ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3632/2-76

13/12-76 P1 - 9847

A-61

Н.С.Амаглобели, Ю.А.Будагов, В.Б.Виноградов,
А.Г.Володько, Ю.Ф.Ломакин, В.С.Румянцев,
Р.Г.Салуквадзе, В.Б.Флягин,
Л.Шандор, Ш.С.Шошиашвили

ПРОСТОЕ ОПИСАНИЕ РАСПРЕДЕЛЕНИЙ ПО МНОЖЕСТВЕННОСТИ ЗАРЯЖЕННЫХ ЧАСТИЦ ПРИ ВЫСОКИХ ЭНЕРГИЯХ

P1 - 9847

Н.С.Амаглобели, Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, Ю.Ф.Ломакин, В.С.Румянцев, Р.Г.Салуквадзе, В.Б.Флягин, Л.Шандор, Ш.С.Шошиашвили¹

ПРОСТОЕ ОПИСАНИЕ РАСПРЕДЕЛЕНИЙ ПО МНОЖЕСТВЕННОСТИ ЗАРЯЖЕННЫХ ЧАСТИЦ ПРИ ВЫСОКИХ ЭНЕРГИЯХ

Направлено на 18 Международную конференцию по физике высоких энергий (Тбилиси, 1976)

¹ Тбилисский государственный университет.

² Институт физики АН БССР, Минск.

Согласно гипотезе о скейлинговом поведении распределений по множественности вторичных частиц (К NO-скейлинг)/1/, имеет место асимптотическое соотношение:

$$\langle n \rangle \frac{Gn}{G_{in}} \equiv \Upsilon(Z,S) \xrightarrow{} \Upsilon(Z); \quad Z = n/\langle n \rangle, \quad (I)$$

где n ($\langle n \rangle$) - множественность (средняя множественность) вторичных частиц в адрон-адронных взаимодействиях при энергии \sqrt{s} в с.ц.м.; \mathcal{C}_n - сечение образования n -честиц; \mathcal{C}_{in} - пол ное сечение неупругих взаимодействий.

Вид функции Υ теорией, рообще говоря, не предсказывается. Поэтому в ряде работ^{/2/}были предприняты исследования с целью определения функции, удовлетворительно аппроксимирукщей зависимость величины $\langle n \rangle \mathcal{E}_n / \mathcal{E}_{in}$ от $n / \langle n \rangle$ в широком интервале энергий взаимодействующих частиц. Все эти работы основываются на внализе респределений по множественности заряженных частиц; аппроксимирующие функции при этом окезываются сравнительно сложными.

$$\langle n_{\tau} - 2 \rangle \frac{\mathcal{E}_{n_{\tau}}}{\mathcal{E}_{in}} \equiv \Psi(\overline{z}_{i}) = \frac{\widehat{\pi}}{2} \overline{z}_{i} \exp\left(-\frac{\widehat{\pi}}{4} \overline{z}_{i}^{2}\right)$$

$$\overline{z}_{i} = (n_{\tau} - 2) / (\langle n_{\tau} \rangle - 2),$$

$$(2)$$

удорлетрорительно описывахщая данные о выходах полного числа еторичных частиц в Пр-взаимодействиях в области энергий 5-40 ГаВ.

В настоящей работе рассмотрена возможность описания с помощью простого соотношения (2) распределений по множественности заряженных частиц. С этой целью в формуле (2) используется в качестве переменной величина $Z = \frac{n-d}{\sqrt{n-d}} *$. Параметр A можно рассматривать как меру среднего числа лидирующих заряженных частиц^{/4/}, которые не подчиняются распределению по множественности "истинно рожденных" частиц n'=n-d. В работах ^{////}, параметр A определяется на основе анализа зависимости центральных моментов распределения от средней множественности этого распределения. Было получено, что A = I, Iдля Пр-взаимодействий при 6,8-205 ГэВ; для рр-взаимодействий A = 0,9 в интервале энергий 5,5-300 ГэВ.

В данной работе при аппроксимации распределения по множественности заряженных частиц функцией

$$\Psi(z') = \pi z' \exp\left(-\frac{\pi}{4} z'^2\right) \tag{3}$$

А рассматривается как "свободный" параметр. (Отметим, что функция (3) нормирована на 2.)

Первоначально были аппроксимированы экспериментальные данные о распределениях заряженных частиц для П⁻р-взаимодействий при энергиях 5-205 ГэВ^{/5/}. Оказалось, что, начиная с

для Лр -взаимодействий.

25 ГэВ и рыше, функция (3) хорошо согласуется с экспериментом – $\chi^2/N_T = 77,5/52$ (N_T – чысло экспериментальных точек); при этом $\mathcal{A} = 0,70 \pm 0,02$ (см. рис.).

С целью проверки применимости функции (3) для описания распределений по n также и для других взаимодействующих частиц нами были использованы данные о pp^{/6/}-, \mathcal{K}_{P}^{+} ^{/7/}, $K^{+}p^{/8/}$ - и $K^{-}p^{/9/}$ -взаимодействиях.

Результаты аппрокоммации отдельных реакций (1), а также результаты совместной аппрокоммации данных о всех реакциях (2) представлены в таблице. Они совместимы с предположением, что с ростом энергии распределения по числу "истинно рожденных" частиц n' следуют простой универсальной функции (3), независимо от вида взаимодействующих частиц.

к Здесь и дельже под 12 подразумевается число вторичных заряженных частиц.

Реакция	р,Гэв⁄с		1		2	
		N _T	d	χ^2	d	χ²
Πр	25	6	,02	19,1		17,0
	40	7		11,4		13,0
	50	8		11,5		15,5
	100	8	0+	9,5		9,5
	147	13	0,70	14,4		15,0
	205	10		10,6		11,5
	Σ,	52		76,5		
πţ	50	8	,03	14,5		26,0
	100	10	7±0	13,5		12,5
	Σ,	18	 	28,0		
К¯р	32	7	R	5,5		10,0
	33,8	8	0 +I	5,0	8	5,8
	147	10	62	12,2	0,0	13,0
	Σ,	25	ő	22,7	+1	
к⁺р	32	8	90,0	5,4	,72	7,6
	100	8	34(9,6		9,5
	Σ,	16	ő	15,0		
PP	24	5		3,5		2,4
	50	8	,03	2,3		5,5
	69	9		11,5		17,5
	102	10	0+	11,0		21,0
	205	12	1.55	8,2	ļ	13,5
	303	13		15,5		16,0
	405	16		19,5		27,5
L	Σι	73	ļ	/1,5	ļ	
	1 5.	1 184	1		1	1269.3

Литература

1. Z.Koba, H.B.Nielsen, P.Olesen, Nucl. Phys. <u>B40</u>, 317 (1972)

 2. P.Slattery. Phys.Rev.Lett. 29, 1624 (1972); Phys. Rev. <u>D7</u>, 2073 (1973)
 A.J.Buras, Z.Koba. Lett.Nuovo Cim. <u>6</u>, 629 (1973)
 W.Ernst, I.Schmitt. Bielefeld preprints Bi-75/01, Bi-75/03.

3. N.S.Amaglobeli et al. JINR, E1-9820, Dubna (1976)

4.	A.J.Buras, J.Dias de Deus, R.Møller. Phys.Lett. <u>47B</u> ,251(1973)					
	R.Møller. Nucl.Phys. <u>B74</u> , 145 (1974)					
5.	Пр - взаимодействия:					
	5 Gev/c: H.C.Амаглобели и др. ОИЯИ PI-9718, Дубна (1976)					
	6,8 GeV/c: М.Г.Гирчер и др. ЖЭГФ <u>41</u> , 1461 (1961)					
	8 Gev/c: J.T. Powers et al. Phys. Rev. <u>D8</u> , 1947 (1973)					
	10 GeV/c: J.Bartke. Nucl. Phys. 82, 673 (1966)					
	16 GeV/c: R.Honecker et al. Nucl. Phys. <u>B13</u> , 571 (1969)					
	18,5 GeV/c: J.T.Powers et al. Phys.Rev. <u>D8</u> , 1947 (1973)					
	25 GeV/c: J.W.Elbert et al. Nucl.Phys. <u>B19</u> , 85 (1970)					
	40 GeV/c: O.Balea et al. Phys.Lett. <u>39B</u> , 571 (1972)					
	50 GeV/c: G.A.Akopdjanov et al. Nucl. Phys. <u>B75</u> , 401 (1974)					
	100 GeV/c: E.L.Berger et al. Nucl. Phys. <u>B77</u> , 365 (1974)					
	147 GeV/c: D.Fong et al. Nucl. Phys. <u>B102</u> , 386 (1976)					
	205 GeV/c: D.Bogert et al. Phys.Rev.Lett. <u>31</u> , 1271 (1973)					
6.	рр-взаимодействия:					
	24 GeV/c: S.Nilsson et al. Nuovo Cim. <u>43A</u> , 716 (1966)					
	50 , 69 GeV/c: V.V.Ammosov et al. Phys.Lett. <u>42B</u> , 519 (1972)					
	102,405 GeV/c: C.Bromberg et al. Phys.Rev.Lett. 31, 1563					
	(1973)					
	205 GeV/c: S.Barish et al. Phys.Rev. <u>D9</u> , 2689 (1974)					
	303 GeV/c: F.T.Dao et al. Phys.Rev.Lett. 29, 1625 (1972)					
7.	П ⁺ р - взаимодействия:					
	50 GeV/c: G.A.Akopdjanov et al. Nucl. Phys. <u>B75</u> , 401 (1974)					
	100 GeV/c: J.Erwin et al. Phys.Rev.Lett. 32, 254 (1973)					
8.	К ⁺ р - взаимодействия:					
	32 GeV/c: G.A.Akopdjanov et al. Nucl. Phys. B75, 401 (1974)					
	100 GeV/c: V.E.Boznes et al. Phys.Rev.Lett. 34, 415 (1975)					
۹.						
	32 GeV/c: G.A.Akopdianov et al. Nucl. Phys. B75, 401 (1974)					
	33.8 GeV/c: V.V. Ammosov et al. Nucl. Phys. B58, 77 (1973)					
	147 GeV/c: D.Fong et al. Nucl. Phys. B102, 386 (1973)					
	Рукопись поступила в издательский отдел					
	7 июня 1976 года					
	7					