ОБЪЕДИНЕННЫЙ институт **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ **ДУБНА**

> 11/2-16 P1 - 9810

3.974/2-76

ИССЛЕДОВАНИЕ РОЖДЕНИЯ РЕЗОНАНСОВ в 7 р-ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГЭВ/С

ternen ti mite

A-646

Сотрудничество: Алма-Ата-Будапешт-Бухарест-Варшава-Дубна-Краков-Москва-София-Ташкент-Тбилиси-Улан-Батор-Ханой

P1 - 9810

ИССЛЕДОВАНИЕ РОЖДЕНИЯ РЕЗОНАНСОВ В 77 р-ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГЭВ/С

Сотрудничество: Алма-Ата-Будапешт-Бухарест-Варшава-Дубна-Краков-Москва-София-Ташкент-Тбилиси-Улан-Батор-Ханой*

Направлено на XVШ Международную конференцию по физике высоких энергий (Тбилиси, июль 1976)

*Перечень авторов см. на обороте титула.

11. 11.1.1.1.1.1

Н.Ангелов, К.П.Вишневская, В.Г.Гришин, С.В.Джмухадзе, Л.А.Диденко, И.А.Ивановская, Т.Я.Иногамова, Т.Канарек, Е.Н.Кладницкая, В.Б.Любимов, С.И.Лютов, Н.Н.Мельникова, В.С.Мурзин, Р.М.Назаргулов, В.Ф.Никитина, В.М.Попова, 1 А.Н.Соломин, Х.И.Семерджиев, М.И.Соловьев, В.Н.Пенев, Д.Тувдендорж, Н.Г.Фадеев, Э.Т.Цивцивадзе, А.И.Шкловская, Л.М.Шеглова, Г.Янчо.

Объединенный институт ядерных исследований, Дубна.

Е.О.Абдрахманов, А.Н.Басина, А.Х.Виницкий, Л.Е.Еременко, Л.Е.Страутман, И.С.Стрельцов.

Институт физики высоких энергий АН Каз.ССР, Алма-Ата.

Т.Гемеши, Л.Йеник, Д.Киш, Ш.Красновски, Д.Пинтер, К.Хайду.

Центральный институт физических исследований, Будапешт.

О.Балеа, В.Болдеа, Т.Понта, С.Фелеа. Институт атомной физики, Бухарест.

Е.Биалковска, В.Вуйцик, Я.Гаевски, М.Гурски, Р.Сосновски. Институт ядерных исследований и Институт физики Варшавского университета, Варшава.

Е.Бартке, А.Квятковска, К.Слива. Институт ядерной физики и Институт ядерной техники, Краков.

Н.О.Ахабабян, Л.Грекова, Н.П.Иков. Институт ядерной физики и ядерной энергетики, София.

С.А.Азимов, К.Р.Игамбердиев, Ш.В.Иногамов, С.Л.Лут фуллаев, Е.В.Меерзон, К.Олимов, В.Д.Липин, Х.А.Ризаев, В.П.Сосник, Т.М.Усманов, А.А.Юлдашев, Б.С.Юлдашев. Физико-технический институт АН УЭССР, Ташкент.

Л.Н.Абесалашвили, Н.С.Амаглобели, Л.Т.Ахобадзе, М.А.Дасаева, Т.И.Квачадзе, М.М.Куталия, Р.Г.Салуквадзе, Ю.В.Тевзадзе, И.И.Тулиани, М.С.Чаргейшвили. Тбилисский государственный университет, Тбилиси.

Ц.Баатар, Б.Чадраа. Институт физики и математики МАН, Улан-Батор.

Нгуен Дин Ты. Ханойский университет, Ханой.

1/Физический факультет и Научно-исследовательский институт ядерной физики МГУ.

Введение

В настоящей работе изучается рождение ρ° , f-, ω -, K*⁺-и Δ^{++} резонансов в π^{-} р -взаимодействиях при импульсе 40 ГэВ/с. Экспериментальный материал, около 11000 неупругих π^{-} Р -взаимодействий, был получен с помощью двухметровой пропановой пузырьковой камеры, облученной на серпуховском ускорителе. Для извлечения данных о рождении резонансов использовались неупругие π^{-} Р -взаимодействия, в которых импульсные и угловые характеристики всех вторичных заряженных частиц были измерены.

Описание методических особенностей эксперимента и уяд физических результатов, полученных на этом материале, приведены в работах^{/1-3/}. Здесь лишь отметим, что все вторичные заряженные частицы, за исключением протонов с импульсами, меньшими О,7 ГэВ/с, считались пионами. Протоны с Р_{лаб} О,7 ГэВ/сидентифицировались по ионизации. В этом случае примесь протонов среди вторичных положительных заряженных частиц составляет ≈ 15%, а примесь К[±] - мезонов и Σ[±]-гиперонов среди вторичных заряженных частиц - /4-5/%^{/2,3/}. Некоторая часть результатов этой работы была опубликована ранее^{/4/}.

§1. Распределение эффективных масс (π⁺π⁻)мезонов и сечения ρ°-, f - и ω - резонансов

В качестве основного источника информации о рождении обсуждаемых резонансов использовался спектр эффективных масс пар ($\pi^+\pi^-$)-мезонов (М($\pi^+\pi^-$)). Анализ

этого спектра проводился путем сравнения его с фоновым распределением и с теоретическими функциями, описывающими резонансы. Экспериментальное распределение dN/dM аппроксимировалось функцией типа

$$\begin{aligned} \mathbf{F}(\mathbf{M}) &= \sigma_{\rho} \cdot \mathbf{k}_{1} \cdot \mathbf{B} \mathbf{W}_{\rho}(\mathbf{M}) + \sigma_{f} \cdot \mathbf{k}_{2} \cdot \mathbf{B} \mathbf{W}_{f}(\mathbf{M}) + \\ &+ \sigma_{\omega} \cdot \mathbf{k}_{3} \cdot \mathbf{F}_{\omega}(\mathbf{M}) + \alpha \cdot \mathbf{B} \mathbf{G}(\mathbf{M}), \end{aligned}$$

где $\sigma_{\rho,f,\omega}$ - подбираемые сечения соответствующих резонансов; k_1, k_2, k_3 - нормировочные коэффициенты; а - подбираемый параметр; ВG(М) - фоновое распределение; F_ω(М) - функция распределения эффективных масс (π⁺ π⁻)-мезонов, возникающих при распаде ω→π⁺π⁻π[°];
В W_{ρ[°], f}(М) - релятивистские функции Брейта-Вигнера. Функции Брейта-Вигнера брались в виде^{/5/}:

$$BW(M) = \frac{M}{q} \cdot \frac{MM_0 \Gamma}{(M^2 - M_0^2)^2 + M_0^2 \Gamma^2}, \qquad /2/$$

$$\Gamma = \Gamma_0 \left(\frac{q}{q_0}\right)^{2 \ell + 1} \left(\frac{M_0}{M}\right), \qquad /3/$$

где M_0 , Γ_0 - масса и ширина резонанса соответственно, q - импульс π^{\pm} -мезона от распада резонанса в системе покоя резонанса, q_0 есть q при $M=M_0$, $\ell=1$ для ρ° -мезона и $\ell=2$ для f -мезона. Массы и ширины ρ° и f в /2/ и /3/ были зафиксированы в соответствии с их табличными значениями /6/.

Очевидно, что ошибки в определении эффективных масс влияют на экспериментально наблюдаемую форму и ширину резонансных кривых.

Учет вызванных экспериментальными погрешностями искажений в теоретических кривых, описывающих резонансы, был осуществлен путем интегрирования этих кривых с функцией разрешения в виде кривой Гаусса. Зависимость дисперсий от массы определялась выражением

$$\sqrt{D(M)} = 0,128 (M - 2m_{\pi})$$
 /4/

Для контроля правильности нахождения функции разрешения использовались данные, полученные в этом же эксперименте, по определению массы K_1° -мезона по распадным π^{\pm} -мезонам /1-3/. Были получены сечения рождения ρ° и f -мезонов без учета и с учетом возможного отражения распада ω -мезона в спектре эффективных масс $\pi^+\pi^-$.

При анализе инклюзивного экспериментального спектра $M(\pi + \pi^{-})$ без учета отражения ω -мезона / $\sigma_{\omega} \equiv 0$ вформуле /1// фоновая кривая BG(M) бралась в виде

BG (M) =
$$\left(\frac{M_1}{M_2}\right)^a \exp\left(-bM_1 + cM_1^2\right)$$
, /5/
где /5/

$$M_{1} = M(\pi^{+}\pi^{-}) - 2m_{\pi}, M_{2} = 1 \Gamma_{3}B,$$

а,b,с - подбираемые параметры.

Распределение по $M(\pi^+\pi^-)$ аппроксимировалось функцией /1/ при $\sigma_{\omega} = 0$ с учетом /4/и/5/. Аппроксимация производилась в интервале O,31-2,O ГэВ с помощью метода наименьших квадратов. В результате были получены значения параметров а = O,68±O,O3, b = /4,39±O,16/ГэВ⁻¹, c = /O,78±O,O6/ГэВ⁻² и нормированное значение χ^2 = =1,2O. Сечения инклюзивного рождения ρ° -и f -мезонов оказались равными $\sigma(\rho^\circ) = 5,8\pm1,4$ мб и $\sigma(f \rightarrow \pi^+\pi^-) =$ = 2,6±O,9 мб. На рис. І приведено инклюзивное распределение $M(\pi^+\pi^-)$ для неупругих π^- P -взаимодействий при P = 4O ГэВ/с / $n_{ch} \ge 2$ - число заряженных вторичных частиц/. Сплошной кривой показано фоновое распределение /5/, пунктирной - результат аппроксимации формулой /1/ при $\sigma_{ch} = 0$.

Puc. 2

На рис. 2а приведены инклюзивные сечения образования ρ° -мезонов в $\pi^- p$ -взаимодействиях при $E \ge 8 \ \Gamma \Im B$, полученные аналогичнымм способом/7,8,9/. Здесь же /рис. 26/ даны величины отношений R этих сечений к инклюзивным сечениям π^+ -мезонов. Как видно из рисунка, доля π^+ -мезонов, образующихся от распадов ρ° -мезонов, составляет 15÷20% и остается практически постоянной в интервале энергий /20÷200/ ГЭВ. Аналогичный результат получен и для $\pi^+ p$ -взаимодействий /10,11/ В протон-протонных взаимодействиях доля π^- -мезонов, образующихся в результате распада ρ° -мезонов, составляет ~10% от всех π^- -мезонов /12,13,14/

Рассмотрим отражение распадов $\omega \to \pi^+ \pi^- \pi^\circ$ на спектр М($\pi^+ \pi^-$)Спектр эффективных масс F (M), образованных при распаде ω -мезонов, можно представить в виде $^{/4/}$:

6

7

$$F_{\omega}(M) \sim M \int |\vec{\Omega}|^2 dm_{\pi\pi}^2 , \qquad /6/$$

где $\Omega \sim [\mathbf{P}_i \times \mathbf{P}_i]$ - матричный элемент распада $\omega \rightarrow 3\pi$.

Распределение /6/ с учетом функции разрешения использовалось в формуле /1/ при аппроксимации экспериментального распределения для получения сечений рождения ρ° -, f – и ω -резонансов.В качестве фоновой кривой BG(M) в этом случае мы использовали спектр эффективных масс ($\pi^{\pm}\pi^{\pm}$)-пар. Определение сечений резонансов проводилось с помощью /1/ как для инклюзивного спектра M($\pi^{+}\pi^{-}$) с n _{ch} \geq 4, так и для спектров М($\pi^{+}\pi^{-}$) для π^{-} Р взаимодействий с фиксированной множественностью вторичных заряженных частиц. В результате было получено, что σ (ρ°) = 13,3±1,4, $\sigma(\omega)$ = 10,0±1,1 и σ (f- $\pi^{+}\pi^{-}$) = 1,3± ±0,8 мб при χ^{2} = 1,37. В таблице приведены инклюзивные и полуинклюзивные сечения образования ρ° - и ω резонансов и их средняя множественность

На рис. З представлены результаты аппроксимация спектра $M(\pi^+\pi^-)$ с учетом ρ° -, ω - и f - мезонов. На рис. 4 даны сечения образования ρ° -мезона при учете отражения ω -мезона для различных n_{ch}. Для этого же случая приводится зависимость от n_{ch} относительной доли π^+ -мезонов, образующихся в результате распада $\rho^{\circ-}$ мезонов. При этом суммарная доля π^+ -мезонов, возникающих при распаде ρ - и ω -мезонов в предположении $\sigma(\rho^{\circ}) = \sigma(\rho^+)$, составляет ~ 80% *.

Нами была сделана попытка обнаружения образования ω -мезонов и прямым способом, т.е. на основе спектров эффективных масс $M(\pi^+\pi^-\pi^\circ)$. Для этой цели вычислялись эффективные массы двух гамма-квантов ($M(\gamma\gamma)$). Далее считалось, что два гамма-кванта являются продуктами рас-

Taonnua	

ŝ	°5	-Me3OH		ноезон	Ne3	зон, когда Сти
5	< 447	G (MOH)	<"">"	6 (moh)	<"	or (moh)
4	0,40 <u>+</u> 0,05	2,5 <u>+</u> 0,4	0,22 <u>+</u> 0,03	I,4 <u>+</u> 0,2	$0, 23_{\pm}0, 05$	I,5 <u>+</u> 0,3
9	0,68 <u>+</u> 0,I3	3, 9 <u>+</u> 0, 7	0,60 <u>+</u> 0,09	3 , 4±0, 5	0,13 <u>+</u> 0,08	0,720,5
8	$1,07\pm0,22$	3,6±0,7	0,73 <u>+</u> 0,I8	2,5±0,6	0,40 <u>+</u> 0,I5	I,3 <u>+</u> 0,5
ΙO	I,46 <u>1</u> 0,4I	2,I <u>+</u> 0,6	I,II <u>+</u> 0,34	I,6±0,5	0,42 <u>+</u> 0,30	0,6 <u>4</u> 0,4
≯ I2	I,4I <u>+</u> 0,80	$1,2\pm0.7$	I,33 <u>+</u> 0,7I	I,I <u>+</u> 0,6	0,00 <u>+</u> 0,55	0,0 <u>+</u> 0,5
\$ 4	0 ,74<u>+</u>0, 08	I3,3 <u>+</u> I,4	0,56 <u>+</u> 0,06	I0,0 <u>+</u> I,I	$0,23_{\pm}0,06$	4,I <u>+</u> I,O

^{*} Отметим, что введение в работах $^{/7-9/}$ процедуры учета влияния ω -мезонов может увеличить сечения образования ρ° -мезонов, однако это увеличение из-за иной конфигурации фоновых распределений, чем у нас, и меньших ошибок в величинах эффективных масс может не быть столь существенным, как в нашем эксперименте.

пада π° -мезона, если их эффективная масса отличается от массы π° -мезона только на одну ошибку. Спектр М $(\pi^{+}\pi^{-}\pi^{\circ})$ для неупругих π^{-} р -взаимодействий с учетом эффективности регистрации гамма-квантов^{/1,3/} приведен на *рис. 5.*

Фоновая кривая проведена произвольно.

§2. Дифференциальные сечения ρ° - мезонов

Нами было также исследовано образование р° - мезонов в зависимости от величин их поперечных импульсов, переменной Фейнмана х и быстроты в с.ц.м. у*. Для этой цели были построены распределения эффективных масс для каждой из групп $\pi^+\pi^-$ -комбинаций, попадающих в определенный интервал p_{\perp}^2 , х и у*. Вклад ρ° -мезонов определялся, как и ранее, путем аппроксимации этих распределений теоретическими кривыми двух видов: /а/ с учетом отражения в спектрах $M(\pi^+\pi^-)$ - мезонов образования ω-мезонов и /б/ без учета ω-мезонов. В первом случае, как видно из зависимости $d\sigma(\rho^{\circ})/dy^{*}$ /puc. 6/, большая часть всех образованных р° -мезонов имеют значения быстрот, соответствующих, условно говоря, центральной области, т.е. области –1 < у*<1. Для сравнения на рис. 6 приведены данные, полученные в првзаимодействиях при 15 ГэВ/с^{/7/} и 205 ГэВ/с^{/8/}. Как видно из рис. 6, увеличение сечений при 40 ГэВ/с по сравнению с 15 ГэВ/с происходит в основном за счет центральной области. Наши результаты примерно совпадают с данными при 205 ГэВ/с. Аналогичные заключения можно сделать на основании рассмотрения зависимости $d\sigma(\rho^{\circ})/dx$ / рис. 7/. Интересно отметить, что наблюдается некоторая несимметричность обоих распределений относительно нуля: ρ° -мезоны"предпочитают"рождаться в области фрагментации пучка с несколько большими сечениями, чем в области фрагментации мишени.

Сечения ρ° -мезонов, полученные при расчетах, в которых не учитывалось влияние на $M(\pi^+\pi^-)$ -спектры ω -мезонов, существенно ниже только что приведенных, и в центральной области это понижение является особенно значительным.

Для сравнения на *рис.* 8 нанесено также дифференциальное сечение $d\sigma/dp_{\perp}^2$ для π^+ -мезонов, полученное в этом же эксперименте. Ход распределения $d\sigma(\pi^+)/dp_{\perp}^2$ невозможно описать одной функцией вида /7/. В области малых значений p_{\perp}^2 сечения для π^{+} -мезонов значительно больше, чем для ρ° -мезонов, и только при $p_{\perp}^2 > 0,7/\Gamma_{\Im}B/c/^2$ и величины сечений и наклоны распределений в пределах ошибок совпадают.

§3. Обсуждение результатов

Таким образом. приведенные данные говорят о том, что сечение образования ρ° -мезонов в π^{-} р -взаимодействиях при 40 ГэВ/с значительно. Учет образования *w*-мезона существенно увеличивает сечения рождения ρ[°]-мезонов. Результаты прямого поиска ω -мезонов в спектрах $M(\pi^+\pi^-\pi^-)$ не противоречат тому, что ω -мезоны, действительно, образуются с сечениями, близкими к полученным косвенным спсобом. Отношение инклюзивных сечений образования ρ° - мезонов / при учете отражения ω / и π^+ -мезонов составляет у нас 0,28+0,04 и согласуется в пределах ошибок с данными при 2О5 ГэВ/с. В области фрагментации мишени (-3 < y* < -1) это отношение несколько ниже и составляет 0,12+0,03. В других областях у * отношения ρ^{o}/π^{+} в пределах ошибок совпадают и равны для -1 < y* <1 и 1 < y* <3 0,29+0,05 и 0,22+0,06 соответственно. Как видно из рис. 8, отношение сечений ρ°/π^+ значительно изменяется в зависимости от величин поперечного импульса и достигает при р² > > 0,7 /ГэВ/с/² единицы.

§4. Рождение изобары Δ^{++} и К*⁺(890)

Для исследования рождения изобары Δ^{++} в реакции $\pi^- p \rightarrow \Delta^{++} + \dots$ было отобрано ~ 1880 неупругих $\pi^- p$ - взаимодействий с медленными протонами $/p_{\pi ab} \leq 0.7 \ \Gamma \Im B/c/$, идентифицированными по ионизации. Мы построили спектры эффективных масс $p\pi^{+}$ - комбинаций.

13

На *рис.* 8 показано распределение $d\sigma(\rho^{o})/dp_{\perp}^{2}$ для $p_{\perp}^{2} \leq 2 / \Gamma \Im B/c/^{2}$. Это распределение до значений $p_{2}^{2} \leq 1/\Gamma \Im B/c/^{2}$ аппроксимировано функцией вида

$$\frac{d\sigma(\rho^{\circ})}{dp_{\perp}^{2}} = A \exp(-Bp_{\perp}^{2})$$
 /7/

с параметром наклона $B = 2,3\pm0,3/\Gamma_{2}B/c/$. Эта величина не отличается от значений $2,7\pm0,5$ и $3,0\pm1,0/\Gamma_{2}B/c/^{-2}$, полученных для таких же распределений в π р -взаимодействиях при 147⁹/ и 205 $\Gamma_{2}B/c^{8}$ соответственно.

Для сравнения с другими экспериментами на импульсы π^+ были наложены ограничения: $P_{Ad5}\pi^+ < 1,5 \ \Gamma \ni B/c.$ Для оценки инклюзивного сечения рождения изобары были отобраны события, в которых $-t_{B} \rightarrow \Delta^{++} < 0,6 \ / \Gamma \ni B/c/^2$, а комбинации эффективных масс $(p\pi^+)$ - системы лежали в области масс $1,12 < M(p_{\pi^+}) < 1,37 \ \Gamma \ni B$. При этих условиях верхний предел инклюзивного рождения изобары Δ^{++} оказался равным $< 0,90\pm0,04 \ M6.$ Для сравнения укажем, что в π^- р-взаимодействиях при 200 $\Gamma \ni B/c^{/15/}$ $\sigma(\pi^- p \rightarrow \Delta^{++}, ...) = 0,80\pm0,1 \ M6$ для $-t_{p\rightarrow\Delta^{++}} < 0,6 \ / \Gamma \ni B/c/^2$ и $1,12 < M(p\pi^+) < 1,36 \ \Gamma \ni B$, т.е. при увеличении величины первичной энергии в 5 раз $\sigma(\Delta^{++})$ почти не изменяется. Мы попытались оценить величину сечения рождения Δ^{++} с учетом фона. Фон для $p\pi^+$ -комбинаций вычислялся по ММ модели $^{/16/}$ в предположении отсутствия изобары Δ^{++} . При этом $\sigma(\Delta^{++})$ оказалось равным $0,78\pm0,04$ мб.

Была сделана предварительная оценка сечения инклюзивного образования К * ⁺(890) в реакции

 $\pi^{-} p \rightarrow K^{*}(890) + ...$

на основе анализа спектра эффективных масс системы $K^{\circ}_{s} \pi^{+}$. Фоновым считалось распределение по эффективным массам $K^{\circ}_{s} \pi^{+}$ -комбинаций, когда вместо K°_{s} -мезона из данного события берется K°_{o} -мезон из другого события. Ввиду малой статистики сечение оценивалось по величине разницы между экспериментальным распределением и фоновым в области резонанса. Введены поправки на рождение K°_{L} и нерегистрируемые моды распада K°_{o} и K^{*} -Сечение получилось равным

 $\sigma(\pi p \to K^{*+} + ...) = (1, 4 \pm 0, 8)$.

Мы признательны Г.И.Копылову, Е.М.Левину, М.И.Подгорецкому, В.М.Шехтеру за полезные обсуждения.

Литература

- 1. А.У.Абдурахимов, Н.Ангелов, В.А.Беляков и др. Сообщения ОИЯИ, 1-6967, Дубна, 1973.
- 2. А.У.Абдурахимов, Н.Ангелов, К.П.Вишневская и др. ЯФ, т. 18, в. 3, 545 /1973/.

- 3. А.У.Абдурахимов, Н.Ангелов, К.П.Вишневская и др. ЯФ. т. 18. в. 6, 1251 /1973/.
- 4. Н.Ангелов и др. Препринт ОИЯИ, 1-9536, Дубна, 1976.
- 5. J.D. Jackson. Nuovo Cim., 34, 1644 /1964/.
- 6. Particle Data Group. Phys. Lett., 50B /1974/.
- 7. J.Brau et al. Nucl. Phys., B99, 232 /1975/. 8. F.C. Winkelmann et al. Phys. Lett., 56B, 101 /1975/; P.Borzatta et al. Nuovo Cim., 15A, 45 /1973/.
- 9. D. Fong et al. Phys. Lett. 60B, 124 /1975/.
- 10. H.A. Gordon et al. Phys. Rev. Lett., 34, 284 /1975/.
- 11. M. Deutschmann et al. CERN/D. Ph. II/Phys., 75-29, June, 1975.
- 12. V.Blobel et al. Phys. Lett., 48B, 73 /1974/. 13. R.Singer et al. ANL-HEP-PR-75-48, Argonne, 1975.
- 14. В.Аммосов и др. Препринт ИФВЭ, М-19, Серпухов, 1975.
- 15. H.H.Bingham et al. Preprint 750527, LBL-3855, 1975.
- 16. D.S. Chernauskii et al. Preprint No. 53, Lebedev Phys. Inst., 1975.

Рукопись поступила в издательский отдел 21 мая 1976 года.