delta \tau = /1.5 \div 2/.10^{-12} vc$

Источник фона		N _i /N ₀ *
1.	Остаточный газ в камере	~1.10 ⁻¹¹
2.	Пространственное разрешение	
	детекторов	~2.10 ⁻⁶
3.	Многократное рассеяние частиц	~ 3.10 ⁻⁷
4.	Распад известных нестабильных	
	частиц	<10 ⁻⁸
5.	Случайное совпадение событий	
	типа 2-3 с распадами 4	~ 6.10 ⁻⁸

Таким образом, наибольший вклад в фон для интервала $/1,5\div 2/10^{-12}$ у с вносит пространственное разрешение детекторов. Однако абсолютная величина этогофона мала, и не она ограничивает поиск искомых распадов. Для времен жизни $t > 2.10^{-12}$ с уровень распадногофона быстро падает.

6. Скорость набора статистики, пределы на сечения

Скорость набора статистики ограничивается допустимой величиной загрузки каналов регистрации, которая для дрейфовых камер может быть М ~ $10^6 \ 1/c^{-/9/}$. Такая загрузка для выбранной геометрии установки соответствует числу взаимодействий в мишени I ~ $10^8 \ 1/c$ /поток вторичных частиц рассчитан по данным работы $^{./13//}$.

Эффективность регистрации искомых распадов ϵ оценена на основании приведенного выше инвариантного сечения $d^2\sigma/dx$. dp_{\perp}^2 инклюзивной реакции рр - C+... розыгрышем актов рождения и распада методом Монте-

Карло / $\epsilon_1 \simeq 10^{-4}$ для распада С - К π и $\epsilon_2 \simeq 8.10^{-5}$ -для полулептонной моды распада/. Скорость набора статистики искомых распадов составит величину N ~2 события/сутки при длительности сброса на мишень 1 с, числе циклов ускорения n = $10^4 \ 1/сутки$ и $\sigma_C \cdot B =$ = $10^{-33} \ cm^2 / \sigma_C$ - сечение рождения С-частиц, В- относительная вероятность искомой моды распада/.

Геометрическая эффективность регистрации распадов рассчитывалась для массы 2,2 ГэВ и энергии протонов 50 ГэВ, однако ее зависимость от массы незначительна, и для интервала масс 2-5 ГэВ при проведении оценочных расчетов ее можно считать постоянной.

Триггер - общий как для адронной, так и полулептонной мод распада. При $\sigma \cdot B = 10^{-3.5} cm^2$ на одно полезное событие ожидается ~10³ фоновых запусков, обусловленных частицами, идущими от мишени. Необходимая степень дискриминации данного фона основывается на указанном пространственном разрешении дрейфовых камер и может быть обеспечена для частиц с временем жизни $r > 10^{-12}$. Фон, обусловленный взаимодействием на остаточном газе и эффектами, имитирующими распад в анализируемой распадной области / *табл.* 1/, на несколько порядков ниже искомого эффекта, если $\sigma_{\rm C} \cdot B \sim 10^{-33} cm^2$. Таким образом, предел на $\sigma_{\rm C} \cdot B$ определяется реально доступным временем для проведения эксперимента на ускорителе. При этом 90%-ный уровень достоверности для $\sigma_{\rm C} \cdot B = 10^{-33} cm^2$ может быть достигнут за 5 суток экспозиции /r $> 2.10^{-12} c/.$

Дальнейшее улучшение чувствительности метода связано с возможностью увеличения скорости счета в каналах регистрации без значительного увеличения фона, обусловленного проблемой многотрековости. Однако соответствующие оценки могут быть сделаны после изучения работы детекторов в реальных условиях вблизи камеры ускорителя.

Литература

1. S.L. Glashow, J.Iliopoulos, L.Maiani. Phys. Rev. D2, 1285(1970).

^{*} Величина N_i обозначает число триггеров регистрирующей установки, обусловленных соответствующей причиной, N₀- полное число триггеров.

- 2. Л.Б.Окунь. Адроны и кварки. Лекции в сб. "Некоторые проблемы современной теории ядра". II, М., 1974.
- 3. M.Y. Hak, Y.Nambu. Phys. Rev. 139 B, 1038, (1965).
- Н.Н.Боголюбов, В.А.Матвеев, Нгуен Ван Хьеу, Д.Стоянов, Б.В.Струминский, А.Н.Тавхелидзе, В.П.Шелест. Вопросы физики элементарных частиц. 5. Ереван, 1966, стр. 406.
- 5. А.Б.Говорков. ОИЯИ, Р2-5871, Дубна, 1971.
- 6. Y. Nambu. Preprint EFI, Chicago, 73/24.
- 7. П.Э.Волковицкий, В.И.Захаров, А.Б.Кайдалов, Л.Б.Окунь. Письма в ЖЭТФ, т. 21, В5, 298 /1975/.
- 8. В.А.Никитин, А.А.Номофилов, В.А.Свиридов, Л.Н.Струнов, М.Г.Шафранова. ПТЭ, №6, 18 /1963/.
- M. Atac and C. Ankenbrandt. Preprint FERMILAB Conf.-74/108 Exp. T.S.Nigmanov, V.P.Pugachevich et al. Preprint FERMILAB – 76/26 – Exp.
- 10. Ф.Бинон, Ю.П.Горин, С.П.Денисов и др. Препринт ИФВЭ СЭФ 69-104 /1969/.
- 11. S.Okubo et al. Univ. of Rochester, 1974.
- 12. S.C.C.Ting. Intern. Confer. on H.E. Physics, Palermo, June, 1975.
- 13. A.Benvenuti et al. Phys.Rev.Lett., 35, 1203 (1975).
 - J. von Krogh et al. Phys.Rev.Lett., 36, 710 (1976).
- 14. A.Dunaitsev et al. Nucl.Instr. and Meth., 91,601 (1971).
- 15. J. Ranft. Particle Acceler. v.2, 129 (1972) .

Рукопись поступила в издательский отдел 12 июля 1976 года.