СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

О.Ахроров, Б.П.Банник, А.К.Попова, Дж.А.Саломов, К.Д.Толстов, Г.С.Шабратова, М.Шериф, А.Эль-Наги

ПОЛНОЕ РАЗРУШЕНИЕ ТЯЖЕЛЫХ ЯДЕР ПРОТОНАМИ С ИМПУЛЬСОМ 70 ГэВ/с И **С**-ЧАСТИЦАМИ 17 ГэВ/с

15/81-76

P1 - 9963

4574/2-76

P1 - 9963

О.Ахроров, Б.П.Банник, А.К.Попова, Дж.А.Саломов, К.Д.Толстов, Г.С.Шабратова, М.Шериф, А.Эль-Наги

ПОЛНОЕ РАЗРУШЕНИЕ ТЯЖЕЛЫХ ЯДЕР ПРОТОНАМИ С ИМПУЛЬСОМ 70 ГэВ/с И **С**-ЧАСТИЦАМИ 17 ГэВ/с

Таджикский государственный университет, Душанбе.

SUMMARY

Photoemulsions, ordinary and loaded with Pb nuclei, were irradiated to 70 GeV/c protons and 17 GeV/c a-particles. The phenomenon of complete destruction of heavy nucleiof Ag,, Br and Pb is investigated. 150 events are analyzed.

It was found that the products of the complete destruction of heavy nuclei are nearly individual nucleons. The probability of this phenomenon is higher for a-particles than for protons. About half of nuclear matter is kicked out from the target nucleus with energy higher than 30 MeV/nucleon.

In the measured interactions with Pb nuclei, a star with the number of h-particles $N_h = 66$ was found. In this star the total charge of outgoing particles, without generated particles, is $Z \ge 79$.

The number of s-particles in a-interactions is two times smaller than in p-interactions but the number of g-particles is 1.5 times larger. The ratio of g-particles to b-particles is 1.8 ± 0.2 in a-interactions with Ag, Br nuclei while the cascading model^{/7/} predicts the value 0.7 for this ratio. The general shapes of the angular and energy distributions of g- and b-particles, from complete destruction of nuclei Ag, Br and Pb agree with the corresponding ones for ordinary interactions.

введение

Столкновения быстрых частиц с тяжелыми ядрами представляют большой интерес при исследовании механизма множественного рождения, т.к. позволяют рассматривать пространственно-временную картину взаимодействия. Случан полного разрушения тяжелых ядер особенно интересны, поскольку при этом происходят центральные столкновения и, следовательно, можно более определенно говорить о пути налетающей частицы в ядре. Некоторым вопросам множественного рождения была посвящена наша работа/1/. В настоящем сообщении мы остановимся на исследовании процесса полного разрушения ядер. Начало этим исследованиям /см. /2/ положено в 1958 г. Дальнейшее систематическое изучение проводилось в работе /3/. В результате было показано, что при столкновении быстрых протонов с тяжелыми ядрами эмульсии образование больших звезд с числом заряженных ядерных частиц 28 и более /помимо рожденных в столкновении/ происходит без остаточного ядра с заметной массой, и, таким образом, имеет место полное разрушение ядер. Было установлено также, что при этом ядро распадается преимущественно на отдельные нуклоны.

Естественно, возникает интерес к изучению полного разрушения ядер под действием частиц различного типа при более высоком значении массового числа ядрамишени. В настоящей работе будет исследоваться процесс полного разрушения тяжелых ядер эмульсии Ag, Br, а также ядер свинца Pb *а* -частицами с импульсом 17 ГэВ/с в протонами с импульсом 70 ГэВ/с. При этом будут использоваться результаты работы/3/, в которой проводились аналогичные исследования при столкновении протонов с ядрами Ag, Br.

1. ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА

В работе использовались фотоэмульсии БР-2 ГОС-НИИХИМФОТОПРОЕКТА и фотоэмульсия БР-2, содержащая соли свинца - БР-2Рb. Соли свинца вводились нами в жидкую эмульсию непосредственно перед изготовлением фотоэмульсионных слоев. Размеры кристаллов этих солей в готовых слоях фотоэмульсии были соизмеримы с размерами кристаллов бромистого серебра /0,3 - 0,5 мкм/. Толщина слоев составляла- 550 мкм.

В таблице 1 дается ядерный состав эмульсий БР-2 и БР-2 Рb.

T	'n	б/	111	11	a	1
	•••	~		-		

Число ядер в 1 см ³ х 10 ⁻²²							
Фотоэмульсия	и H	С	N	0	Br	Ag	Pb
БР-2	2,968	1,400	0,374	1,083	1,028	1,028	-
БР-2 Рb	3,261	1,642	0,277	1,490	0,760	0,760	0,15

Фотоэмульсионные стопки облучались на ускорителях ОИЯИ и ИФВЭ соответственно α -частицами с импульсом 17 ГэВ/с с интенсивностью /1÷3/.10⁴част/см² и протонами с импульсом 70 ГэВ/с с интенсивностью /4÷7/.10⁴част/см².

К случаям полного разрушения ядер Ag, Br были отнесены звезды с числом черных и серых лучей $N_h \ge 28$ в эмульсии БР-2, к случаям полного разрушения ядер Pb -звезды с числом $N_h \ge 40$ в эмульсии БР-2Pb. В эмульсиях, облученных a-частицами, было изучено 50 случаев полного разрушения ядер Ag, Br и 26 - ядер Pb. В эмульсиях, облученных протонами, 23 события на Ag, Br и 51 событие - на Pb. Разделение частиц по типам s, g и b /ливневые, серые и черные/ производилось по обычным критериям. Для s-частиц скорость $\beta \ge 0.7.$ Для g-частиц $\beta < 0.7$ н остаточный пробег R > 3000 мкм, что соответствует интервалу энергии протонов 400 МэВ > Е р > 30 МэВ. Для b-частиц R ≤ 3000 мкм. Измерялись углы Θ вылета этих частиц по отношению к первичному пучку, если углы наклона следов частиц к плоскости эмульсии были меньше 30°. Полная геометрическая картина взаимодействия восстанавливалась введением статвесов для измеренных частиц. Частицы с углом $\Theta \le 30$ были взяты с "весом" 1, остальные - с весом

$$P = \frac{\pi/2}{\arcsin\frac{\sin 30^{\circ}}{\sin \Theta}}$$

Частицы типа b в зависимости от величины заряда разделялись на 3 группы: Z = 1 - протоны, Z=2-a -частицы, $Z \ge 3$ - фрагменты. Величина заряда оценивалась визуально: по толщине следа, рассеянию, захвату и числу разрывов вблизи остановки. Оценки проводились для частиц с углом наклона следа к плоскости эмульсии меньше 30° .

В *табл. 2* приведена вероятность полного разрушения ядра при взаимодействии протонов и *а*-частиц с ядрами Ag, Br и Pb.

Таблица 2

Частицы	Импульс	%	%
	в <i>ГэВ</i> /с	W _{Ag, Br}	W _{Pb}
Р	69	3,0 <u>+</u> 0,8	7 <u>+</u> 2
a	17	6,4 <u>+</u> 1,0	10 <u>+</u> 2

Величина вероятности вычислялась как отношение числа взаимодействий с полным разрушением ядра к числу всех неупругих столкновений с ядрами Ag, Br или Pb в наблюдаемом объеме эмульсии.

В *табл. 2* заметен рост вероятности полного разрушения с увеличением массы налетающей частицы. Это согласуется с результатами работы /4/. При сравнении вероятностей для ядер Ag, Br и Pb надо помнить о различии в критериях отбора событий по числу N_h.

В табл. З приведены данные по средним множественностям $\langle n_s \rangle$, $\langle n_g \rangle$ и $\langle n_b \rangle$ и половинному углу $\Theta_{\frac{1}{2}}$ /угол раствора конуса, в который вылетает половина частиц/для s-, g- и b-частиц, а также среднее число $\langle n_b \rangle (\langle n_b \rangle = \langle n_b \rangle + \langle n_g \rangle)$,

Прежде всего обращает на себя внимание тот факт, что в совокупности h-частиц велика доля g-частиц. Это наблюдается в случае взаимодействия протонов с ядрами и в еще большей степени - для a-частиц. Следует отметить независимость $\Theta_{g, \frac{1}{2}}$ от массы налетающей частицы и ядра мишени. В то же время $\Theta_{s, \frac{1}{2}}$ в столкновениях a-частиц почти в два раза больше, чем в столкновениях протон-ядро.

Таблица 3

На рис. 2 представлены распределения g-частиц соответственно по $\cos \Theta$ и Θ для взаимодействий протонов и *a*-частиц с ядрами. При построении гистограмм были суммированы распределения для ядер Ag, Br и Pb, поскольку в пределах ошибок они не различались.

Распределения b-частиц по cos Θ для взаимодействия протонов с Pb показаны на *рис. 3*.

В табл. 4 приведены данные о средних числах <n $_p$, <n $_a$ > , <n $_f$ > протонов, α -частиц и фрагментов из состава b -частиц и их средние энергии <E $_p$ > , <E $_\alpha$ > и <E $_f$ > соответственно, а также средний суммарный заряд <Z > -частиц от распада ядер при полном разрушении.

Энергетические распределения b-частиц приведены на *рис.* 4 для протонов и на *рис.* 5 для *а*-частиц.

В табл. 4 можно видеть, что для всего нашего набора первичных частиц и ядер-мишеней средние энергии протонов, а также *a*-частиц, имеют близкие значения.

Таблица	4	1
---------	---	---

Характери стика	1- d+(Ag,Br)	d+Pe	P+(Ag,Br)	P + P6
$< n_{p} >$	6,2 <u>+</u> 0,7	5,I <u>+</u> I,0	10,0 <u>+</u> 0,6	I4,6 <u>+</u> 0,7
cnis	4,2+0,5	6,4 <u>+</u> I,0	5 ,4<u>+</u>0, 5	5,6 <u>+</u> I,0
1 1 27	0,6 <u>+</u> 0,I	I,0 <u>+</u> 0,3	0,5 <u>+</u> 0,I	I,6 <u>+</u> 0,3
< Faz	8,65 <u>+</u> I,0	8,2 <u>+</u> I,0	II	10,9 <u>+</u> 0,5
~ Er>	30,8 <u>+</u> 3	33,4 <u>+</u> 5,0	32	38,4 <u>+</u> 3,2
a >	49,6 <u>+</u> 6	30,0 <u>+</u> 6,0		36,6 <u>+</u> 3,7
- - + / _ <	4I	63	41	62

Аналогичная картина характерна и для энергетических спектров /см. *рис.* 4 и 5/ - наблюдается их подобие. Такое же заключение можно сделать для угловых распределений g -частиц / *рис.* 2/.

Рис. 2. а/- распределения g-частиц по cos Θ; б/- распределения g-частиц по углу Θ. Θ - угол вылета частицы по отношению к направлению первичной частицы.

Рис. 4. Энергетический спектр медленных протонов при взаимодействии а-частиц /сплошная линия/ и протонов /пунктир/ с ядрами Pb.

Рис. 5. Энергетический спектр медленных *a* - частиц: сплошная линия - *a* + Pb, пунктир - p + Pb взаимодействия.

Энергетические и угловые распределения, полученные при полном разрушении ядер, интересно сопоставить с распределениями /5/, наблюдаемыми для всех случаев неупругих взаимодействий быстрых частиц с ядрами, то есть с так называемым средним взаимодействием. Сравнение показывает, что как угловые, так и энергетические распределения в общих чертах совпадают. Это указывает на аналогичные механизмы взаимодействия в случае полного разрушения ядер и при среднем взаимодействии.

Суммарный заряд продуктов разрушения был рассчитан на основе наших экспериментальных результатов, с учетом доли частиц с зарядом $z = 2 / {}^{3}\text{He}$ и ${}^{4}\text{He} / c$ реди g-частиц, согласно работе ${}^{/6/}$. Всем фрагментам приписывался заряд z = 3, таким образом, в *табл.* 4 дается нижняя граница суммарного заряда. Средний

суммарный заряд продуктов разрушения ядер Ag, Br, равный $\langle Z \rangle = 41$, практически не отличается от среднего эффективного заряда ядер Ag и Br. Следовательно,в изучаемых событиях остаточные ядра с заметными массами отсутствуют, то есть происходит полное разрушение ядер. Для ядер свинца средний суммарный заряд $\langle Z \rangle \ge 63$, и, таким образом, на долю остаточных ядер и фрагментов с зарядом Z > 3 приходится в среднем заряд Z = 19. Очевидно, однако, что в первую очередь это связано с выбором слабого критерия отбора событий на свинце ($N_h \ge 40$). Среди звезд, образованных при взаимодействии протонов и α -частиц с ядрами Pb, были зарегистрированы звезды с $N_h \ge 60$, а одна из них имела $N_h = 66/рис. 6/.$

Puc. 6. 38e3da c $N_{h} = 66, N_{s} = 22$.

Полный анализ звезды показал, что среди 66 h-частиц имеется 57 однозарядных, 5 - двухзарядных и 4 фрагмента ($z \ge 3$). Таким образом, суммарный заряд испущенных частиц в этой звезде $z \ge 57 \cdot 1 + 5 \cdot 2 + 4 \cdot 3 = 79$. Большое количество h -частиц, образующихся при полном разрушении ядер Pb /см. *табл. 3/*, показывает, что ядра распадаются преимущественно на отдельные нуклоны.

Выше обращалось внимание на большое число g-частиц в случаях полного разрушения ядер. Если учесть вылет нейтронов, то получается, что половина ядерного вещества выбрасывается из ядра на "быстрой" стадии столкновения. Объяснения этому эффекту, очевидно нельзя искать в рамках известной каскадно-испарительной модели. Например, совершенно непонятно, почему ачастицы, в сравнении с протонами, менее энергичные и поэтому генерирующие значительно меньшее число s -частиц /в 2 раза меньше/, выбивают из ядра большее число д-частиц /в 1,5 раза больше чем протоны/. Полученное на опыте соотношение между числом g и b -частиц также сильно противоречит каскадно-испарительной модели. Соответствующие расчеты для ядер Рb не проводились, однако уже для ядер Ag, Br было обнаружено противоречие с опытом. Согласно расчету, для и частиц 17 $\Gamma \cdot B/c^{/7/}$ получилось соотношение $< n_p > / < n_h > = 0,7,$ в то время как экспериментальное значение равно 1,8+ +0,2.

Остановимся на широко дискутируемой в последнее время модели ударной волны $^{/8/}$. При полном разрушении ядер, когда, очевидно, происходят центральные столкновения, условия для применимости модели ударной волны более адекватны /путь, проходимый частицей в ядре, максимален, а условия для распространения ударной волны симметричны/. Согласно этой модели, наибольший выход частиц ожидается в направлении нормали к фронту ударной волны, угол которой с направлением движения налетающей частицы составляет $\Theta = \arccos \frac{a}{V}$, где а- скорость, с которой распространяется в ядре возмущение плотности /скорость звука/, v - скорость налетающей частицы. Используя оценки величины а из $^{/8/}$, получаем, что для нашего случая $\Theta \leq 80^\circ$.

В работе $^{/9/}$ при энергиях налетающих частиц $E \leq 2 \Gamma_{3}B/нуклон$ наблюдались превышения в угловых распределениях g-частиц. Они ставились в соответствие действию ударной волны и приписывались частицам с зарядом Z = 2, т.к. использованная методика не позволяла регистрировать протоны с энергией $> 28 M_{3}B$. В представляемых нами экспериментальных данных /на *puc. 2a, б*/ число двухзарядных частиц составляет 1/4 от числа протонов. В угловых распределениях не наблюдаются какие-либо превышения, которые можно было бы рассматривать как эффект ударной волны. Расхождение, в результатах двух работ, по-видимому, связано с большим различием в услових эксперимента.

ЗАКЛЮЧЕНИЕ

-14

1. Наблюдалось полное разрушение ядер свинца под действием быстрых протонов и *а*-частиц. Установлено, что ядра в процессе полного разрушения распадаются преимущественно на отдельные нуклоны. Половина ядерного вещества выбрасывается из ядер с энергией выше ЗО *МэВ/нуклон*.

2. Энергетические и угловые распределения g- и b-частиц при полном разрушении ядер Ag, Br и Pb в общих чертах совпадают с распределениями для среднего взаимодействия. Это указывает на аналогичные механизмы в случае полного разрушения ядер и при среднем взаимодействии.

3. В рамках расчетов существующих моделей трудно объяснить полное разрушение тяжелых ядер. Возможно, следует обратиться к идее о коллективном движении, возникающем в результате увеличения плотности ядерной материи в объеме столкновения /10/.

Авторы выражают благодарность коллективам ускорителя ИФВЭ и синхрофазотрона ОИЯИ за облучение фотоэмульсий, группе С.И.Любомилова за их проявление и лаборантам ЛВЭ: Н.Г.Осман, О.В.Пискалевой, А.М.Сосульниковой, И.И.Сосульниковой, Р.А.Стариковой за просмотр эмульсий и обработку экспериментальных данных.

14

ЛИТЕРАТУРА

- 1. B.P.Bannik et al. Central Collisions of Fast Particles with Heavy Nuclei. Phys.Lett. (in press).
- 2. В.А.Беляков и др. Препринт ОИЯИ, Р-331, Дубна, 1959.
- 3. К.Д.Толстов, Р.А.Хошмухамедов. Препринт ОИЯИ, P1-6897, Дубна, 1973.
- B. Jakobsson, J. Otterlund, K. Kristiansson. Pion and Proton Emission in Inter. Induced by Relativistic Heavy Nuclei with Z≥12. Preprint LUIP-CR-74-14, Lund, 1974.
- 5. Н.Далхажав и др. Препринт ОИЯИ, Р1-8926, Дубна, 1975; К.Д.Толстов. Препринт ОИЯИ, Р1-9286, Дубна, 1975.
- 6. А.И.Борисенко и др. ЯФ, т. 20, вып. 2 /1974/.
- 7. В.Д. Тонеев, С.Е. Чигринов. Сообщения ОИЯИ, Р4-7479, Дубна, 1973.
- 8. H.G.Baumgardt et al. Z. Phys., A273 (1975).
- 9. H.G.Baumgardt et al. Preprint of a Paper Contributed to the III-d Int. Workshop, Hirschegg (k. Walsertat), dan. 1976.
- 10. К.Д. Толстов. Сообщение ОИЯИ, P1-8662, Дубна, 1975.

Рукопись поступила в издательский отдел 12 июля 1976 года.