ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3633/2-76

13/12-16

P1 - 9874

5-484

С.Ф.Бережнев, Т.Д.Блохинцева, Л.Л.Неменов

МОДЕЛЬНО-НЕЗАВИСИМЫЙ АНАЛИЗ ОБРАТНОГО ЭЛЕКТРОРОЖДЕНИЯ ПИОНОВ ПРИ ЭНЕРГИИ 276 МЭВ

P1 - 9874

С.Ф.Бережнев, Т.Д.Блохинцева, Л.Л.Неменов

МОДЕЛЬНО-НЕЗАВИСИМЫЙ АНАЛИЗ ОБРАТНОГО ЭЛЕКТРОРОЖДЕНИЯ ПИОНОВ ПРИ ЭНЕРГИИ 276 МЭВ

Направлено в ЯФ

Бережнев С.Ф., Блохиндева Т.Д., Неменов Л.Л. P1 - 9874

Модельно-независимый анализ обратного электророждения пионов при энергии 276 МэВ

Проведен февоменологический анализ данных по реакции "+p+c+c+n при элергии 276 МэВ. Модельно-независимым способом определены вклады в сечение этой реакции состояний с различными поляризациями фотонов. Результаты сравниваются с предсказаниями дисперсионной моделя. Наядено сечение рождения скалярного фотона, Предложен модельнонезавясимый метод измерения дираковского изовекторного формфактора нуклона.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Berezhnev S.F., Blokhintseva T.D., Nemenov L.L. Pl - 9874 A Model-Independent Analysis of the Inverse

Electroproduction of Protons at 276 MeV

The phenomenological analysis of the data on the reaction # +p+e++e+ n at 276 MeV has been performed. The contributions of the states with different photon polarizations to the cross section of this reaction have been determined by the model-independent method. The results are compared with the dispersion model predictions. The production cross section has been found for the scalar photon. A model-independent method of measuring the Dirac isovector form factor of a nucleon has been suggested.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

Ввеление

Исследование обратного электророждения пионов (0ЭП) $\pi^{-} + \rho - e^{+} + e^{-} + n$

(I)

является методом изучения структуры нуклона и пиона в области времениподобных переданных импульсов/1,2,3/. Формбакторы адронов определяются сравнением экспериментальных распределений с теоретическими, рассчитанными с помощью моделей/1,4,5,6/. В ошибки параметров, определенных таким способом, дают вклад как погрешности эксперимента, так и модельные неопределенности. Последние оказываются незначительными при вычислении диференциальных сечений, описываюших рождение виртуальных фотонов с массами, близкими к максимально допустимым (квазипороговая кинематика), так как основной вклад в эти сечения дают борновские члены /5/.

На опыте было показано/2,3,6/, что угловые распределения виртуальных фотонов в реакции (I) хорошо описываются дисперсионной и изобарными моделями: диференциальные сечения по двум другим независимым переменным, характеризующим распад виртуального фотона, также находятся в согласии с расчетными кривыми.

Вместе с тем, до настоящего времени не было выполнено разделения экспериментального сечения ОЭП на части, соответствующие испусканию фотона в различных поляризационных состояниях. Такой анализ позволяет осуществить дополнительную проверку моделей и определить вероятность испускания скалярного фотона, которая практически полностью определяется борновскими членами/5/.

В настоящей работе анализируются данные/7/ по реакции (I). Определены вклады в дифференциальное сечение ОЭП состояний с различными поляризациями фотона.

§ I. Экспериментальные данные

Для феноменологического анализа использовалась группа событий ОЭП, идентифицированных в работе / И. Из распределения этих случаев по квадрату недостающей массы M_{χ}^2 следует, что после введения критериев отбора в анализируемой выборке останется 748+36 событий ОЭП, 97±I2 случаев фоновых процессов и 70±I2 событий, обусловленных взаимодействиями в стенках мишени. Все события разбивались на пять групп в зависимости от значения квадрата переданного 4-импульса K^2 . Число случаев для каждой группы указано в таблице I. В этой же таблице приведены оценки числа фоновых взаимодействий и числа случаев, генерированных на стенках мишени.

Tα	Кп	unto	т
10	ບມ	лца	- T

№ группы	Интервал (ГэВ ² /с) ²	$\overline{k}^{2}(\mathfrak{z}^{-2})$	Число случаев в группе	Число фоновых событий	Число событий, генерированных в стенках мишени
I.	0,050+0,065	I,48	98	I2	I6,4
2.	0,065+0,080	I,88	I6 3	27	4,4
З.	0,080+0,095	2,26	203	26	13,3
4.	0,095+0,II0	2,65	219	. 22	40,4
5.	0,II0+0,I 3 0	3,05	216	II	-
1			Ŧ		

Как для всей анализируемой выборки, так и для каждой группы строились двумерные распределения по переменным Cos φ (φ -угол между плоскостью реакции

$$\Pi^{-}p \longrightarrow \int^{\pi} \pi$$
 (2)

и плоскостър(e⁺e⁻) – пары в с.ц.и. П⁻р, у^{*} – виртуальный фотон) и COS Ø (Ø – угол между импульсами электрона и нейтрона в с.ц.и. (e⁺e⁻) – пары). Соседние каналы гистограммы, содержащие малое число событий, объединялись. § 2. Процедура определения феноменологических параметров

В однофотонном приближении сечение ОЭП записывается в випе/4,5/

$$\frac{d\sigma}{ds_{f}ds_{e}dk^{2}} = \sum_{i=1}^{4} \frac{dC_{i}}{ds_{f}ds_{e}dk^{2}} = \sum_{i=1}^{4} R_{i}T_{i} .$$
(I)

Здесь: L =I,2,3,4 - индекс, обозначающий поляризационное состояние фотона;

 T_{I} описывает процесс (2) с поперечными неполяризованными виртуальными фотонами; T_{2} соответствует процессу (2) с поперечно-поляризованными фотонами; T_{4} - с продольно-поляризованными; T_{3} отвечает интерференции амплитуд, описывающих испускание продольно-и поперечно-поляризованных фотонов; $dC_{i/}d\Omega_{j} d\Omega_{c} dk^{2}$ соответствующие части дифференциального сечения.

В выражении (I) используются следующие обозначения: Ω_{f} - телесный угол рассеяния f -кванта в с.ц.и. Пр; Ω_{e} - телесный угол рассеяния электрона в с.ц.и. (e⁺e⁻) - нары;

$$R_{1} = -\frac{\alpha}{32\bar{\pi}^{2}q} \cdot \frac{|\vec{k}|}{k^{2}} \cdot (1 + \cos^{2}\theta),$$

$$R_{2} = -\frac{\alpha}{32\bar{\pi}^{2}q} \cdot \frac{|\vec{k}|}{k^{2}} \cdot \sin^{2}\theta \cos 2\theta', \qquad (2)$$

$$R_{3} = -\frac{\alpha}{32\bar{\pi}^{2}q} \cdot \frac{|\vec{k}|}{k^{2}} \cdot \sin 2\theta \cos \theta',$$

$$R_{4} = -\frac{\alpha}{52\bar{\pi}^{2}q} \cdot \frac{|\vec{k}|}{k^{2}} \cdot 2k^{2} \sin^{2}\theta \cdot \frac{|\vec{k}|}{k^{2}} \cdot 2k^{2} \sin^{2}\theta \cdot \frac{|\vec{k}|}{k^{2}} \cdot \frac{$$

Параметры Т /I+4/ есть функции только двух переменных: К² и угла вылета фотона Θ^{δ} . Конкретный вид Т/I+4/ зависит от используемой теоретической модели. Оценки этих параметров Т/I+4/ определялись из условия минимума следующего квадратичного функционала:

$$\Phi = \sum_{j=1}^{J=M} \frac{(n_j \operatorname{srcn} - f n_j \operatorname{mum} - P_j \operatorname{Np} - n_j \operatorname{meup})^2}{\sigma_j^2}.$$
 (3)

Здесь: J и μ - соответственно номер канала и полное число каналов в двумерном распределении по Соз \mathcal{G} и Соз \mathcal{G} .

Вследствие того, что каналы с малым числом событий объединялись, величина μ при разбиении событий на группы по К² менялась.

В формуле^{/3/} $n_{j\to\kappacn}$ -экспериментальное число событий, попавших в *j*-й интервал распределения; $n_{j,Mulli}$ - число событий, попавших в этот же канал при измерениях с пустой мишенью; *f* - отношение потоков при измерениях с полной и пустой мишенью; $N\phi$ -полное число фоновых событий; P_j - вероятность попадания фонового события в *i*-й канал распределения; величины Р определялись путем моделирования фонового процесса методом Монте-Карло;

$$\sigma_{j}^{2} = n_{j} \Im_{\kappa c n} + g^{2} n_{j} Mu u + \sigma_{\phi}^{2} P_{j}^{2}$$
,

 $ilde{O}_{m{O}}$ - ошибка в определении полного числа фоновых событий;

$$n_{j meop} = \mathbf{I} \cdot \mathbf{A} \cdot \mathbf{\mathcal{E}} \frac{d \sigma_{j meop}}{d \cos \theta} -$$
(4)

- ожидаемое число событий в Ј-ом интервале гистограммы;

<u>I</u> - поток П-мезонов; А- число атомов водорода в мишени; Єкоэффициент, учитывающий эффективность регистрации и обработки /7,

$$\frac{dO_{j,meop}}{d\cos\Psi\,d\cos\theta} = \sum_{i=1}^{4} Q_{ij} T_i , \qquad (5)$$

Q_{ij} – значение функции R_i для j-го канала гистограммы, вычисленное методом Монте-Карло с учетом реальных условий эксперимента. Найденные таким образом R_i *теор* хорошо описывают экспериментальные распределения (χ^2 =II,2 при I9 степенях свободы). Полученные значения \hat{T}_i являются оценками параметров T_i , усредненных по области изменения кинематических переменных, выделяемой условиями эксперимента. Им соответствуют сечения

$$\hat{O}_{i} = \sum_{j=1}^{j=\mu} Q_{ij} \hat{T}_{i}.$$
(6)

§ З. Результаты анализа

Оценки $\hat{\mathcal{O}}_{i}$ приведены в таблице П (верхняя строка). Во второй строке указаны значения соответствующих сечений \mathcal{O}_{i} , вычисленные по дисперсионной модели^{/5/} с формфакторами $F_{i}^{v} = F_{\overline{x}}$, найденными при анализе распределений этих же событий по $Cos \mathcal{O}^{\delta/3/}$. Оценки относительного вклада каждого из членов $\hat{\mathcal{O}}_{i}$ в сечение процесса ОЭП, $\hat{\gamma}_{i} = \frac{\hat{\mathcal{O}}_{i}}{\frac{\xi}{2}, \hat{\mathcal{O}}_{i}}$,

приведены в третьей строке таблицы П.

Таблица П

0 ^т 1 ^{х10³³см²}	O_2 x10 ³³ cm ²	\mathcal{O}_3 x10 ³³ cm ²	<i>0</i> ₄ х10 ³³ см ²
(2,94 <u>+</u> 0,37)	(-0,38 <u>+</u> 0,I6)	(0,15 <u>+</u> 0,05)	(1,24 <u>+</u> 0,30)
3,07	-0,17	-0,09	0,93
74,5%	-9,6%	3,8%	31,4%

Видно, что предсказания дисперсионной модели относительно величин \mathcal{O}_{I} , \mathcal{O}_{2} , \mathcal{O}_{4} , дающих основной (~ 96%) вклад в сечение процесса (I), хорошо согласуются с экспериментальными оценками $\hat{\mathcal{O}}_{I}$, $\hat{\mathcal{O}}_{2}$, $\hat{\mathcal{O}}_{4}$. Наряду с этим есть противоречие между вычисленной в дисперсионной модели величиной сечения \mathcal{O}_3 и ее экспериментальной оценкой $\hat{\mathcal{T}}_3$.

Далее исслецовалась зависимость сечений \mathcal{O}_i от величины \mathbb{K}^2 . Как и ранее, оценки сечений по каждой группе событий находились из условия минимума функционала (3). Значения величин N_j эксп., n_j миш, P_j , \hat{Q}_{ij} , входящих в выражения /З+5/, вычислялись для каждого интервала по \mathbb{K}^2 .

Найденные оценки приведены на рис. I (а, б, в). На этих же рисунках сплошными кривыми нанесены результаты теоретических расчетов. Видно, что модель^{/5/} позволяет хорошо описать поведение сечений, соответствующих испусканию поперечного неполяризованного и продольно-поляризованного фотонов. Два этих члена, по существу, полностью определяют величину сечения процесса ОЭП. Плохая точность определения величины $\hat{\sigma}_2$ не дает возможности сделать вывод о характере зависимости этого сечения от K^2 .

Из рис. IB видно, что предсказания дисперсионной модели относительно поведения величины δ_3 не согласуются с полученными оценками $\hat{\delta}_3$.

С одной стороны, это расхождение может объясняться тем, что модель /5/ не позволяет описать интерференцию между поперечными и процольными фотонами. С другой стороны, вклад величины σ_3 в измеренное сечение (~4%) сравним с ошибками в определении числа событий фоновых процессов и числа взаимодействий в стенках мишени. Поэтому смещение оценок $\hat{\sigma}_3$ по отношению к расчетным значениям может быть обусловлено систематической ошибкой, связанной с незначительными искажениями распределений по переменным $Cos \, \mathcal{Y}$ и $Cos \, \hat{\partial}$. В пользу последнего предположения говорит и тот факт, что оценка $\hat{\sigma}_3$, в отличие от $\hat{\sigma}_1, \hat{\sigma}_2, \sigma_4$, чувствительна к форме угловых распределений фоновых собштий. Как показали расчеты, сечение \mathcal{S}_{1} в одинаковой степени зависит от дираковского изовекторного формфактора нуклона F_{1}^{\vee} и формфактора пиона $F_{\overline{\Lambda}}$. Величина \mathcal{O}_{4} зависит, в основном, от F_{1}^{\vee} : изменение F_{1}^{\vee} на IO% меняет \mathcal{O}_{4} на I4,2%, в то время как изменение \overline{F}_{τ} на IO% меняет \mathcal{O}_{4} на 3,8%.

Таким образом, если величина \mathcal{O}_4 известна с малой ошибкой, то можно с хорошей точностью определить $\overline{F_1^{v}}$ даже при использовании грубой оценки формфактора $F_{\mathcal{R}}$. Так как \mathcal{O}_4 определяется только борновскими членами $^{/5/}$, то найденная таким способом величина $\overline{F_1^{v}}$ не будет зависеть от модельных неопределенностей.

Рис.І. Вклады в дифференциальное сечение ООН состояний с различными поляризацияни Ботонов.

8

ЛИТЕРАТУРА

- I. С.Ф.Бережнев, Л.С.Вертоградов, А.В.Демьянов и др. яФ <u>16</u>, 185, 1972.
- 2. С.Ф.Бережнев, А.В.Демьянов, А.В.Куликов и др. яФ <u>18</u>, 102, 1973.
- З. С.Ф.Бережнев, Т.Д.Блохинцева, А.В.Демьянов и др. Препринт ОИЯИ, РІ-9575, 1976.
- 4. Ю.С.Суровцев, Ф.Г.Ткебучава. Препринт ОИЯИ, Р2-4561, 1969.
- 5. Т.Д.Блохинцева, Ю.С.Суровцев, Ф.Г.Ткебучава. ЯФ <u>21</u>, 850, 1975.
- 6. Г.И.Смирнов, Н.М.Шумейко. ЯФ <u>17</u>, 1266, 1973.
- В.В.Ализаце, С.Ф.Бережнев, А.В.Демьянов и др. Препринт ОИЯИ, PI-9478, 1976.

Рукопись поступила в издательский отдел 15 июня 1976 года.