

СООБЩЕНИЯ ОБЪЕДИНЕННОГО Института Ядерных Исследований

Дубна

P1-95-346

В.М.Артёмов, В.Н.Болотов¹, С.А.Волков¹, А.В.Восканян², Г.А.Емельяненко, Б.Ж.Залиханов, А.Ж.Кетикян², Е.В.Комиссаров, В.С.Курбатов, С.В.Лаптев¹, И.Н.Семенюк¹, В.З.Сердюк, В.В.Сидоркин, И.Н.Силин, С.В.Ященко

π, е, μ-ИДЕНТИФИКАЦИЯ НА УСТАНОВКЕ ИСТРА-М

¹ИЯИ РАН, Москва ²Ереванский физический институт, Армения

Артёмов В.М. и др.

π, е, μ-идентификация на установке ИСТРА-М

Описываются результаты изучения реакции детекторов установки ИСТРА-М (электромагнитного и адронного калориметров, мюонного годоскопа) на три типа заряженных частиц — π -мезоны, электропы и мюоны. Приводятся точностные характеристики этих детекторов. Изучение проводилось на пучке электропов (эпергия ~ 10 ГэВ) и широком пучке мюонов. π -мезоны выделялись из распада $K^- \rightarrow \pi^- \pi^0$. Приводятся значения величин π , e, μ -режекции для различных пар частиц при средней эпергии ~ 10 ГэВ.

P1-95-346

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 1995

Перевод авторов

Artemov V.M. et al. P1-95-346 π , *e*, μ -Identification on the ISTRA-M Setup

The results of the investigation of the ISTRA-M setup detector (electromagnetic and hadron calorimeter, muon hodoscope) responce for three types of charged particles — π -meson, electron and muon are described. Accuracy characteristics of these detectors are reported. The study was carried out using electron beam (energy ~ 10 GeV) and wide muon beam. $K^- \rightarrow \pi^- \pi^0$ decay was used to select π -mesons. The values of the π , e, μ -rejection for various pairs of particles at the mean energy ~ 10 GeV are obtained.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

1 Введение

При анализе результатов экспериментов в физике высоких энергий большое значение имеет идентификация типа частиц, участвующих в реакциях, распадах и т.д. В частности, это является особенно важным при изучении редких распадов K-мезонов. Если для выделения первичных частиц широко используются пороговые черенковские счетчики, то для идентификации типа вторичных заряженных частиц часто необходимы специальные детекторы. На установке ИСТРА-М имеется три таких детектора: электромагнитный калориметр, адронный калориметр и мюонный идентификатор. В данной работе проводится изучение реакции этих детекторов на три типа заряженных частиц (мюоны, π^- -мезоны и электроны).

2 Установка ИСТРА-М

Установка ИСТРА-М — это модернизированный вариант установки ИСТРА, созданной в начале 80-х годов на канале 4А ускорителя У-70 в Протвино для изучения редких мод распадов π^- - и K^- -мезонов. В середине 80-х годов на установке получен ряд интересных результатов по изучению известных и поиску новых распадов π^- - и K^- -мезонов [1]. После существенной модернизации в 1989–1992 годах установка была названа ИСТРА-М. В настоящее время ведется обработка данных с трех сеансов, проведенных в 1992 и 1994 годах. Получены первые физические результаты — были измерены параметры λ_+ , λ_0 формфакторов в распаде $K^- \to \mu^- \nu \pi^0$ [2]. На рис. 1 показана схема установки ИСТРА-М.

Пучок K⁻-мезонов выделяется черенковскими пороговыми счетчиками Č1 ÷ Č4 и сцинтилляционными счетчиками S1÷S5. Пропорциональные камеры PC1÷ PC6 и пучковый магнит BM предназначены для определения направления и уточнения импульса K⁻-мезона. За пучковыми камерами расположен распадный объем VT, окруженный восемью кольцами черенковских счетчиков охранной системы GS, распределенных вдоль трубы.

За распадным объемом имеется трековая система, состоящая из чередующихся X- и Y-плоскостей дрейфовых камер DC1÷DC16, которые служат для восстановления вершины распада и измерения углов входа вторичных частиц в спектрометрический магнит SM. Черенковский спектрометр полного поглощения SP-2 предназначен для регистрации вторичных электронов и γ -квантов, летящих под большими углами.

Траектория вторичной заряженной частицы после магнита регистрируется трековой системой, состоящей из плоскостей дрейфовых трубок DT1÷DT12. Матричный годоскоп МН предназначен для идентификации (вместе с дрейфовыми камерами и дрейфовыми трубками) пространственных треков вторичных частиц.

Черенковский спектрометр полного поглощения SP-1 определяет количество электромагнитных ливней, измеряет их энергию и координаты. Непосредствен-

Рис. 1. Установка ИСТРА-М: Č1÷Č4 — черепковские счетчики; S1÷S5 — сцинтилляционные счетчики; PC1÷PC6 — пропорциональные камеры; BM — пучковый магнит; VT — распадная труба; GS — охранная система; DC1÷DC16 — дрейфовые камеры; SP-2 — черенковский спектрометр; SM — спектрометрический магнит; DT1÷12 — дрейфовые трубки; МН матричный годоскоп; SP-1 — черенковский спектрометр; НС — адронный калориметр; µН — мюонный годоскоп.

но за спектрометром SP-1 расположен адронный калориметр HC, предназначенный для идентификации мюонов и для улучшения разделения электронов и адронов. Последним детектором установки является мюонный идентификатор μ H, отделенный от адронного калориметра железным поглотителем толщиной ~ 200 см по пучку.

Для идентификации типа вторичных частиц служат SP-1, HC и μ H, поэтому остановимся подробнее на их конструкции.

2.1 Электромагнитный калориметр

Годоскопический черенковский спектрометр полного поглощения SP-1 представляет собой матрицу 24×24 из счетчиков размером 5.2×5.2×20 см³ из свинцового стекла марки ТФ-5 с отсутствующими четырьмя центральными счетчиками в месте прохождения пучка [3]. Конструктивные особенности спектрометра, характеристики детектора и отдельных его счетчиков, способы настройки, принципы слежения за стабильностью работы, вопросы, связанные с алгоритмами калибровки, энергетической и геометрической реконструкции событий в снектрометре подробно изложены в работах [3, 4, 5]. В этих работах получены

RANJEFWERMT-CHPYON клотонадио

следующие зависимости энергетического и координатного разрешений спектрометра от энергии:

 $\frac{\sigma_E}{E} = 0.045 + \frac{0.08}{\sqrt{E}},$ $\sigma_{X,Y} = \frac{0.68 \text{ cm}}{\sqrt{E}} \cdot \exp\left(\frac{2x_0}{d}\right),$

где E — энергия электрона; x_0 — координата электрона относительно границы двух рядов счетчиков, которую пересекает ливень; d = 5.2 см — поперечный размер счетчика.

2.2 Адронный калориметр

Годоскопический адронный калориметр с апертурой 140×140 см² представляет собой детектор типа сэндвич, в котором годоскопические сцинтилляционные плоскости прослоены стальными конверторами [6].

Рис. 2. Адронный калориметр.

Калориметр разделен на семь продольных идентичных секций. В качестве конверторов используются стальные пластины с поперечным размером $140 \times 140 \text{ см}^2$ и толщиной 2 см. Каждая секция содержит шесть годоскопических плоскостей, собранных их 7 сцинтилляционных пластин длиной 140 см, шириной 20 см и толщиной (по пучку) 0.5 см. В чередующихся годоскопических плоскостях для измерения X-и Y-координат сцинтилляционные пластины располагаются перпендикулярно друг к другу. В центральной части детектора имеется сквозное отверстие диаметром 20 см для пропускания пучка (рис. 2).

3

Калибровка адронного калориметра проводилась на пучках π^- -мезонов с энергией 25 ГэВ, электронов с энергией 10 ГэВ н широком фоновом пучке мюонов [6, 7]. Сигнал от проникающего мюона в среднем соответствует энергии адрона около 1.7 ГэВ. Разрешение по энергии для адронов:

$$\frac{\sigma_E}{E} = 0.02 + \frac{0.55}{\sqrt{E}},$$

для электронов:

$$\frac{\sigma_E}{E} = \frac{0.38}{\sqrt{E}}$$

2.3 Мюонный детектор

Для регистрации мюонов предназначен расположенный в конце установки мюонный детектор μ H (см. рис. 1), который отделен от адронного калориметра железным поглотителем толщиной ~ 200 см по пучку. Толщина железа выбрана с учетом полного поглощения адронов вследствие ядерных взаимодействий и электронов вследствие радиационных потерь. Детектор представляет собой матрицу из 7 × 7 квадратных ячеек сцинтиллятора (без центральной ячейки) размером 20 × 20 × 0.5 см³, регистрирующих прохождение мюона.

3 Реакция детекторов установки на различные типы частиц

В качестве обязательного условия регистрации вторичной заряженной частицы требуется попадание ее трека в апертуры SP, HC, µH.

3.1 Мюоны

Для анализа реакции детекторов установки на прохождение мюонов использовалась информация, полученная на широком фоновом пучке мюонов, проходящем через всю установку.

Мюон при прохождении через SP-1 дает характерно малое энерговыделение в одном или двух стеклах спектрометра. Распределение по энерговыделению мюонов в SP-1 показано на рис. За. В 65% случаев мюон дает эперговыделение ниже порога (200 МэВ). На рисунке такие случаи не показаны. Вероятность дать энерговыделение больше 0.7 ГэВ — 2.2 %.

В НС мюон в большинстве случаев дает энерговыделение только в тех ячейках, через которые проходит его трек. На рис. 2 показана характерная геометрия энерговыделения в НС от мюона. Можно ввести следующие геометрические критерии, определяющие прохождение мюона через ПС:

Рис. 3. Распределения по эперговыделению в SP-1 (а) и НС (б) для мюонов.

- Срабатывание одних и тех же ячеек (рис. 2а) или, если трек переходит из одних ячеек в соседние по мере прохождения вдоль калориметра (рис. 2б), срабатывание ячеек вдоль трека. Срабатывания должны быть по меньшей мере в ияти секциях в каждой из проекций X и Y.
- Соответствне пространственного трека, измеренного трековыми детекторами, сработавшим ячейкам

В случае выполнения этих условий частице присваивается геометрический признак мюона в НС. Такой признак имеют 95% мюонов.

Распределение по эперговыделению мюонов в НС показано на рис. 36. Вероятность дать энерговыделение больше 3.0 ГэВ — 1.8 %.

Вероятность срабатывания мюонного детектора при прохождении мюона 81 %. Пеэффективность мюонного детектора обусловлена несколькими причинами. Во-первых, это неэффективность регистрации самим детектором, вовторых, часть мюонов (~ 3%) не понадает в апертуру µII из-за многократного рассеяния. Также следует учитывать тот факт, что низкоэнергетичные мюоны (энергия меньше 3 ГэВ) поглощаются в 2-х метрах железа.

3.2 Электроны

\$

Для анализа реакции установки на прохождение электронов использовалась информация, получениая на пучке электронов с энергией 10 ГэВ. Примесь мюонов в пучке составляет $\sim 20\%$. Распределение по энерговыделению электронов в SP 1 показано на рис. 4a.

4

-5

Рис. 4. Распределения по энерговыделению в SP-1 (а) и НС (б) для электронов.

Одним из критериев выделения электронов является совпадение энерговыделения в SP-1 с импульсом, определенным по магнитному спектромстру. Метод вычисления импульса описан в работах [8, 9]. Точность определения импульса в нашем случае составляет 2.5 %. Требовалось, чтобы импульс совпадал с энергией в SP-1 в пределах двух ошибок по энергии. Этому критерию удовлетворяет 95 % электронов.

При прохождении через SP-1 электрон теряет практически всю энергию. Поэтому в HC энерговыделение от электрона мало. Распределение по энерговыделению от электрона в HC показано на рис. 46. В 34% случаев электрон имеет энерговыделение ниже порога (300 МэВ). На рисунке такие случаи не показаны. Вероятность дать энерговыделение больше 2.0 ГэВ -- 2.2 %.

Для выяснения количества электронов, имеющих геометрический признак мюона в HC, строилось распределение по энерговыделению в SP-1 для частиц с таким признаком. Вводя ограничение на энергию (1 ГэВ) с целью исключения из анализа примеси мюонов, получим оценку вероятности наличия геометрического признака в HC для электрона (таблица 1).

Для срабатывания мюонного детектора пеобходимо, чтобы электроп прошел через SP-1, IIC и 2 метра железа. Вероятность такого события пренебрежимо мала. Поэтому вероятность срабатывания μ H при прохождении через установку электрона определяется уровнем случайных срабатываний μ H. Строилось распределение по энергии в SP-1 для случаев, когда сработал μ H. Исключая из рассмотрения события с энергией меньше 1 ГэВ (примесь мюонов), получим оценку вероятности срабатывания μ H для электронов (таблица 1).

Рис. 5. Распределение по импульсу π^- -мезона в системе покоя K^- -мезона.

3.3 π^- -мезоны

Для изучения реакции детекторов установки на π^- -мезоны использовался калибровочный процесс $K^- \to \pi^- \pi^0$. Распад $K^- \to \pi^- \pi^0$ выделялся из реальных данных, полученных в условиях триггера: S1·S2·S3·Č1·Č2·Č3·S5.

Отбирались события с двумя γ -квантами в SP-1 с энергией больше 1 ГэВ. Для них проводился кинематический 5С фит (гипотеза $K^- \to \pi^-\pi^0$). Для дальнейшего анализа использовались события, прошедшие фит с $P(\chi^2) > 1\%$. Основными фонами для распада $K^- \to \pi^-\pi^0$ являются распады $K^- \to \mu^-\nu\pi^0$ и $K^- \to e^-\nu\pi^0$. По нашим оценкам примесь каждого из этих распадов составляет 1.5% [9].

На стадни кинематического анализа применялся нетрадиционный подход к системе обработки данных, в котором в минимизируемом функционале фигурируют непосредственно измеренные координаты [10]. Математический аппарат, развитый в рамках этого подхода и описанный в работах [11, 12], может быть использован при минимизации функционалов со связями не только типа равенств, но и типа неравенств. При проведении кинематического фита нами использовалась новая программа минимизации регулярных функций FUMIVI, позволяющая работать с произвольными ограничениями на область изменения параметров [13].

На рис. 5 приведено распределение по импульсу π^- -мезона в системе покоя K^- -мезона для событий, прошедних 5С-фит. Характеристики распределения:

$$\langle p
angle = 0.205 \ \Gamma
i B, \quad \sigma \left(\frac{\Delta p}{\langle p
angle} \right) = 0.040$$

7

гис. О. Совместные распределения по энерговидстению в от T(a) и по (с) импульсу для π^- -мезонов.

Получены распределения по энерговыделению в SP-1 для π^- -мезонов в различных интервалах импульсов. Совместное распределение по энерговыделению в SP-1 и импульсу приведено на рис. 6а. На рис. 7а показано распределение для π^- -мезонов с импульсом в интервале 10÷12 ГэВ. В 22% случаев π^- -мезон имеет энерговыделение ниже порога (200 МэВ). На рисунке такие случаи не показаны. Можно оценить вероятность того, что π^- -мезон дает энерговыделение в SP-1 выше (или ниже) определенного порога.

В адронном калориметре π^- -мезон дает широкий ливень. При этом часть адронов может иметь в HC геометрический признак мюона. Распределение по энерговыделению в HC для π^- -мезонов с признаком мюона показано на рис. 8а. Пик в области 1.7 ГэВ — это мюоны из распада $K^- \rightarrow \mu^- \nu \pi^0$ и из распада вторичного π^- -мезона $\pi^- \rightarrow \mu^- \nu$ на пути от распадного объема до адропного калориметра. Эти мюоны необходимо исключить из анализа. Таким образом, 16 % π^- -мезонов имеют геометрический признак мюона.

Для частиц, не имеющих геометрического признака мюона в HC, построено совместное распределение по энерговыделению в HC и импульсу (рис. 66). На рис. 76 показано распределение по энерговыделению в HC для π^- -мезонов с импульсом в интервале 10÷12 ГэВ. Можно оценить вероятность того, что π^- мезон дает энерговыделение в HC выше (или ниже) определенного порога. Для изучения реакции мюонного детектора на π -мезоны было построено (см. рис. 86) распределение по энерговыделению в HC для событий, где имелось срабатывание μ H. Исключив из анализа события в пике (с энергией меньше 3 ГэВ), получим число срабатываний μ H для частиц с признаком адрона в HC.

Рис. 7. Распределения по энерговыделению в SP 1(a) и в HC (б) для π^- -мезонов с импульсом 10÷12 ГэВ.

8

9

4 π, e, μ -режекция

При анализе реакции установки на различные типы частиц мы рассматриваем следующие варианты отклика различных детекторов:

- 1. Геометрический признак мюопа в НС (условие 1) или его отсутствие (условие $\overline{1}$).
- 2. Срабатывание μ Н (условие 2) или отсутствие срабатывания (условие $\overline{2}$).
- 3. Энерговыделение в НС меньше порога (условие 3), или больше (условие 3).
- 4. Энерговыделение в SP-1 меньше 0.7 ГэВ (условие 4) илн больше 0.7 ГэВ (условие 4).
- 5. Разность между энергией в SP-1 и импульсом по модулю меньше 2-х опибок по энергии (условие 5) или больше (условие 5).

Результат изучения реакции детекторов установки можно представить в виде таблицы:

Тип вторичной частицы	μ^{-}	e^-	π^{-}
1. Геометрический признак µ в НС	0.95	$1.0 \cdot 10^{-3}$	0.16
2. Срабатывание µП	0.81	$6.0 \cdot 10^{-3}$	$1.6 \cdot 10^{-2}$
3. Энерговыделение в HC a) <3 ГэВ	0.98	0.99	0.33
б) <2 ГэВ	0.83	0.96	0.16
в) <1 ГэВ	0.08	0.88	0.03
4. Энерговыделение в SP-1 <0.7 ГэВ	0.98	0.04	0.32
5. Разность энергии в SP-1 и импульса	$1.0 \cdot 10^{-3}$	0.95	$6.0 \cdot 10^{-2}$

При выделении определенного типа частиц пеобходимо стремиться к максимальному подавлению фона при минимальном снижении эффективности регистрации выделяемого типа. Ниже приводятся пекоторые комбинации условий, накладываемых на реакцию детекторов, оптимально, на наш взгляд, удовлетворяющие этим требованиям.

В таблице 2 приведены критерии для выделения мюонов и подавления π^- -мезонов и электропов:

Таблица 2

Таблица 1

Критерий / тип	μ-	π^-	e ⁻	π/μ	e/μ
1) $1 + 3a + 4$	0.91	$1.7 \cdot 10^{-2}$	$4.0 \cdot 10^{-5}$	$1.9 \cdot 10^{-2}$	$4.4 \cdot 10^{-5}$
2) $1 + 2 + 3a + 4$	0.74	$2.7 \cdot 10^{-4}$	$2.4 \cdot 10^{-7}$	$3.7 \cdot 10^{-4}$	$3.2 \cdot 10^{-7}$

В таблице 3 приведены критерии для выделения π^- -мезонов мюонов и подавления мюонов и электронов:

Таблица З

Критерий / тип	π^{-}	μ^{-}	6-	μ/π	ϵ/π
1) $\overline{1} + \overline{2} + \overline{3}6$	0.69	$1.6 \cdot 10^{-3}$	$1.0 \cdot 10^{-2}$	$2.3 \cdot 10^{-3}$	$5.8\cdot10^{-2}$
2) $\overline{1} + \overline{2} + \overline{3}6 + \overline{5}$	0.65	$1.6 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$	$2.5 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$

В таблице 4 приведены критерии для выделения электропов и подавления мюонов и π^- -мезонов:

Таблица 4

Критерий / тип	<i>c</i> ⁻	μ^-	π-	μ/ϵ	π/ϵ
(1) $\overline{1} + \overline{2} + 5$	0.95	$1.0 \cdot 10^{-5}$	$5.0 \cdot 10^{-2}$	$1.1 \cdot 10^{-5}$	$6.2 \cdot 10^{-2}$
2) $\overline{2} + 3B + \overline{4} + 5$	0.84	$3.2 \cdot 10^{-6}$	$1.2 \cdot 10^{-3}$	$3.6 \cdot 10^{-6}$	$1.1 \cdot 10^{-3}$

5 Заключение

В работе проведено изучение реакции детекторов установки ИСТРА-М на три типа заряженных частиц. Приведенные эпергетические распределения и геометрические характеристики позволяют оценить вероятность прохождения через установку определенного типа частиц. Получены значения величии μ , π , *е*-режекции для различных пар частиц при средней эпергии ~10 ГэВ:

 $e/\mu = 4.0 \cdot 10^{-5}$ (эффективность регистрации мюонов 91%),

 $\pi/\mu = 3.7 \cdot 10^{-4}$ (эффективность регистрации мюонов 74%),

 $\mu/\pi = 2.3 \cdot 10^{-3}$ (эффективность регистрации π^- -мезонов 69%),

 $e/\pi = 3.1 \cdot 10^{-3}$ (эффективность регистрации π^- -мезонов 65%),

 $\mu/c = 1.1 \cdot 10^{-5}$ (эффективность регистрации электронов 95%),

 $\pi/e = 1.4 \cdot 10^{-3}$ (эффективность регистрации электронов 84%).

Следует отметить, что при необходимости можно достичь большего подавления фона при уменьшении эффективности.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант N95-02-05973).

Литература

[1] Phisical Review D, 1173-1826, 1994, p. 1521+1533.

[2] В. М. Артемов, В. П. Болотов, С. А. Волков и др.: Определение параметров формфакторов λ₊, λ₀ в paenade K⁻ → μ⁻νπ⁰. Преприят ОИЯИ, P1-95-330. Дубна, 1995.

- [3] В. Н. Болотов, С. Н. Гниненко, Р. П. Джилкибаев и др.: Годоскопический черенковский спектрометр полного поглощения. Препринт ИЯИ АН СССР, П-0428. Москва, 1985.
- [4] С. Н. Гниненко. Ю. М. Клубаков, В. Е. Постоев, А. П. Торопин: Калибровка 480-канального годоскопического черенковского спектрометра установки ИСТРА ИЯИ АП СССР. Препринт ИЯИ АП СССР, П-0485, Москва, 1986.
- [5] А. А. Поблагуев: Экспериментальное изучение радиационного распада пиона $\pi^- \to e^- \nu \gamma$. Диссертация на соискание ученой степени кандидата физикоматематических наук, Москва, 1994 г.
- [6] В. Н. Болотов, С. А. Волков, О. П. Гаврищук и др.: Годоскопический адронный калориметр с продольным секционированием. Препринт ИЯИ-802/93, Москва, 1993
- [7] С. А. Волков, В. К. Семенов: Мюонная калибровка годоскопических счетчиков адронного калориметра установки ИСТРА. Препринт ИЯИ АН СССР, 801/93, Москва, 1993.
- [8] A. D. Volkov, A. V. Voskanian, O. G. Voskerchian et al.: Method for the calculation of charged particle momentum in magnetic spectrometers. Nucl. Instr. and Meth. A306 (1991) 278.
- [9] В. М. Артемов, В. Н. Болотов, А. Д. Волков и др.: Калибровка спектрометрического магнита установки ИСТРА-М на физическом процессе. Дубна, P10-94-521, 1994.
- [10] A. J. Ketikian, E. V. Komissarov, V. S. Kurbatov, I. N. Silin, Generalised kinematical fit in event reconstruction. Nucl. Instr. and Meth. A314 (1992) 572.
- [11] A. J. Ketikian, E. V. Komissarov, V. S. Kurbatov, I. N. Silin, New algorithm for minimizing χ² functionals with constraints. Nucl. Instr. and Meth. A314 (1992) 578.
- [12] A. J. Ketikian, V. S. Kurbatov, I. N. Silin, New minimization algorithm with constraints. Proceedings of the International Conference on Computing in High Energy Physics'92, Geneva, 1992, p.833.
- [13] V. S. Kurbatov, I. N. Silin: New method for minimizing regular functions with constraints on parameter region. Nucl. Instr. and Meth. A345 (1994) 345.

Рукопись поступила в издательский отдел 27 июля 1995 года.