ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

A-646 4368/2-76

Н.С.Ангелов, С.Бацкович, В.Г.Гришин, Ю.Надь

множественность вторичных заряженных частиц в **π** р - и **π** - взаимодействиях при импульсе р = 40 гэв/С

1/x1 -76

P1 - 9785

P1 - 9785

Н.С.Ангелов, С.Бацкович,* В.Г.Гришин, Ю.Надь

множественность вторичных заряженных частиц в 7⁻ р - И 7⁻ п - взаимодействиях при импульсе р = 40 гэв/с

Направлено в ЯФ

* Институт физики, Белград

Monentineumal unchary

EPENIX INCORDERED

§1. Введение

В работах /1/ были получены распределения по множественности вторичных заряженных частиц в π р-н *π* п-взаимодействиях *только* по данным двухкратного просмотра стереофотографий с 2-метровой пропановой пузырьковой камеры, облученной л - мезонами с $\mathbf{p} =$ = 40 ГэВ/с. В настоящее время имеется около 8000 *п* Р - событий и ЗООО *п* п - взаимодействий, которые были полностью обработаны. Измерены все вторичные зарячастицы и (e⁺e⁻)-пары конверсии у -квантов, женные после чего эти события были еще раз просмотрены для контроля правильности измерений и идентификации типа взаимодействий и записаны на магнитную ленту суммарных результатов /ЛСР/. Кроме того, экспериментально изучены когерентные процессы, упругое рассеяние и все основные поправки, которые необходимо внести в топологические сечения после просмотра. В связи с этим представляется целесообразным снова получить топологические сечения с учетом поправок.

Во избежание неопределенности в сечениях из-за так называемых неизмеримых событий была взята только часть статистики, где процент таких событий составляет ≈1,6%. В результате для анализа использовалось ≈ 6000 π^{-} р-взаимодействий и ≈2100 π^{-} п-событий. Были также определены эффективности нахождения О-и 1-лучевых событий, которые оказались равными. $\epsilon_0 = /99,4\pm0,4/\%$ и $\epsilon_1 = /97,7\pm0,5/\%$. Для двухлучевых событий с зарегистрированным протоном - ϵ_2 (p) = $/98,5\pm0,4/\%$, без протона - $\epsilon_2 = /99,6\pm0,2/\%$.

3

§2. π р - взаимодействия

В табл. І приведены распределения всех π р-событий по множественности вторичных заряженных частиц n_+ , полученные с ЛСР /колонка 2/, а также доля событий с данными n_+ от полного их числа /колонка 3/.

В следующих двух колонках *табл*. І приведены распределения событий по n + с учетом поправок для неупругих *п* р - взаимодействий. Рассмотрены следующие поправки.

1. Введены поправки на эффективность регистрации О-и 2-лучевых звезд /см. §1/.

	100000		<i></i>	V - B3anno	деиствия пр	n p=40 195/C		
70 ₁	число звре- гист- риров соб.	Доля от всех со- бытий в Я	Число не событий том пон	еупругих Д сучё- с правок	Іоля от всех событий в \$	сечение Gn(мон)		
0	34	0,57 <u>+</u> 0,10	63	I,I4	<u>+</u> 0,14	0,24+0,03		
2	1202	20,08 <u>+</u> 0,58	767	13,91	[<u>+</u> 0,50	2,97 <u>+</u> 0,II		
4	1671	27 ,92<u>+</u>0,6 8	164 8	29,89	<u>+</u> 0,74	6,39 <u>+</u> 0,16		
6	1543	25,78 <u>+</u> 0,66	1563	28,35	5+0,72	6,06 <u>+</u> 0,16		
8	955	15 ,96± 0,52	899	16,30)+0 ,54	3,49 <u>+</u> 0,12		
10	38 3	6,40 <u>+</u> 0,33	389	7,05	5 ± 0,36	I,5I <u>+</u> 0,08		
12	I43	2,39 ±0,20	135	2,45	5 <u>+</u> 0,2I	0,52 <u>+</u> 0,04		
I4	3 8	0,63 <u>+</u> 0,10	35	0,63	3±0,II	0,14+0,02		
I 6	14	0,23 ±0,06	I 3	0,24	+0,07	0,05 <u>+</u> 0,01		
18	2	2 0,0 <u>4</u> <u>E</u> 0,0	2	0,04	+0.03	0,01 <u>+</u> 0,01		
Σ	5985	100	5514	10	00	2 1,3 8 <u>+</u> 0,16		

2. Анализ распределения протонов с $p \le 3OO M \Im B/c$ по азимутальному углу ϕ показал, что распределение не отличается от изотропного. В связи с этим поправка на "потери" протонов по ϕ не вводилась.

3. Были построены распределения (е⁺е[−])- пар конверсии гамма-квантов в зависимости от расстояния пары от звезды для всех событий с фиксированной множественностью заряженных частиц n₊. Оказалось, что имеют место "потери" (e^+e^-)-пар вблизи звезды /до 3 см/, которые считались как вторичные заряженные частицы звезды. Поправка в среднем составляет /2,6±O,7/% от полного числа гамма-квантов, зарегистрированных в эффективном объеме камеры по (e^+e^-)-парам конверсии. Учет этой поправки был проведен для каждого значения n_\pm и она составила в среднем 2,8% от полного числа событий.

4. Было также учтено, что частично пары Далица $(\pi^{\circ} \cdot e^+ + e^- + \gamma)$ не идентифицируются в пропановой пузырьковой камере и поэтому считаются вторичными заряженными пионами. На основании данных просмотра эта доля составляет $\approx 0,30$ от их полного числа. Для введения этой поправки были использованы данные по среднему числу π° -мезонов при $n_{\pm}/2^{2}$. В среднем поправка на пары Далица составляет $\approx 0,6\%$ от полного числа событий.

5. Для исключения упругих событий из 2-лучевых π^{-p} -взаимодействий использовались результаты работы $^{/3/}$ по выделению эксклюзивных реакций без нейтральных частиц в конечном состоянии. В ней было получено, что доля регистрируемых двухлучевых упругих событий составляет O,56 σ_{ef}^{π} . Значения σ_{ef}^{π} = /3,32±O,O6/ мбн

Таблица П

Яп - взаимодействия при p=40 ГэВ/с

n <u>+</u>	Число заре- гистриров. событий	Доля от всех событий в	Число неупругил событий с уче- том поправок	ц Доля от событей	всех Сечение в % б _л (мон)
I	283	I3,I3 <u>+</u> 0,78	158	9,40+0,75	I,86 <u>+</u> 0,15
3	800	37 ,I2 <u>+</u> I,3I	49 5	29,45±1,32	5,8 <u>3+</u> 0,28
5	511	23,7I+I,05	489	29,09+I,32	5,76 <u>+</u> 0,28
7	340	15,78 <u>+</u> 0,86	328	19,51±1,08	3,86 <u>+</u> 0,22
9	132	6,13 <u>+</u> 0,53	125	7,44+0,67	I,47 <u>+</u> 0,I3
II	60	2,78+0,36	58	3,45+0,45	0,68+0,09
13	23	I,07 <u>+</u> 0,22	22	I,3I <u>+</u> 0,28	0,26+0,06
15	4	0,19 <u>+</u> 0,09	4	0,24+0,12	0,05 <u>+</u> 0,03
17	2	0,09+0,07	2	0,12 <u>+</u> 0,08	0,02 <u>+</u> 0,0I
Σ	2155	100	1681	100	19,8 <u>+</u> 0,3

н $\sigma_{\text{tot}}^{\pi-p} = /24,7\pm0,15/$ мбн $^{/4/}$. В связи с этим все найденные π^-p -события с поправками /1-4/ нормировались на $\sigma_{\text{in}} + 0,56 \sigma_{e\ell} = 23,24\pm0,15$ мбн, а затем вычиталась доля упругих событий в 2-лучевых звездах $/\Delta_{\overline{2}} = 38,6\%/$.

Полученные топологические сечения для π^{-p} -взанмодействий в пределах ошибок не отличаются от $\sigma(n_{\pm})$, приведенных в работах^{/1/}. В *табл.* З приведены значёния

средней множественности $\langle n_+ \rangle$ и $\sqrt{D} = \sqrt{\langle n_+^2 \rangle} - \langle n_+ \rangle^2$ для π^- р и π^- п-взаимодействий. В связи стем, что в отобранных π^- р-взаимодействиях в пропановой камере имеется примесь взаимодействий пионов с квазисвободными протонами ядер углерода, была проведена оценка увеличения $\langle n_+ \rangle$ за счет этих взаимодействий *. С помощью метода Монте-Карло моделировались $\pi^- C^{12}$ -взаимодействия с учетом данных по π^- р -взаимодействиям $\sqrt{5}$. Далее отбирались искусственные звезды, удовлетворяющие критериям отбора π^- р-взаимодействий в пропановой пузырьковой камере: сумма зарядов вторичных частиц равнялась нулю; число протонов было О или 1 и не было

Тип взаимодействия	< n±7	VÐ	$\frac{\langle n_{\pm} \rangle}{\sqrt{\rho}}$
Х-р (все зарегист- рированные события	5,40 <u>+</u> 0,04	2,71±0,02	1,99 <u>+</u> 0,02
ж / (неупругне собы- тия с учётом поправок)	5,61 <u>+</u> 0,04 5,51 <u>+</u> 0,04 ^(*)	2,66 <u>+</u> 0,02	2,II <u>+</u> 0,02
Т (все зарегистри- рованные события)	4,56 <u>+</u> 0,06	2,68 <u>+</u> 0,03	1,70 <u>+</u> 0,03
<i>तै-п</i> (неупругие собы- тия с учетом поправок/	5,07 <u>+</u> 0,06	2,68 <u>+</u> 0,03	1,89 <u>+</u> 0,03

Таблипа Ш

ж) Значение < n_±> с учетом поправок, связанных со взаимодействиями пнонов с квазисвободными протонами ядер углерода.

* Доля взаимодействий пионов с квазисвободными протонами ядер углерода составляет 44% от всех зарегистрированных в камере *п* Р-взаимодействий. протона, летящего в заднюю полусферу в лабораторной системе координат, импульс протона $p \ge 180 M \Im B/c$. Для этих событий определено значение $\langle n_{\pm} \rangle = 5,70$. Отсюда было получено, что смещение $\Delta \langle n_{\pm} \rangle = +0,1$.

§3. п⁻п - взаимодействия

В шабл. 2 приведены распределения всех π^{-n} событий по множественности вторичных заряженных частиц n_{\pm} , полученные с ЛСР /колонка 2/, и доля событий с данным n_{\pm} от полного их числа /колонка 3/. В следующих колонках шабл. 2 приведены распределения событий по n_{\pm} с учетом поправок. Были учтены поправки, аналогичные пунктам 1-4 для π^{-p} -событий /§2/. В среднем поправка на гамма-кванты составляет $\approx 2,3\%$, на пары Далица $\approx 0,6\%$ от полного числа событий.

Для исключения когерентных событий из 1,3 и 5лучевых π п - взаимодействий использовались результаты работы $^{/4-6/}$:

$$\sigma_{\text{tot}}^{\pi^{-}n} = (23,1 \pm 0,3) \, \text{мбн}, \quad , \quad \sigma_{el}^{\pi^{-}n} = \sigma_{el}^{\pi^{-}p} = (3,32 \pm 0,06) \, \text{мбн H}$$

$$\sigma_{\text{KOF}}^{\pi^{-}C} (1 \, \text{Л}) = (1,80 \pm 0,03) \, \text{мбh}^{*}, \quad \sigma_{\text{KOF}}^{\pi^{-}C} (3 \, \text{Л}) = (3,5 \pm 0,5) \, \text{мбн}.$$

$$\sigma_{\text{KOF}}^{\pi^{-}C} (5 \, \text{Л}) = (0,37 \pm 0,08) \, \text{мбн}.$$

Все найденные т п события с поправками /1-4/

нормировались на сечение $\sigma_{in}^{\pi n} + \sigma_{KO\Gamma}(1) + \sigma_{KO\Gamma}(3) + \sigma_{KO\Gamma}(5) = 25,5+0,6$ мбн. Затем вычитались доли когерентных 1,3,5-лучевых событий, которые составили $\Delta_1 = 49,2\%$, $\Delta_3 = 37,5\%$ и $\Delta_5 = 6\%$ от 1,3,5-лучевых событий соот-

$$\sigma \left(\pi^{-} C^{12} \rightarrow \pi^{-} \pi^{\circ} \pi^{\circ} C^{12} \right) = \frac{1}{1,5} \sigma \left(\pi^{-} C^{12} \rightarrow \pi^{-} \pi^{+} \pi^{-} C^{12} \right) \quad (1).$$

Предполагалось, что

ветственно. Полученные топологические сечения для *п*⁻п-взаимодействий в пределах ошибок не отличаются от значений сечений, опубликованных в работах /1/.

Нам приятно поблагодарить сотрудников группы 2метровой пропановой камеры за полезные обсуждения и помощь в работе.

Литература

- А.У.Абдурахимов, Н.Ангелов и др. Рhys.Lett., 39В, 571, 1972; Сообщение ОНЯИ, РІ-6326, Дубна, 1972; Nucl.Phys., B52, 414, 1973; ЯФ, 16, 989, 1972.
- 2. А.У.Абдурахимов, Н.Ангелов и др. ЯФ, 17, 1235, 1973.
- 3. Н.Ангелов, Н.О.Ахабабян и др. Сообщение ОИЯИ, 1-9588, Дубна, 1976.
- 4. CERN-Serpukhov collaboration. Phys. Lett., 30B, 500, 1969; Antipov et al. Nucl. Phys., B57, 333, 1973.
- 5. В.Г.Гришин, С.М.Елисеев, Т.Я.Иногамова. ЯФ, т. 23, 191, 1976.
- 6. Н.Ангелов и др. Препринт ОИЯИ, РІ-9238, Дубна, 1975.

Рукопись поступила в издательский отдел 14 мая 1976 года.