

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

96-122

P1-96-122

Й.Главачова¹, В.В.Глаголев, А.К.Качарава², С.А.Кушпиль, Н.Б.Ладыгина, Р.М.Лебедев, А.Г.Мамулашвили², Г.Мартинска³, М.С.Ниорадзе², Б.Пастирчак⁴, Т.Семярчук⁵, Й.Урбан³, К.У.Хайретдинов⁶, М.С.Хвастунов

ИССЛЕДОВАНИЕ РЕАКЦИИ $DP \rightarrow P\pi^+NN$

Направлено в журнал «Ядерная физика»

1 Технический университет, Кошице, Республика Словакия

²Институт физики высоких энергий, Тбилисский государственный университет. Тбилиси, Грузия

- ³Университет им.П.Й.Шафарика, Кошице, Республика Словакия
- ⁴Институт экспериментальной физики Словацкой академии наук, Кошице, Республика Словакия
- 5Институт ядерной физики, Варшава, Польша

⁶Физический институт академии наук им.П.Н.Лебедева, Москва, Россия

ВВЕДЕНИЕ

В последнее десятилетие во взаимодействии нуклонов с ядрами был выявлен механизм коллективного возбуждения $\Delta(1232)$ -изобары в ядрах [1]-[2]. Этот механизм проявляется в сдвиге Δ -пика в сторону меньших энергий возбуждения, его уширении и в резком возрастании сечения на нуклон по сравнению с квазисвободным возбуждением изобары. Во взаимодействии протон-дейтрон эффекты коллективного возбуждения Δ -изобары практически отсутствуют, главным образом имеет место квазисвободное возбуждение изобары. Большой выход изобар отмечен, например, в дейтронпротонном взаимодействии в работе, посвященной ноиску $\Delta\Delta$ -компоненты в дейтроне [3]. Целью данной работы было исследование в условиях 4π геометрии влияния ферми-движения квазисвободного протона из дейтрона на параметры реакции с рождением Δ -изобары. В работе представлены результаты исследования реакции

$$d + p \to \pi^+ + p + X \tag{1}$$

при импульсе налетающего дейтрона 3,34 ГэВ/с. Работа выполнена на основе анализа 43 тысяч событий реакции (1), зарегистрированных в 100-см жидководородной пузырьковой камере Лаборатории высоких энергий Объединенного института ядерных исследований.

Ввиду малости энергии связи нуклонов в дейтропе можно полагать, что в реакции (1) взаимодействует с мишенью один из нуклонов, а другой нуклон, так называемый нуклон-спектатор, не участвует во взаимодействии. При этом процесс (1) сводится к реакциям квази-рр-столкновения

$$\begin{array}{ccc} p_d + p_t & \rightarrow & \pi^+ + p + X', \\ n_d & \rightarrow & n_s \end{array} \right\}$$

$$(2)$$

и квази-пр-столкновения

$$\begin{array}{ccc} n_d + p_t & \rightarrow & \pi^+ + X'', \\ p_d & \rightarrow & p_s, \end{array} \right\}$$

$$(3)$$

где p_d и n_d - протон- и нейтрон-снаряды, входящие в состав налетающего дейтрона, p_s и n_s - спектаторы (протон и нейтрон), p_t - протон-мишень, X' и X'' - совокупности нерегистрируемых нейтральных частиц.

На рис.1 представлен импульсный спектр вторичных протонов из реакции (1) в системе покоя налетающего дейтрона (распределение "a"). В низкоимпульсной части спектра виден четкий пик протонов-спектаторов, который обусловлен вкладом реакции (3). На том же рисунке приведен импульсный спектр протонов-спектаторов, взятый из реакции

$$d + p \to p + p + p + \pi^{-} \tag{4}$$

Рис.1. Импульсный спектр вторичных протонов в системе покоя налетающего дейтрона:

а)"——" - спектр протонов из реакции d+p→π⁺+p+X;

б)"---" - спектр протонов-спектаторов из реакции d+p→p+p+p+π⁻; в)"....." - разность спектров а) и б)

(распределение "б"), нормированный по максимуму распределения "a", и разность этих спектров ("в"). Видно, что спектр хорошо разделяется в области 0,2 ГэВ/с. Площади под участками спектра выше и ниже 0,2 ГэВ/с относятся примерно как 9/1, что практически совиадает с отношением поперечных сечений реакций типа (2) и (3) для свободных нуклонов.

Из рис.1 видпо, что в области импульсов протонов до 0,2 ГэВ/с содержится основная часть протонов-спектаторов (90%) и лишь незначительная часть (5%) - неспектаторные протоны. Отбирая для анализа события с импульсом протона, превышающим 0,2 ГэВ/с, мы практически исключаем события реакции (3), теряя при этом незначительную часть анализируемых событий.

Реакция, подобная (2), со свободным протоном-снарядом исследована в широком интервале энергии [4]. При импульсе налетающего протона около 1,6 ГэВ/с сечение этой реакции выходит на плато и до импульсов ~1,9 ГэВ/с остается примерно постоянным и составляет ~ 18 мбн [5]. В этом интервале импульсов сечение процесса с рождением двух пионов существенно подавлено. Поэтому частица X' в реакции (2) с большой вероятностью является нейтроном. В указанном интервале импульсов рождение π^+ -мезона в реакциях типа (2) и (3) происходит преимущественно через рождение и последующий распад изобары па π^+ -мезон и нуклон [1 - 5]. То есть согласно имеющимся экспериментальным данным реакция (2) протекает преимущественно следующим образом:

и

$$p_d + p_t \to \Delta^{++} + n \quad , \quad \Delta^{++} \to \pi^+ + p, \\ n_d \to n_s$$
 (5)

$$p_d + p_t \to \Delta^+ + p \quad , \quad \Delta^+ \to \pi^+ + n, \\ n_d \to n_s.$$
 (6)

Сечение реакции (6) $pp \to \Delta^+ p$ примерно в три раза пиже сечения реакции $pp \to \Delta^{++}n$. Если к тому же учесть вероятность распада $\Delta^+ \to \pi^+ n$, то придем к выводу : вклад процесса (6) не превышает 10% от вклада исследуемой реакции (5).

В свете сказанного основным предметом дальнейшего рассмотрения являются события реакции (5), причем для объяснения следствий применяемых предположений мы будем привлекать реакцию (4).

РАСЩЕПЛЕНИЕ НЕДОСТАЮЩЕЙ МАССЫ В ДЕЙТРОН-ПРОТОННОМ ВЗАИМОДЕЙСТВИИ

Нерегистрируемые нейтральные частицы X в реакции (1) - два нейтрона, из которых один является спектатором (n_s) , а второй сопровождает родившуюся Δ^{++} -изобару (в реакции(5)) или происходит от распада Δ^{+-} изобары (в реакции(6)).

На рис.2 представлено распределение педостающей массы M_x в реакции (1) в зависимости от эффективной массы $M_{\pi p}$ ($\pi^+ p$)-системы в этой реакции. Точки, отображающие экспериментальные события, распределены неравномерно, сгруппированы в двух областях, верхней и нижней. Среднее значение массы $M_{\pi p}$ заключено в пределах от 1,20 до 1,22 ГэВ/с² в обеих областях. Недостающая масса M_x в нижней области заключена в пределах от 1,88 до 1,96 ГэВ/с² и в верхней области от 2,08 до 2,20 ГэВ/с². Между этими областями отображающие точки распределены примерно с постоянной плотностью.

Факт расщепления недостающей массы M_x можно понять из анализа кипематики реакции (5). На рис. З представлены диаграммы, иллюстрирующие возбуждение $\Delta^{++}(1232)$ -изобары посредством однопионного обмена (а,в), и диаграммы импульсов (б,г) в системе центра масс реакции (5). Недостающая масса M_x определяется выражением

$$M_x^2 = 2M_{n_o}^2 + 2E_n^* E_{n_s}^* - 2p_n^* p_{n_s}^* \cos\theta^*, \tag{7}$$

где M_{n_o} - физическая масса нейтрона, $E_n^*, E_{n_s}^*$ энергии и $p_n^*, p_{n_s}^*$ - импульсы нейтронов n и n_s в системе центра масс реакции (5), $\theta^* = (\overrightarrow{p_n^*}, \overrightarrow{p_{n_s}^*})$.

. .

3

Рис.2. Распределение недостающей массы M_x в зависимости от эффективной массы $M_{\pi p}$ в реакции $d+p \rightarrow \pi^+ + p + X$

Рис.3. Диаграммы, иллюстрирующие кинематику реакции $p_d + p_t \rightarrow \Delta^{++} + n, n_d \rightarrow n_s$: а,в)диаграммы однопионного обмена; б,г)диаграммы импульсов в системе центра масс В дальнейших расчетах использовались следующие приближения:

1) протон-снаряд p_d и нейтрон-спектатор n_s в реакции (5) делят импульс налетающего дейтрона пополам и сохраняют при этом направление его движения;

2) масса протона-снаряда p_d принималась равной физической массе протона (пренебрегалось сходом протона p_d в дейтроне с массовой поверхности).

Энергия E_n^* и импульс p_n^* нейтрона, родившегося вместе с изобарой в реакции (5), определяются значением массы родившейся Δ^{++} -изобары.

В системе центра масс реакции (5) нейтрон-спектатор движется вперед в направлении падающего дейтрона. В этом случае величипа эффективной массы нейтронов зависит от направления движепия нейтропа в квазидвухчастичном процессе $p_d + p_t \to n + \Delta^{++}$ или $p_d + p_t \to \Delta^{++} + n$.

Если изобара возбуждается на протоне-мишени p_t (в протонпой вершине, см. рис.3(а,б), то угол $0 \le \theta^* \le \pi/2$; а при возбуждении изобары на протоне-снаряде p_d (в дейтронной вершине, см. рис. 3(в,г)) угол $\pi/2 \le \theta^* < \pi$.

Уравнения граничных кривых на двумерном распределении $(M_x, M_{\pi p})$ получим, подставляя значение угла $\theta^*=0$ для протонной вершины и $\theta^*=\pi$ для дейтронной вершины:

$$M_x^2(p) = 2M_{n_o}^2 + 2E_n^* E_{n_s}^* \pm 2p_n^* p_{n_s}^*, \tag{8}$$

где знак. "-" соответствует протонной вершине, а зпак "+" - дейтронной вершине. Уравнение кривой, разделяющей события из разных вершин, естественно определить из условия $\theta_n^* = \theta^* = 90^\circ$, тогда

$$M_r^2(0) = 2M_{n_0}^2 + 2E_n^* E_{n_*}^*.$$
⁽⁹⁾

Сечение рождения изобары резко надает с ростом |t'|, с ростом угла вылета изобары [1], т.е. существует значительная анизотропия вылета нейтронов (изобар) в системе центра масс сталкивающихся протонов. Поэтому в событиях из протонной вершипы угол θ^* близок к 0, а в событиях из дейтронной вершипы угол $\theta^* \sim \pi$. Поэтому случаи рождения изобары будут отображаться на двумерном распределении ($M_x, M_{\pi p}$) точками, концептрирующимися около своих граничных кривых (8), что мы и наблюдаем на рис.2. Ферми-движение протона-снаряда p_d , которое пе учитывалось нами при расчете граничных кривых, приводит к некоторому размытию в распределении отображающих точек в районе граничных кривых (см.рис.2).

Расщепление недостающей массы, подобное описанному выше, может наблюдаться также и в реакциях нуклонов с более тяжелыми (чем дейтрон) ядрами.

4

5

НЕДОСТАЮЩАЯ МАССА В КВАЗИПРОТОН-ПРОТОННОМ ВЗАИМОДЕЙСТВИИ

При исследовании квазипротон-протонного взаимодействия (5) мы вынуждены пользоваться приближением, о котором говорилось выше: импульс протопа-снаряда p_d принимаем равным половине импульса родительского дейтрона. При этом роль неучтенного нами ферми-движения протонаснаряда мы проследим на примерах распределений параметров квази-ррреакции (5) в сравнении с аналогичными распределениями для реакции (4) без нейтральных частиц.

На рис.4 представлены распределения недостающей массы (эффективной массы нейтрона) в реакции (5) для событий из протонной и дейтронной вершин. Распределения эффективной массы M_n удовлетворительно описываются гауссовыми распределениями с параметрами, приведенными в таблице 1.

Средние значения массы $\langle M_n \rangle$ в обеих вершинах близки и удовлетворительно согласуются с величиной физической массы нейтрона, а ширины Γ_{m_n} заметно различаются. Ширина распределения M_n в дейтронной вершине существенно (в 2,8 раза) больше, чем в протонной.

Рис.4. Распределение недостающей массы M_n в реакции $p_d + p_t \rightarrow \pi^+ + p + n$:

а) " о "- события из протонной вершины;

б) " * "- события из дейтронной вершины

Таблица 1.

Результаты фитирования гауссовой кривой распределений эффективной массы M_n для протонной и дейтронной вершин (реакция

 $p_d + p_t \rightarrow \pi^+ + p + n$)

e, [Параметр	$< M_n >,$ MəB/c ²	$\Gamma_{M_n}, \ { m M} { m s} { m B}/{ m c}^2$
Γ	Протонная вершина	$936,4{\pm}1,8$	$40,0\pm0,5$
	Дейтронная вершина	939,4±1,8	$113,1\pm 2,2$

В нашем эксперименте имеется возможность выполнить моделирование квазипротон-протонного взаимодействия, используя реакцию (4), 3600 событий которой были зарегистрированы в камере при том же потоке первичных дейтронов, параллельно с регистрацией событий реакции (1). Эти четырехлучевые события были фитированы (4c-FIT), что существенно снизило ошибки импульсов и углов вторичных частиц. Четырехлучевая реакция (4) может быть представлена в виде

$$\begin{array}{ccc} n_d + p_t & \rightarrow & p_1 + p_2 + \pi^-, \\ p_d & \rightarrow & p_s. \end{array} \right\}$$
 (10)

По аналогии с изучаемой реакцией мы вычисляли эффективные массы $M(p_s, p_1(p_2))$ в зависимости от эффективной массы $(\pi^- p_2(p_1))$ -комбинации и тем же способом (как для реакции (5)) разделяли события, относящиеся к протонной и дейтронной вершинам).

Все вычисления выполнялись в двух вариантах:

1) в условиях "точной" кинематики реакции (4), когда мы восстанавливали импульс нейтрона-снаряда посредством вычитания из импульса налетающего дейтрона импульса протона-спектатора, $\vec{p_{n_d}} = \vec{p_d} - \vec{p_{p_s}}$; 2) в условиях "приближенной" кинематики $\vec{p_{n_d}} = \vec{p_d}/2$, как это делалось при анализе реакции $p_d + p_t \to \pi^+ + p + n$.

Мы можем считать, что в условиях "точной" кинематики фермидвижение нейтрона-снаряда в реакции (4) учтено. При этом эффективные массы протонов в обеих вершинах получаются близкими к физической массе протона, а ширины Γ'_{mp} распределений эффективной массы протона малы и отражают ошибки кинематических величин после процедуры фитирования: $\Gamma'_{mp}(p) = (2.0 \pm 0.5) \text{ МэВ/с}^2$ и $\Gamma'_{mp}(d) = (3.0 \pm 0.5) \text{ МэВ/с}^2$.

В таблице 2 приведены результаты фитирования распределения по массе "протона" в условиях "приближенной" кинематики.

Ширины Γ_{M_p} включают вклады ферми-движения нейтрона-снаряда и вклад аппаратурного разрешения, в данном случае вклад ширины Γ'_{M} .

Таблица 2

Результаты фитирования массового распределения "протонов" в условиях "приближенной" кипематики для протонной и дейтронной вершин (реакция $n_d + p_t \rightarrow p + p + \pi^-$)

$\langle M_p \rangle$,	$\Gamma_{M_{\mathbf{p}}},$	
MəB/c ²	MəB/c ²	
$936,0{\pm}0,4$	$38,0\pm1,4$	
$940,8{\pm}0,9$	$89,4{\pm}2,9$	
	$< M_p >, \ M arrow B/c^2 \ 936,0 \pm 0,4 \ 940,8 \pm 0,9 \$	

Поскольку $\Gamma_{M_p} >> \Gamma'_{M_p}$, то в условиях "приближенной" кинематики величины ширин Γ_{M_p} (см. табл.2) отражают в основном влияние ферми-движения нейтропа-спаряда на размытие эффективной массы "протона". Это размытие различно в протонной и дейтронпой вершинах.

Из сравнения таблиц 1 и 2 видно, что величины Γ_{M_p} несколько меньше ширин Γ_{M_n} (см. табл. 1, 2), так как последние включают (кроме вклада ферми-движения) аппаратурное разрешение по недостающей массе. Однако отношения ширин $\Gamma_{M_n}(d)/\Gamma_{M_n}(p)=2,82$ и $\Gamma_{M_p}(d)/\Gamma_{M_p}(p)=2,36$ близки.

Таким образом, препебрежение ферми-движением цуклонов в дейтроне приводит к уширению распределений педостающих масс в квазинуклоннуклонных реакциях.

ВОЗБУЖДЕНИЕ ИЗОБАРЫ $\Delta^{++}(1232)$ В РЕАКЦИИ $p_d + p_t \rightarrow \pi^+ + p + n$

Известно, что в реакциях рождения изобары $\Delta(1232)$ распределение ее массы M_{Δ} сильно отличается от такового для изобары, полученной в процессе формирования. Положение массового пика в реакции рождения смещено в сторону меньших значений M_{Δ} , уменьшена ширина распределения и само распределение массы M_{Δ} изобары асимметрично [6-8]. Все эти особенности распределения M_{Δ} для реакции рождения хорошо онисываются моделью с энергетически зависимой шириной изобары [9]. В квазипротонпротонном взаимодействии ситуация осложнена ферми-движением.

На рис.5 представлена диаграмма Далитца для реакции $p_d + p_t \rightarrow \pi^+ + p + n$ (события из протонной вершины). Отображающие события точки концентрируются на диаграмме в вертикальной полосе в области $M^2_{\pi p}$,соответствующей массе Δ -изобары. На других проекциях ($M^2_{\pi p} \ M^2_{\pi p}$) подобных сгущений не наблюдается. Диаграмма Далитца для событий из дейтронной вершипы выглядит аналогично.

На рис. 6 представлены распределения по эффективной массе (π^+p) системы для событий из протонной (а) и дейтронной (б) вершин, а также кривая, рассчитанная по модели энергетически зависимой ширины(в) [9].

б) " * "- события из дейтронной вершины;

в)"---- - расчет по модели Джексона

Как видно из рисунка, экспериментальные пики смещены в сторону бо́льших значений М_{πр} относительно модельной кривой. Левые склоны пиков примерно совнадают, а правые смещены относительно модельного в сторону больших масс.

В таблице 3 представлена более подробная информация об исследуемой реакции и данные о реакции $pp \to \pi^+ pn$ из других экспериментов. В первой строке таблицы - результаты нашего расчета по модели Джексопа для реакции $pp \to \Delta^{++}n$ [9]; во второй строке - наши экспериментальные данные по реакции $p_dp_t \to \Delta^{++}n$; в третьей -экспериментальные данные по реакции $K^+p \to K^o \Delta^{++}$ [6]; в строках 4^{*}и 5-экспериментальные данные по реакции $pp \to \Delta^{++}n$ [7; 8].

Таблица 3

Экспериментальные данные о возбуждении $\Delta^{++}(1232)$ изобары

	р, ГэВ/с	$\sqrt{s} - M_n,$ M $ m B/c^2$	$M_{\Delta}(\mathbf{p}),$ M $_{2}B/c^{2}$	$\Gamma_{\Delta}(\mathbf{p}),$ M ₃ B/c ²	$\begin{array}{c} M_{\Delta} (d), \\ M_{\vartheta} B/c^2 \end{array}$	Γ _Δ (d), MэB/c ²
1	1,67	1375	1210	89	· · · · ·	· · · · ·
2	1,67	1375	$1214 \pm 0,5$	$98,0{\pm}2,1$	$1216 \pm 0,6$	$108,0{\pm}2,4$
3	1,14	1362	1212 ± 8	72 ± 13		
4	2,8	1763	1220 ± 2	77±7		
5	6,0	2688	1226 ± 4	126 ± 6		

Экспериментальные данные [6;7],как и наши, получены методикой жидководородной пузырьковой камеры; а данные [8] - на магнитном спектрометре.

Величины $M_{\Delta}(p)$ и $M_{\Delta}(d)$ - значения масс в пике массового распределения изобары, рождающейся соответственно на протоне-мишени (в протонной вершине) и на протоне-снаряде (в дейтронной вершине), а $\Gamma_{\Delta}(p)$ и $\Gamma_{\Delta}(d)$ - соответствующие значения ширин изобары в этих вершинах.

Распределения массы изобары в экспериментах на свободных протонах [6 - 8] хорошо описываются модельными кривыми Джексона, тогда как в нашем случае имеется расхождение с моделью Джексона, в которой не учитывается ферми-движение. Положение массового пика смещено в сторону бо́льших масс: от 1210 к 1214 и 1216 МэВ/ c^2 в протонной и дейтронной вершипах соответственно. Ширипа изобары изменяется более заметно, чем пиковая масса: увеличивается на 9 и 19 МэВ/ c^2 соответственно для протонной и дейтронной вершин.

Эффективная масса $M_{\pi p}$ распределена в пределах от $M_{\pi p}(min) = M_{\pi} + M_p$ до $M_{\pi p}(max) = \sqrt{s} - M_n$, где \sqrt{s} - полная энергия в системе центра масс реакции $p_d + p_t \rightarrow \Delta^{++} + n$. Значение $M_{\pi p}(max)$ для модельной

кривой равно 1375 $M \rightarrow B/c^2$, что соответствует среднему значению импульса налетающего протона p_d , равному 1,67 Г $\rightarrow B/c$.

Из-за ферми-движения распределение по \sqrt{s} размывается, что приводит к увеличению ширины изобары (см. табл.3).

На двумерном распределении рис.2 мы видели группирование событий при малых и больших M_{nn} , причем в комбинацию двух нейтронов всегда входил спектатор. Аналогичное по виду распределение получено и для реакции (4). Причем в последнем случае нижнему сгущению точек соответствует комбинация протона-спектатора с протоном-лидером (в системе покоя дейтрона), а верхнему - комбинация протона-спектатора с более медленным протоном. Распределения но эффективной массе (р π^-)-системы для этих двух сгущений имеют следующие характеристики (средние из экспериментальных гистограмм):

< M >= 1236 МэВ/с², Г=150 МэВ/с² для нижнего сгущения (протонная вершина) и

 $< M >= 1240 \text{ МэB/c}^2$, $\Gamma = 170 \text{ МэB/c}^2$ для верхнего сгущения (дейтронная вершина).

Из сравнения этих данных с результатами таблицы 3 видно, что при переходе от протонной вершины к дейтронной качественные тенденции по изменению величины и ширины эффективной массы (р π)-системы в полностью кинематически определенной реакции (4) те же самые.

Таким образом, эффекты сдвига и расширения распределений по (πp) - эффективной массе объясняются комбинированием π -мезона с протонами из различных групп (быстрые и медленные), возникновение которых в свою очередь обязано механизму квазинуклонной реакции.

ЗАКЛЮЧЕНИЕ

При исследовании реакции $d+p \rightarrow \pi^+ + p + X$ при импульсе налетающего дейтрона 3,34 ГэВ/с было обнаружено расщепление недостающей массы M_x на двумерном распределении $(M_x, M_{\pi p})$, где $M_{\pi p}$ - масса $(\pi^+ p)$ системы. Это расщепление и само распределение $(M_x, M_{\pi p})$ удовлетворительно описывается в рамках предположений: 1) исследуемая реакция является квазипротон-протонной: $p_d+p_t \rightarrow \pi^+ + p+n$ и $n_d \rightarrow n_s$, где p_t - протонмишень, p_d и n_d - протон-снаряд и нейтрон из налетающего дейтрона, n_s нейтрон-спектатор; 2) π^+ и р происходят от распада $\Delta^{++}(1232)$ -изобары.

Все экспериментальные $(\pi^+ pn)$ -события могут быть разделены на две группы, в которых

а) $\Delta^{++}(1232)$ -изобары возбуждаются на свободном протоне-мишени p_t (в протонной вершине) и

6) $\Delta^{++}(1232)$ -изобары возбуждаются на квазисвободном протоне- снаряде p_d , входящем в налетающий дейтрон (в дейтронной вершине).

Недостающая масса в квазипротон-протонной реакции, эффективная масса нейтрона M_n в этой реакции имеет разную ширину распределения Γ_{Mn} для событий из протонной ($\Gamma_{Mn}(p) = 40,0$ МэВ/с²) и дейтронной ($\Gamma_{Mn}(d) = 113,1$ МэВ/с²) вершин. Уширение распределения массы M_n обусловлено невозможностью учета ферми-движения в изучаемой реакции.

Параметры $\Delta^{++}(1232)$ -изобары (положение массового пика, ширина и форма распределения), рождающейся в разных вершинах, близки и в основном согласуются с данными, полученными в других экспериментах.

Однако имеется тенденция к сдвигу массы изобары в сторону бо́льших значений и ее уширению при переходе от протонной к дейтронной вершине, что видно также на нримере поведения (π^- р)-комбинаций из реакции $d + p \rightarrow p + p + p + \pi^-$. Эти эффекты обусловлены тем, что в (π р)-комбинации, связянные с разными вершинами, входят протоны из различных групп (быстрые либо медленные), что в свою очередь определяется динамикой квазинуклонного взаимодействия.

Отмеченные выше особенности дейтрон-протонных взаимодействий могут наблюдаться также и в периферических взаимодействиях нуклонов с более тяжелыми ядрами, когда роль спектатора выполняет ядро-остаток.

Список литературы

1. Строковский Е.А. и др. // ЭЧАЯ 1993 Т.24 С.603.

2. Мухин К.Н., Патаракин О.О.// УФН. 1995 Т.165 С.841.

3. Aladashvili B.S. et al.// Nucl.Phys. 1975 V.B89 P.405.

4. Flaminio V:et al.// CERN-NERA. 1984 84-01 CERN Geneva.

5. Ver West B.J., Arndt R.A. // Phys. Rev. 1982 V.C25 P.1979.

6. Boldt E.et al.// Phys. Rev. 1964 V.133 P.B220

7. Bacon T.C.et al.// Phys. Rev. 1967 V.162 P.1320

8. Mountz J.D. et al.//Phys. Rev. 1975 V.D12 P.1211.

9. Jackson J.D.//Nuovo Cim. 1964 V.34 P.1644.

Рукопись поступила в издательский отдел 8 апреля 1996 года.