

СООБЩЕНИЯ Объединенного института ядерных исследований

Дубна

95-293

P1-95-293

В.М.Карнаухов

ОСОБЕННОСТИ МЕЗОННОЙ СТРУКТУРЫ $K (1627) \rightarrow K_{s}^{0} \pi^{+} \pi^{-}$, СПОСОБЫ ИХ ВЫЯВЛЕНИЯ

В π р-взаимодействиях при 16 ГэВ/с в 6 спектрах эффективных масс систем К-мезона с π -мезонами зарегистрирована узкая структура с параметрами, полученными при обработке суммарного спектра: М= (1627±4) МэВ/с², Г=(12⁺¹⁴) МэВ/с². В суммарном спектре 10 стандартных отклонений в области структуры над фоном. Компилятивный анализ результатов работ по исследованию резонансных состояний странных мезонов в других экспериментах не противоречит полученному указанию на существование К(1627)-мезона, в области 1,63 ГэВ/с² спектров масс Кля-систем наблюдается узкий выброс [1]. Выяснение вопроса о существовании физического эффекта было продолжено.

Любой физический эффект имеет свои определённые свойства. Если наблюдаемый в виде структуры в спектре эффективных масс эффект - частица или резонанс, некоторые его свойства связаны с механизмом образования и распада. Эти свойства могут проявиться в особенностях кинематических распределений для событий из области структуры, отличающих её от других интервалов спектра масс [2+5]. Πo аналогии с парциально-волновым анализом (затруднительным при ограниченной статистике или распадах с большой множественностью) прокинематически не скоррелированных с общим явление особенностей. количеством событий в области структуры, может стать дополнительным тестом для отличия физического эффекта от статистического вывыясняющим детали образования и распада изучаемой структуброса, ры. Эвентуальный подход к анализу даёт возможность отражения в одном распределении нескольких свойств каждого отдельного события из области структуры, учитывая одновременно кинематически не скоррелированные между собой особенности образования и распада [3+5].

Если в п р-взаимодействиях при 16 ГэВ/с действительно наблодается физический эффект, интерпретируемый в [1] как К(1627)-мезон, то можно ожидать проявления его свойств, связанных с механизмом образования и распада, в особенностях кинематических распределений для событий из области структуры. Поиск этих особенностей был проведен на том же экспериментальном материале (использованном в [1]) с двухметровой водородной пузырьковой камеры ЦЕРН в п р-взаимодействиях при 16 ГэВ/с. В работе показаны результаты и методика поиска.

1. В $\pi^- p$ -взаимодействиях при 16 ГэВ/с структура проявляется в шести спектрах эффективных масс: $K_S^0 \pi^+ \pi^-$, $K_S^0 \pi^+ \pi^+ \pi^- \pi^-$, $K^+ \pi^+ \pi^- \pi^-$, $K^- \pi^- \pi^+ \pi^+$ (четырёхлучевые события с зарегистрированным K_S^0 -мезоном) и $K^+ \pi^+ \pi^-$, $K^+ \pi^- \pi^-$ (четырёхлучевые события с зарегистрированным Λ гипероном). В настоящей работе анализировался основной, статисти-

чески наиболее значимый, канал распада К(1627)→К⁰л⁺л⁻, составляющий 42% суммарного эффекта.

Система $K_{S}^{0}\pi^{+}\pi^{-}$ -частиц изучалась на материале 1684 четырёхлучевых событий с зарегистрированным, однозначно идентифицированным K_{S}^{0} -мезоном

$$\pi_{\mathbf{I}}^{-}\mathbf{p}_{\mathbf{I}} \rightarrow K_{\mathbf{S}}^{0}\mathbf{h}^{+}\mathbf{h}^{+}\mathbf{h}^{-}\mathbf{h}^{-}\mathbf{X}^{0}, \qquad (1)$$

где π_{I} , p_{I} — первичные сталкивающиеся частицы, h^{+} , h^{-} – вторичные заряженные частицы, X^{0} — улетевшие, не зарегистрированные в камере, нейтральные частицы. События с неразделёнными K_{S}^{0}/Λ -частицами не рассматривались, так как более 80% из них – события с Λ -гиперона-ми. Поправки на потерю этих событий учитывались при расчёте сечений [1].

Так же как и при поиске известных резонансов $K^{\pm\pm}(892) \rightarrow K_S^{0}\pi^{\pm}$, зарегистрированных на этом экспериментальном материале [2,3], при изучении спектра эффективных масс системы $K_S^{0}\pi^{\pm}\pi^{-}$ заряженным частицам в расчётах приписывалась масса π^{\pm} -мезонов (с учётом визуальной оценки ионизации на треках в каждом конкретном событии). По ионизации считалось возможным разделить π^{\pm} , K^{\pm} -мезоны с импульсами до 0,7 ГэВ/с, π^{\pm} , K^{\pm} -мезоны от протона – до 1,3 ГэВ/с. В четырёхлуче-вых событиях с K_S^{0} идентифицировано по ионизации протонами 11%, K^{\pm} -мезонами – 3,5%, π^{\pm} -мезонами – 24% всех положительно заряженных частиц. Из всех отрицательно заряженных частиц идентифицировано по ионизации К⁻-мезонами 2,5%, π^{-} -мезонами – 21%. Высокоэнергичные заряженные частицы, которые нельзя было идентифицировать по ионизации, при построении спектра масс $K_S^{0}\pi^{+}\pi^{-}$ -системы принимались за π^{\pm} -мезоны.

Для повышения надёжности полученных результатов введено ограничение на точность измеренных импульсов вторичных частиц. Из анализа были исключены вторичные частицы с относительной ошибкой импульса Δp/p≥10% (для вторичных частиц в эксперименте <Δp/p>=2,5%).

В спектре масс $K_{S}^{0}\pi^{+}\pi^{-}$ -системы, показанном на рис.1 сплошной линией, в области (1160+1560) МэВ/с² наблюдается широкий максимум, соответствующий области масс известных широких резонансов [6]. Уз-кая структура в области (1600+1680) МэВ/с² соответствует предполагаемому К(1627)-мезону. Вероятность случайного статистического выброса в области структуры на интервале (1520+1760) МэВ/с² составляет Р $\approx 2 \cdot 10^{-3}$, статистическая значимость структуры – 4,6 стандартных отклонений над фоном [1]. Отношение.сигнал/фон равно 0,27. Комбинаторный фон (отношение количества комбинаций к числу собы-

тий) в области структуры равен 1,12, средний вес комбинаций с $K_s^0 \rightarrow \pi^+\pi^-$ равен 1,10. Среднее экспериментальное разрешение эффективных масс в области структуры равно 14 МэВ/с².

Процессы с образованием системы $\kappa_{
m S}^0\pi^+\pi^-$ можно записать как

$$\pi_{1}^{-}p_{1} \rightarrow (K_{s}^{0}\pi_{1}^{+}\pi_{1}^{-})h_{2}^{+}h_{2}^{-}x^{0}, \qquad (2)$$

где π_1^+, π_1^- заряженные частицы, входящие в любую рассматриваемую комбинацию $K_S^0 \pi^+ \pi^-$, в предположении π^+, π^- -мезонов (с учётом оценки ионизации на треках), h_2^+, h_2^- заряженные частицы, сопровождающие образование системы (рассматриваемой комбинации), x^0 – улетевшие незарегистрированные нейтральные частицы. В четырёхлучевом событии с κ_S^0 максимально возможны четыре комбинации $K_S^0 \pi_1^+ \pi_1^-$, но во многих событиях их меньше из-за несоответствия ионизации на треках заряженных частиц задаваемым гипотезам или недостатка.точности измерений коротких треков (см. выше).

Проверялось предположение о том, что в π^- р-взаимодействиях при 16 ГэВ/с в процессах (2) сопровождающая образование рассматриваемой комбинации $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$ частица h_{2}^{+} является протоном. Из спектра масс, показанного на рис.1 сплошной линией, исключались комбинации $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$ с частицей h_{2}^{+} , идентифицированной по ионизации как π^{+} или $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$ с частицей h_{2}^{+} , идентифицированной по ионизации как π^{+} или $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$ с частицей h_{2}^{+} , идентифицированной по ионизации как π^{+} или K_{S}^{+} . В этом случае значимость пика в интервале (1600+1680) МэВ/с² уменьшается на 25%. Нет противоречия тому, что структура образуется в сопровождении K^{+} или π^{+} .

По-видимому, как свидетельствуют остальные каналы распада К(1627) и процессы, в которых они проявляются (см. выше), К(1627) в п р-взаимодействиях при 16 ГэВ/с большей частью образуется в процессах с перезарядкой нуклона. При анализе результатов опубликованных работ по исследованию резонансных состояний странных мезонов в других экспериментах [1] также отмечено, что в процессах с нуклонной перезарядкой особенность в области массы 1,63 ГэВ/с² спектров Клл-систем проявляется более отчётливо.

Проверялось предположение о том, что в процессах (2) сопровождающая образование комбинации $K_S^0 \pi_1^+ \pi_1^-$ частица h_2^- является К⁻-мезоном. Из спектра масс, показанного на рис. 1 сплошной линией, исключались комбинации $K_S^0 \pi_1^+ \pi_1^-$ с частицей h_2^- , идентифицированной по ионизации как π^- -мезон. В этом случае значимость пика уменьшается на 38%. Нет противоречия тому, что структура образуется в сопровождении π^- .

На рис. 1 пунктиром показан спектр масс К $_{S}^{0}n^{+}n^{-}$ -системы в пред-

положении того, что в процессах (2) сопровождающая образование комбинации $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$ отрицательная частица h_{2}^{-} является π^{-} -мезоном (с учётом оценки ионизации на треках). Значимость структуры не изменилась. Процессы с образованием К(1627) можно записать как

$$\pi_{I}^{-}p_{I} \rightarrow K(1627)h_{2}^{+}\pi_{2}^{-}X^{0}, \qquad (3)$$
$$K(1627)\rightarrow K_{s}^{0}\pi_{1}^{+}\pi_{1}^{-}.$$

Изучение системы $K_{S}^{0}\pi^{+}\pi^{-}$ показало, что распределения по эффективным массам для всех других возможных гипотез о заряженных частицах этой трёхчастичной системы с учётом оценки ионизации на треках (с заменой масс пионов в расчётах массами частиц K^{\pm} , р, \tilde{p}) не имеют статистически значимых особенностей и приводят к исчезновению пика, а не к его сдвигу. Структура сохраняет значимость при проверке отражений $K^{\pm\pm}(892)$ -резонансов. Анализ показал отсутствие каскадных распадов структуры. Структура не является продуктом распада каких-либо других резонансов, выявление которых возможно на данном экспериментальном материале. Не найдено указания на совместное рождение структуры с другими возможными резонансами.

2. В [1] отмечалось, что изучаемая структура образуется в области π^- р-взаимодействий, близкой к центральной. Было сделано предположение о том, что процессы с К(1627) (как и с узкой барионной структурой R(3520) [2÷5]) проявляются в π^- р-взаимодействиях с повышенной неупругостью. Повышение неупругости адронных столкновений сопровождается повышением значений четырёхмерных импульсов, передаваемых от сталкивающихся частиц вторичным. В отличие от процессов с R(3520) нет указаний на квазидвухчастичность процессов с К(1627). Возможно поэтому не наблюдается заметной асимметрии между распределениями по квадратам четырёхмерных импульсов, переданных системе $K_S^0 \pi^+ \pi^-$, для событий из области структуры и соседних боковых интервалов.

Для выяснения характера неупругости процессов с К(1627)- $\kappa_S^0 \pi^+ \pi^-$ был рассмотрен эффект лидирования, фрагментационного образования вторичных частиц, тождественных сталкивающимся, проявляющийся в периферических столкновениях.

В работе [7] в этом же эксперименте ($\pi^{-}p$ -взаимодействия при 16 ГэВ/с) изучался эксклюзивный канал реакции $\pi^{-}p \rightarrow p\pi^{+}\pi^{-}\pi^{-}\pi^{0}$. Было показано, что π^{+} , π^{0} -мезоны в основном образуются в области пионизации, в центральной области $\pi^{-}p$ -взаимодействий при 16 ГэВ/с. Протоны в основном образуются в области фрагментации мишени, π^{-} - мезоны – как в области пионизации, так и в области фрагментации первичных π^- мезонов. При близких средних значениях поперечных импульсов этих частиц средний продольный импульс протонов в С Ц М. π^- р-взаимодействий имеет большую отрицательную величину, средний продольный импульс π^- мезонов имеет положительную величину, значительно бо́льшую, чем средние продольные импульсы π^+ , π^0 -мезонов. Показано, что с уменьшением множественности пионов в изученных эксклюзивных каналах реакций эффект фрагментационного характера образования протонов и π^- мезонов увеличивается. Сделано заключение о существовании лидирующих фрагментационных частиц – протонов и π^- мезонов. Это интерпретируется как доказательство того, что две сталкивающиеся частицы (в данном случае р и π^-) имеют тенденцию к сохранению своего заряда, направления движения и первоначальной энергии [7].

Аналогичные результаты при больших статистиках были получены в многочисленных работах, изучавших инклюзивные процессы во взаимодействиях различных частиц с разными энергиями, (см., например, обзор Д.Р.О. Моррисона, [8]). Эффект лидирования, фрагментационного образования в основном вторичных частиц, тождественных сталкивающимся, проявляется в мягких взаимодействиях при малых переданных этим частицам четырёхимпульсах. Как один из примеров, в [8] приведены распределения инклюзивных дифференциальных сечений образования π^+, π^- -мезонов в π^\pm р-взаимодействиях при 16 ГэВ/с по величине $x=p_{L}^*/p_{max}^*$, где p_{L}^*, p_{max}^* – продольный и максимальный импульсы π^+, π^- -мезонов в С Ц М π^- р-взаимодействия. Во фрагментационной области пучка сечение образования пионов того же заряда, что и налетающие, значительно больше сечения образования пионов противоположного заряда. Выделяются процессы с фрагментационным образованием частиц, тождественных налетающим.

В различных теоретических моделях адронных взаимодействий этот эффект имеет свои интерпретации. С феноменологической же точки зрения процессы с этим эффектом называют процессами с "малой" [9] или "ограниченной" [10] неупругостью. Эффект лидирования, фрагментационного образования частиц, тождественных сталкивающимся, интерпретируется как следствие относительно малой неупругости адронных взаимодействий с малыми передаваемыми этим частицам четырехимпульсами. Соответственно, взаимодействия с образованием частиц, тождественных сталкивающимся, в центральной области, по-видимому,

более неупруги. Следовательно, вторичные частицы, тождественные сталкивающимся, можно рассматривать как индикаторы степени неупру-

4

Рис. 1. Распределение взвешенных комбинаций по эффективным массам $\kappa_{\rm S}^0 \pi^+ \pi^-$ -системы. Сплошная линия – полное распределение. Пунктир – распределение в предположении того, что в процессах (2) сопровождающая образование комбинации $\kappa_{\rm S}^0 \pi_1^+ \pi_1^-$ отрицательная частица h_2^- яв-ляется π^- -мезоном (см. текст)

Рис. 2. Распределения π^+ , π^- мезонов по величине X_F . Сплошная линия — распределение π^- мезонов, пунктир — распределение π^+ -мезонов. Взвешенное количество π^- мезонов в распределении — 3588, π^+ -мезонов нов — 3047. Разница обусловлена большим процентом идентифицированных по ионизации малоэнергичных протонов и K^+ -мезонов по сравнению с K^- мезонами (см. текст)

6

гости адронных столкновений. Сильное изменение первоначального направления и импульса у этих частиц, большие переданные им четырёхмерные импульсы указывают на процессы с повышенной неупругостью.

Как и в других процессах п р-взаимодействий при 16 ГэВ/с [7], в четырёхлучевых событиях с образованием κ_s^0 -мезона вторичные $\pi^$ мезоны отличаются от π^+ -мезонов более высокими значениями продольных импульсов. В таблице 1 показаны средние поперечные и продольные импульсы в С Ц М π^- р-взаимодействий ($\langle p_T \rangle$ и $\langle p_L^* \rangle$) для заряженных частиц в предположении π^+ , π^- -мезонов (с учётом оценки ионизации на треках). В пределах ошибок средние поперечные импульсы π^+ , π^- -мезонов одинаковы, средний продольный импульс у π^- -мезонов намного больше, чем у π^+ -мезонов. В лабораторной системе средний импульс $\langle p \rangle$ у π^- -мезонов намного больше, чем у π^+ -мезонов; средний угол отклонения направления π^- от направления пучка $\pi_1^ <\Theta(\pi_1^-,\pi^-)>$ меньше, чем $<\Theta(\pi_1^-,\pi^+)>$ (табл. 1).

На рис. 2 показаны распределения п⁺, п⁻-мезонов по переменной $x_{F}=2p_{L}^{*}/\sqrt{S}$, где p_{L}^{*} продольный импульс π^{+} , π^{-} -мезонов в С Ц М π^{-} р -взаимодействий, VS - полная энергия пр-взаимодействий. По сравнению с п⁺-мезонами относительно большая часть п⁻-мезонов образуется в области фрагментации пучка (рис.2) и имеет меньший квадрат четырёхмерного переданного импульса от налетающего π_{I} -мезона (таблица 1). Изъятие из п⁺-мезонного спектра на рис.2 части высокоэнергичных частиц, среди которых есть неидентифицированные по ионизации протоны и К⁺-мезоны, усиливает эффект, разницу в спектрах по переменной X_{F} для π^{-} и π^{+} -мезонов, так как высокоэнергичные частицы соответствуют области фрагментации пучка в спектре по Х_г для положительно заряженных частиц в предположении п⁺-мезонов. Среди высокоэнергичных отрицательно заряженных частиц есть неидентифицированные по ионизации К-мезоны. Оценка по ионизации (см. раздел 1) показала, что К⁻мезонов в процессах с образованием к⁰ значительно меньше, чем К⁺-мезонов и протонов.

Разница в спектрах по $X_{\rm F}$ и в приведенных средних значениях параметров π^+ , π^- -мезонов указывает на то, что (как и в процессах без странных частиц) в π^- р-взаимодействиях при 16 ГэВ/с в четырёхлучевых событиях с образованием $\kappa_{\rm S}^0$ выделяются процессы с фрагментационным образованием частиц, тождественных налетающим. Эти процессы, по-видимому, имеют относительно меньшую неупругость по сравнению с другими, а вторичный π^- -мезон можно использовать как индикатор степени неупругости взаимодействий для выделения процессов с относительно большей или меньшей неупругостью.

Таблица 1

Средние	значения	параметров	вторичных	π+		π-мезонов
---------	----------	------------	-----------	----	--	-----------

частица	<р _т > МэВ/с	<р <u>*</u> > МэВ/с	<р> МэВ/с	<ө(n ₁ , n [±])> рад.	$<-t(\pi_{I}^{-}\pi^{\pm})>$ $(\Gamma \ni B/c)^{2}$
π ⁺	346±4	86±9	1955±35	0,368±0,007	2,57±0,05
π	354±4	238±9	2526±41	0,298±0,006	2,05±0,04

Таблица 2

Средние значения параметров π_2^- мезона, сопровождающего образование системы $\kappa_{S}^{0} \pi_{1}^{+} \pi_{1}^{-}$, для процессов в отдельных интервалах спектра масс системы

Интервал ГэВ/с ²	<р _т (π ₂)> Мэв/с	$< p_{L}^{*}(\pi_{2}^{-}) >$ M3B/C	$<\cos\theta^{*}(\pi_{1},\pi_{2})>$	$\langle -t(\pi_{I} \rightarrow \pi_{2}) \rangle$ (F)B/C) ²
1,52÷1,60	350±13	228±30	0,266±0,037	2,09±0,13
1,60÷1,68	363±13	131±26	0,124±0,034	2,45±0,13
1,68÷1,76	339±12	195±31	0,256±0,038	2,19±0,16

Рассмотрены распределения поперечных и продольных импульсов вторичных п -мезонов в С. Ц М п р-взаимодействий по интервалам спектра масс системы $K_S^0 \pi^+ \pi^-$. В таблице 2 приведены средние значения $\mathbf{p}_{\mathbf{T}}$ и $\mathbf{p}_{\mathbf{L}}^{\star}$ для отрицательных частиц $\mathbf{h}_{\mathbf{2}}^{-}$ в предположении π^{-} мезонов (обозначения в (2),(3)), сопровождающих образование комбинаций $\kappa_{s}^{0}\pi_{1}^{+}\pi_{1}^{-}$, в области изучаемой структуры и в соседних симметричных боковых интервалах по 80 МэВ/с² из спектра масс, показанного пунктиром на рис. 1. Для комбинаций из области структуры значение $< p_L^*(\pi_2) >$ заметно меньше, чем в боковых интервалах, значения p_T(n_2) > мало отличаются. Это отражается на распределениях по величине Соз $\theta^*(\pi_{I}^-,\pi_{2}^-)$ в С Ц М π^- р-взаимодействий, где $\theta^*(\pi_{I}^-,\pi_{2}^-)$ угол между направлениями первичного п_-мезона и п_-мезона, сопровождающего образование системы $\kappa_s^0 \pi_1^+ \pi_1^-$. Среднее значение величины $\cos \theta^*(\pi_1,\pi_2)$ для комбинаций из интервала структуры меньше, чем в соседних симметричных боковых интервалах того же размера (табл. 2). В области структуры, по сравнению с боковыми интервалами, относительно меньшая часть π_2^- мезонов направлена в полусферу первичного п₁. Соответственно, среднее значение квадрата четырёхмерного переданного импульса от первичного π_{I}^{-} мезона π_{2}^{-} мезону (частице, тождественной налетающей, сопровождающей образование системы $K_{s}^{0}\pi_{1}^{+}\pi_{1}^{-}$) в области изучаемой структуры больше, чем в боковых интервалах (табл. 2). Вероятно, это является указанием на относительно большую неупругость процессов с образованием К(1627).

Проверка показала отсутствие подобных особенностей для K_{S}^{0} , π_{1}^{+} , π_{1}^{-} , h_{2}^{+} -частиц. Анализ, ограниченный невозможностью выделения отдельных нейтральных улетевших частиц из системы X^{0} , показывает, что K(1627) не является продуктом распада какого-либо резонанса, в частности, в системе $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}\pi_{2}^{-}$. Не найдено указания на совместное рождение K(1627) с другими возможными резонансами, продуктом распада которых является π_{2}^{-} . По-видимому, действительно, рассмотренные характеристики π_{2}^{-} -мезонов указывают на относительно большую неупругость процессов с образованием K(1627).

На рис. За сплошной линией показано распределение π_2^- мезонов по величине X_F для комбинаций из области структуры, пунктиром – среднее взвешенное распределение π_2^- по X_F из соседних симметричных боковых интервалов по 80 МэВ/с². На рис. Зб показана разность этих распределений. Сопровождающий образование К(1627) π_2^- мезон в основном направлен в полусферу мишени в С Ц М π^- р-взаимодействий и образуется в области -0,2 $\leq X_F(\pi_2^-) < 0$.

На рис. 4а представлено распределение коэффициента асимметрии

Рис.3. а) Распределения π_2^- -мезонов, сопровождающие образование комбинаций $K_S^0 \pi_1^+ \pi_1^-$, по величине X_F . Сплошная линия – распределение для комбинаций из области структуры (1,60+1,68) ГэВ/с². Пунктир – среднее взвешенное распределение для комбинаций из интервалов (1,52+1,60) ГэВ/с², (1,68+1,76) ГэВ/с². б) Разность этих распределений.

Рис. 4. Распределения коэффициента асимметрии A=(B-F)/(B+F) по интервалам спектра масс $K_5^0 \pi_1^+ \pi_1^-$ -системы. Для каждого распределения показан способ разделения комбинаций по группам F и B в зависимости от направления π_2^- -мезона, сопровождающего образование системы, в С Ц М $\pi^- p$ -взаимодействий и от значения величины $\delta \theta_T$, характеризующей углы между поперечными импульсами частиц, входящих в систему (см. текст). Пунктир – результаты аппроксимации распределений без интервала (1,60+1,68) ГэВ/с² функцией (4). Показаны фрагменты распределений для области структуры и соседних симметричных боковых интервалов того же размера A = (B-F)/(B+F) по интервалам спектра эффективных масс $K_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$, где F – количество взвешенных комбинаций с π_{2}^{-} -мезоном, направленным в полусферу первичного π_{1}^{-} -мезона (в С Ц М π^{-} р-взаимодействий), В – в полусферу мишени. Значение А в области К(1627) выделяется из обшего распределения. Аппроксимация методом наименьших квадратов спектра без области структуры (пунктир на рис. 4а) функцией вида

$BG(M) = C(3) + C(1) \cdot M + C(2) \cdot M^{2}, \qquad (4)$

где М – эффективная масса, С(i) – подбираемые параметры, характеризуется значениями $\chi^2(5)=2,32$, CL=0,81. Аппроксимация всего спектра, включая область структуры, приводит к $\chi^2(6)=17,65$, CL= 0,007. При аппроксимации спектра прямой получаются близкие результаты. С учётом ошибок отклонение величины А в области структуры от средней взвешенной величины А, вычисленной по соседним симметричным боковым интервалам того же размера, характеризуется значениями $\chi^2(1)=22,3$, CL= $2,1\cdot10^{-6}$. Вероятность такого случайного статистического выброса [11] на интервале 240 МэВ/с² в одной из трёх ячеек по 80 МэВ/с² равна: Р \approx CL-3 \approx 0,6·10⁻⁵.

Кинематически значения параметра А не скоррелированы с количеством комбинаций в отдельных интервалах спектра масс. Обнаруженная особенность в области структуры, по-видимому, указывает на то, что К(1627) образуется в процессах с повышенной неупругостью.

3. Был проведен поиск возможных особенностей распада К(1627)- $\kappa_S^0 \pi^+ \pi^-$. При изучении импульсных и угловых распределений отдельных частиц – продуктов распада, их корреляций между собой (аналогичных корреляциям в [3+5]) заметных особенностей для комбинаций из области структуры по сравнению с другими интервалами спектра масс $\kappa_S^0 \pi^+ \pi^-$ не найдено. Нет указаний и на каскадный распад структуры. Но если К(1627) – действительно физический эффект, некоторые его свойства связаны с механизмом распада, и можно ожидать их проявления в особенностях кинематических распределений, отличающих интервал структуры от других интервалов спектра масс.

Двухчастичные корреляции иногда изучаются в терминах параметра асимметрии

$$A = [N(\theta_{\pi} > \pi/2) - N(\theta_{\pi} < \pi/2)] / [N(\theta_{T} > \pi/2) + N(\theta_{T} < \pi/2)], \qquad (5)$$

где Ө_Т — угол между поперечными импульсами двух частии, N — количество комбинаций (12+14). Зависимость коэффициента асимметрии А от эффективной массы M пар *п*-мезонов $\pi^+\pi^-$ и $\pi^{\pm}\pi^{\pm}$ исследовалась в *п*-р-взаимодействиях при 40 ГэВ/с [14]. По всей совокупности событий зависимость величины A от M($\pi\pi$) для $\pi^+\pi^-$ и $\pi^{\pm}\pi^{\pm}$ была примерно одинакова. Но при разности быстрот $\Delta y \le 0,2$ и разности поперечных импульсов $\Delta p_{T} \le 0,2$ ГэВ/с в распределении величины A по интервалам спектра масс $\pi^+\pi^-$ для комбинаций из области массы ρ^0 -мезона наблюдалась особенность. По результатам анализа был сделан вывод о возможном влиянии образования ρ^0 - мезона на распределение углов между поперечными импульсами π^+ , π^- -мезонов [14].

Похожий анализ был выполнен в $\pi^- p$ -взаимодействиях при 16 ГэВ/с для $\kappa_S^0 \pi^+ \pi^-$ -системы. По всей совокупности событий из спектра, показанного пунктиром на рис. 1, анализировались распределения величины $\delta \theta_T$ по интервалам спектра масс $\kappa_S^0 \pi_1^+ \pi_1^-$ (обозначения в (2)):

$$\delta \theta_{\rm T}^{=} [\theta_{\rm T}(K_{\rm S}^{0} \pi_{1}^{-}, \pi_{1}^{+}) - \theta_{\rm T}(K_{\rm S}^{0} \pi_{1}^{+}, \pi_{1}^{-})] / [\theta_{\rm T}(K_{\rm S}^{0} \pi_{1}^{-}, \pi_{1}^{+}) + \theta_{\rm T}(K_{\rm S}^{0} \pi_{1}^{+}, \pi_{1}^{-})], \qquad (6)$$

где $\theta_{\mathbf{T}}(\mathbf{K}_{\mathbf{S}}^{0}\pi_{\mathbf{1}}^{-},\pi_{\mathbf{1}}^{+})$ - угол между поперечными импульсами системы $\mathbf{K}_{\mathbf{S}}^{0}\pi_{\mathbf{1}}^{-}$ и $\pi_{\mathbf{1}}^{+}$ -мезона, $\theta_{\mathbf{T}}(\mathbf{K}_{\mathbf{S}}^{0}\pi_{\mathbf{1}}^{+},\pi_{\mathbf{1}}^{-})$ - угол между поперечными импульсами системы $\mathbf{K}_{\mathbf{S}}^{0}\pi_{\mathbf{1}}^{+}$ и $\pi_{\mathbf{1}}^{-}$ -мезона, $\pi_{\mathbf{1}}^{+},\pi_{\mathbf{1}}^{-}$ - заряженные частицы, входяшие в рассматриваемую комбинацию из спектра масс, в предположении π^{\pm} -мезонов. Углы между поперечными импульсами вторичных частиц – величины инвариантные в лабораторной системе и в системе центра масс сталки-вающихся частии. Соответственно, инвариантна и величина $\delta\theta_{\mathbf{T}}$. Анализ показал, что в большей части комбинаций из интервала масс К(1627) по сравнению с другими интервалами спектра угол между поперечными импульсами системы $\mathbf{K}_{\mathbf{S}}^{0}\pi_{\mathbf{1}}^{+}$ и $\pi_{\mathbf{1}}^{-}$ -мезона больше, чем угол между понеречными импульсами системы $\mathbf{K}_{\mathbf{S}}^{0}\pi_{\mathbf{1}}^{-}$ и $\pi_{\mathbf{1}}^{+}$ -мезона.

Отражением распределений величины $\delta\theta_{\rm T}$ является распределение коэффициента асимметрии A=(B-F)/(B+F) по интервалам спектра масс K_S⁰π⁺π⁻₁-системы (рис. 4б), где F - количество взвешенных комбинаций с $\delta\theta_{\rm T}^{\geq 0}$, B - с $\delta\theta_{\rm T}^{< 0}$. Значение A в области K(1627) выделяется из общего распределения. Аппроксимация методом наименьших квадратов спектра без области структуры (пунктир на рис. 4б) функцией (4) характеризуется значениями $\chi^2(5)=2,93$, CL=0,71. Аппроксимация всего спектра, включая область структуры, приводит к $\chi^2(6)=15,11$, CL =0,02. С учётом ошибок отклонение величины A в области структуры от средней взвешенной величины A, вычисленной по соседним симметричным интервалам того же размера, характеризуется значениями $\chi^2(1)=9,92$, CL=1,7·10⁻³. Вероятность такого случайного статистического выброса на интервале 240 мэB/c² в одной из трёх ячеек по 80 МэB/c² равна: Р ≈ CL·3 ≈ 5·10⁻³. Кинематически значения параметра А не скоррелированы с количеством комбинаций в отдельных интервалах спектра масс. Обнаруженная особенность в области структуры, по-видимому, является отражением свойств К(1627), связанных с механизмом распада.

4. Эвентуальный подход к анализу через параметр асимметрии А даёт возможность использовать в одном распределении несколько свойств каждого отдельного события из области структуры [3+5]. Рис. 4в иллюстрирует этот способ, учитывающий одновременно направление π_2^- мезона, сопровождающего образование системы $K_s^0 \pi_1^+ \pi_1^-$, и значение величины $\delta \theta_T$, в которую входят параметры K_s^0 , π_1^+ , π_1^- -частиц. На рис. 4в показано распределение коэффициента асимметрии А= (B-F)/(B+F) по интервалам спектра масс К₂⁰π⁺₁π⁻₁, где F - количество взвешенных комбинаций с π_2^- мезоном, направленным в полусферу налетающего п_т-мезона в С Ц М п р-взаимодействий, и величиной δθ_п≥0, В - количество взвешенных комбинаций с п2-мезоном, направленным в полусферу мишени и величиной $\delta \theta_m < 0$. Аппроксимация методом наименьших квадратов распределения без области структуры (пунктир на рис. 4в) функцией (4) характеризуется значениями χ^2 (5)=1,3 , CL= 0,93. Аппроксимация всего распределения, включая область структуры, приводит к $\chi^2(6)=30,0$, CL=4·10⁻⁵. С учётом ошибок отклонение величины А в области структуры от средней взвешенной величины А, вычисленной по соседним симметричным боковым интервалам того же размера, характеризуется значениями: χ^2 (1)=30,1 , CL=3·10⁻⁸. Вероятность такого случайного статистического выброса на интервале 240 МэВ/с² в одной из трёх ячеек по 80 МэВ/с² равна : Р≈ $CL \cdot 3 \approx 1 \cdot 10^{-7}$.

Таким образом, в событиях из области структуры в спектре масс $\kappa_g^0 \pi^+ \pi^-$ -системы обнаружена особенность угловых распределений, которая, по-видимому, является отражением свойств структуры, связанных с механизмом её образования и распада. Вероятность случайной статистической флуктуации в области структуры по сравнению с соседними симметричными боковыми интервалами того же размера составляет $1 \cdot 10^{-7}$. Кинематически особенность не скоррелирована с общим количеством событий в области структуры. Проявление особенностей образования и распада, кинематически не скоррелированых между собой, в событиях из области структуры подтверждает указания на существование К(1627)-мезона с малой шириной, полученные в [1].

5. Обнаруженная особенность образования К(1627) даёт возможность ввести ограничения на отбор комбинаций в спектр эффективных масс $K_{S}^{0}\pi^{+}\pi^{-}$ и значительно уменьшить фон. Для этого можно использовать распределения по квадрату четырехмерных переданных импульсов, угловые и импульсные распределения в С Ц М π^{-} р-взаимодействий для π^{-}_{2} -мезона – частицы, тождественной налетающей и сопровождающей образование К(1627) $K_{S}^{0}\pi^{+}_{1}\pi^{-}_{1}$. В частности, выше показано, что структура в основном образуется в области -0,2 $\leq X_{F}(\pi^{-}_{2}) < 0$.

При постановке целевого электронного эксперимента для снижения фона удобно было бы ввести в триггерную систему ограничения для одного из вторичных π -мезонов по значениям величин в лабораторной системе, не требующих дополнительных расчётов. Например, можно использовать значения импульса $p(\pi_2)$ или угла отклонения от направления пучка $\theta(\pi_1, \pi_2)$.

Как и следовало ожидать из результатов анализа, показанных в табл.2, в лабораторной системе импульсный спектр π_2^- мезонов в области структуры мягче, чем в боковых интервалах спектра масс $\kappa_S^0 \pi_1^+ \pi_1^-$, значения угла отклонения направления π_2^- мезонов от направления пучка выше. Средние значения этих величин в области структуры равны: $<p(\pi_2^-)>=(2176\pm118)$ МэВ/с, $<\Theta(\pi_1^-,\pi_2^-)>=(0,338\pm0,017)$ рад. Средние взвешенные значения этих величин, вычисленные по соседним симметричным боковым интервалам того же размера, что и интервал структуры, равны: $<p(\pi_2^-)>=(2446\pm96)$ МэВ/с, $<\Theta(\pi_1^-,\pi_2^-)>=(0,302\pm0,014)$ рад. Оценка показала, что К(1627) образуется в области распределений этих величин:

$$p(\pi_2) < 1800 \text{ M} \Rightarrow B/C,$$
 (7)
 $\theta(\pi_1, \pi_2) \ge 0.24 \text{ pag.}$ (8)

Введение ограничения (7) на отбор комбинаций в спектр масс $K_S^0 \pi^+ \pi^-$ (рис.1, пунктир) уменьшает фон в области структуры на 48% (рис.5а), введение ограничения (8) уменьшает фон на 62% (рис.5б). Использование обоих ограничений снижает фон в области структуры на 68%.

Спектр эффективных масс $K_S^0 \pi^+ \pi^-$ с ограничениями (7),(8) показан сплошной линией на рис. 6а. Отклонение количества комбинаций в области пика (1600÷1680) МэВ/с² от среднего взвешенного количества комбинаций, вычисленного по соседним симметричным боковым интервалам в 80 МэВ/с². характеризуется величинами $\chi^2(1)=29,0$, CL= 5,4·10⁻⁸. Вероятность случайной статистической флуктуации равна Р≈ 1,6·10⁻⁷. Соответственно, отклонение в области провала (1520÷ 1600) МэВ/с² приводит к $\chi^2(1)=29,1$, CL=5,1·10⁻⁸, Р≈1,5·10⁻⁷.

Рис.5. Распределения взвешенных комбинаций по эффективным массам $K_S^0 \pi^+ \pi^-$ -системы. а) Распределение с ограничением (7), б) распределение с ограничением (8) (см. текст)

Рис. 6. Распределения взвешенных комбинаций по эффективным массам $\kappa_{\rm S}^0 \pi^+ \pi^-$ -системы. а) Сплошная линия – распределение с ограничениями (7),(8). Пунктир – нормированное на площадь этого распределения фоновое распределение. б) Фоновое распределение, полученное введением в спектр, показанный на рис. 1 пунктиром, ограничений, про-тивоположных ограничениям (7),(8) (см. текст)

Методом наименьших квадратов с шагом 20 МэВ/с² проведена аппроксимация функцией (4) участка спектра масс на интервале (1520+ 1760) МэВ/с² с исключением пика. Аппроксимация характеризуется величинами $\chi^2(5)=2,9$, CL=0,7. В предположении нулевой гипотезы [11] количество стандартных отклонений в области пика над фоном равно 8,2, отношение сигнал/фон равно 0,9.

Введение в спектр масс $K_{S}^{0}\pi^{+}\pi^{-}$, показанный на рис.1 пунктиром, ограничений ($p(\pi_{2}) \ge 1800$ МэВ/с и $\theta(\pi_{1}^{-},\pi_{2}^{-}) < 0,24$ рад.), противоположных ограничениям (7),(8), приводит к распределению на рис.6б. По-видимому, это распределение можно рассматривать как фоновое по отношению к распределению с ограничениями (7),(8). Нормированное на площадь спектра с ограничениями (7),(8). Нормированное на площадь спектра с ограничениями (7),(8). фоновое распределение отражено на рис.6а пунктиром. Статистические ошибки в отдельных интервалах фонового распределения на рис.6а вычислялись с учётом нормировочного коэффициента $\Delta(n_{1}^{H}) = k \cdot (\Delta n_{1})$. В предположении нулевой гипотезы количество стандартных отклонений в области пика из распределения с ограничениями (7),(8) над фоном равно 8,3.

Аналогично процедуре в работе [3], пик в спектре масс $\kappa_{S}^{0}\pi^{+}\pi^{-}$ с ограничениями (7), (8) (показанном на рис.6а сплошной линией) проверен в представлении спектров эффективных масс других возможных гипотез о конечном состоянии заряженных частиц. Для событий из области пика (с учётом оценки ионизации на треках заряженных частиц в каждом конкретном событии) были построены спектры масс возможных конкурентных гипотез о трёхчастичном конечном состоянии с κ_{S}^{0} -мезоном. Все спектры широкие. Аппроксимация спектров функцией (4) (проверка на "гладкость") не выявляет внутри их статистически значимых особенностей.

После введения ограничений (7),(8), использующих особенность образования К(1627) в л⁻р-взаимодействиях при 16 ГэВ/с, и уменьшения количества фоновых комбинаций в области структуры (рис. 6а) снова проводилась проверка на существование каскадного распада. Указаний на каскадный распад К(1627) (выделенных по массе промежуточных состояний в лл.Кл~системах) не найдено.

Если ограничения (7), (8), использующие только особенность образования К(1627), вычёркивают из спектра масс $K_{s}^{0}\pi^{+}\pi^{-}$ фоновые комбинации, для оставшихся комбинаций в интервале структуры спектра с ограничениями, показанного на рис. 6а сплошной линией, должна наблюдаться особенность распада, зарегистрированная ранее (рис. 4б) и кинематически не скоррелированная с особенностью образования. Действительно, значение параметра асимметрии А в области структуры, отражающего особенность распада К(1627) (особенность угловых распределений между поперечными импульсами продуктов распада (6)), выделяется из общего распределения (рис. 7а), построенного для спектра с ограничениями (7),(8). Значение параметра А в области структуры увеличилось с 0,155±0,052 (рис. 4б) до 0,313±0,073 (рис. 7а). Увеличение статистических ошибок в распределении связано с уменьшением статистики.

Аналогичное распределение параметра А по интервалам спектра масс (рис.7б) построено для вычеркнутых фоновых комбинаций, находящихся в спектре на рис.6б. Здесь значение величины А в области структуры равно 0,013±0,073 и в пределах ошибок не выделяется из общего распределения.

Пунктиром на рис. 7а и 7б показана аппроксимация методом наименьших квадратов функцией (4) распределения без области структуры. Аппроксимация распределения, показанного на рис. 7а, с исключением и включением области структуры характеризуется соответственно величинами $\chi^2(5)=3,8$, CL=0,58 и $\chi^2(6)=20,5$, CL= $2,3\cdot10^{-3}$. Значение последней величины на порядок меньше, чем найденное ранее, до введения ограничений (рис. 46). Аппроксимация распределения на рис. 76 приводит к величинам $\chi^2(5)=1,86$, CL=0,87 (без области структуры) и $\chi^2(6)=2,6$, CL=0,86 (с областью структуры). Отклонение величины A в области структуры от средней взвешенной величины A, вычисленной по соседним симметричным боковым интервалам того же размера, характеризуется вероятностью случайной статистической флуктуации для распределения P=0,96.

Следовательно, ограничения (7),(8), использующие особенность образования К(1627), вычёркивают из спектра масс К $_{\rm S}^0 \pi^+ \pi^-$, показанного на рис.1 пунктиром, действительно фоновые комбинации.

6. Процессы с образованием К(1627) можно записать как

$$\bar{\pi_{I}} p_{I} \rightarrow K(1627) \bar{\pi_{2}} B^{+},$$
 (9)

где К(1627)-К $_{S}^{0}\pi_{1}^{+}\pi_{1}^{-}$, π_{2}^{-} - частица, тождественная налетающей, сопровождающая образование К(1627), В⁺ - барионная система, сопровождающая образование К(1627), включающая в себя положительно заряженную частицу h_{2}^{+} и Х⁰ - улетевшие незарегистрированные в камере нейтральные частицы. В составе барионной системы В⁺ должна быть одна странная частица. В спектрах масс В⁺, Х⁰ для комбинаций из области структуры нет указаний на какие-либо резонансные состояния, выде-

16

Рис. 7. Распределения коэффициента асимметрии A=(B-F)/(B+F) по интервалам спектра масс $K_S^0 \pi_1^+ \pi_1^-$ -системы. F - количество взвешенных комбинаций с $\delta \theta_T \gtrsim 0$, B - с $\delta \theta_T < 0$. Величина $\delta \theta_T$ характеризует углы между поперечными импульсами частиц, входящих в систему. Пунктир - результаты аппроксимации распределений без интервала (1,60÷ 1,68) ГэВ/с² функцией (4). Показаны фрагменты распределений для области структуры и соседних симметричных боковых интервалов того же размера. а) Распределение для комбинаций из спектра на рис. 6а с ограничениями (7),(8). б) Распределение для комбинаций из фонового спектра на рис. 66 ленные по массе. Нет указаний на квазидвухчастичность процессов (9). Спектр масс В⁺ охватывает интервал (1600÷3800) МэВ/с² с положительными значениями квадратов недостающих масс, что свидетельствует о допустимости процессов (9).

Введение ограничений (7),(8) предполагало выделение процессов с повышенной неупругостью. В таблице 3 показаны средние значения квадратов четырёхмерных импульсов, переданных от сталкивающихся частиц π_2^- мезону и системам B⁺ и $K_0^s \pi_1^+ \pi_1^-$, для комбинаций из интервала масс структуры в распределении на рис.6а (включающем в себя процессы с образованием К(1627)) и в распределении на рис.6б (содержащем только фоновые процессы). Действительно, в процессах, включающих в себя процессы с образованием К(1627), средние значения квадратов четырёхмерных импульсов, переданных от первичного π_1^- мезона частице, тождественной налетающей, сопровождающей образование структуры, и от протона – барионной системе B⁺, намного выше, чем в фоновых процессах. Средние значения квадратов четырёхмерных импульсов, переданных от тервичного выше, чем в фоновых процессах. Средние значения квадратов четырёхмерных импульсов, переданных от первичного выше, чем в фоновых процессах.

Изучаемые процессы можно записать как $\pi_{I}^{+} p_{I} \rightarrow M^{-} b^{+}$, где $M^{-} \rightarrow K_{S}^{0} \pi_{I}^{+} \pi_{I}^{-} \pi_{2}^{-}$, $B^{+} \rightarrow h_{2}^{+} X^{0}$. Квадрат четырёхмерного импульса, переданного от пучка мезонной системе M^{-} , равен квадрату четырёхмерного импульса, переданного от мишени барионной системе B^{+} . В табл. 3 показано, что в процессах, включающих процессы с образованием К(1627), среднее значение квадратов переданных B^{+} -системе четырёхмерных импульсов намного больше, чем в фоновых процессах. Соответственно, такой же результат и для M^{-} . Следовательно, К(1627) образуется в процессах с повышенной неупругостью.

Для выяснения характера неупругости процессов можно использовать и коэффициент неупругости $K=(E(0)-E(\pi^-))/E(0)$, определяемый как доля полной энергии E(0) взаимодействующих частиц, ушедшая на образование новых частиц [15]. Здесь $E(\pi^-)$ – энергия вторичного π^- мезона, если в процессе образуется один π^- . Если в процессе образуется один π^- . Если в процессе образуется несколько π^- мезонов, $E(\pi^-)$ – энергия самого быстрого π^- . В табл. 4 показаны средние значения коэффициента неупругости < K' >, вычисленные для процессов из интервала (1,60+1,68) ГэВ/с² в распределениях на рис. 6а и 6б с использованием энергия π_2^- мезона, сопровождающего образование системы $K_8^0 \pi_1^+ \pi_1^-$. Средние значения коэффициента < K' > вычислены с использованием энергии самого быстрого из двух π^- -мезонов.

Поскольку в указанном интервале из распределения на рис.6а есть фоновые комбинации и комбинации с К(1627), а отношение сиг-

18

Таблица з

Средние значения квадратов четырёхмерных импульсов, переданных от сталкивающихся частиц вторичным, для процессов в интервале (1,60÷1,68) ГэВ/с² спектра масс $K_{\rm g}^0 \pi^+ \pi^-$: из распределения с эффектом (рис.6а, сплошная линия) и из распределения с фоновыми процессами (рис.66)

Спектр масс К _S ⁰ π ⁺ π ⁻	$<-t(\pi_1^-\pi_2^-)>$ $(\Gamma \ni B/c)^2$	$<-t(p_I \rightarrow B^+)>$ $(\Gamma \ni B/c)^2$	$<-t(\pi_{I}^{-}\kappa_{s}^{0}\pi_{1}^{+}\pi_{1}^{-})>$ $(\Gamma \ni B/c)^{2}$
с эффектом	3,79±0,20	6,71±0,32	5,30±0,29
фоновый	1,24±0,11	4,34±0,24	5,95±0,28

Таблица 4

Средние значения коэффициентов неупругости для процессов в интервале (1,60+1,68) ГэВ/с² спектра масс $K_{S}^{0}\pi^{+}\pi^{-}$: из распределения с эффектом (рис.6а, сплошная линия) и из распределения с фоновыми процессами (рис.6б)

Спектр масс К ⁰ π ⁺ π ⁻	< K'>	< K">	< K >
с эффектом	0,955±0,002	0,839±0,010	0,894±0,006
фоновый	0,798±0,010	0,766±0,010	0,766±0,010

нал/фон составляет 0,9, оценка среднего значения коэффициента неупругости < К > для процессов в этом интервале распределения на рис. 6а проводилась взвешиванием величин < К > и < К > с соответствующими весами эффекта и фона. Для рассматриваемого интервала в распределении на рис. 6б величина < К > равна < К >, так как здесь наблюдаются только фоновые процессы. Полученные оценки средних значений коэффициента неупругости < К > показывают, что К(1627) образуется в процессах с повышенной неупругостью.

Аналогичные результаты, свидетельствующие о разделении процессов по неупругости, получены для событий из других интервалов спектров эффективных масс, показанных на рис. 6а и 6б.

Таким образом, в рамках существующего формализма подхода к неупругости адронных столкновений показано, что К(1627) действительно образуется в процессах с повышенной неупругостью, по-видимому, в центральных столкновениях. Разделение процессов по неупругости возможно ограничением значений импульса частицы, тождественной налетающей, и угла отклонения направления той же частицы от направления налетающей в лабораторной системе.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

1. В $\pi^- p$ -взаимодействиях при 16 ГэВ/с в четырёхлучевых событиях с идентифицированным K_S^0 -мезоном анализировался основной, статистически наиболее значимый, канал распада К(1627)- $K_S^0 \pi^+ \pi^-$, заре-гистрированный ранее [1]. Влияния кинематических отражений известных физических эффектов на появление структуры в спектре масс $K_S^0 \pi^+ \pi^-$ не найдено. Анализ похазал отсутствие каскадных распадов.

2. В соответствии с результатами [2+5] в работе сформулирована мысль о том, что, если наблюдаемая в спектре эффективных масс структура – частица или резонанс, то некоторые её свойства связаны с механизмом образования и распада. Эти свойства могут проявиться в особенностях кинематических распределений для событий из области структуры, отличающих её от других интервалов спектра масс. Проявление подобных особенностей, кинематически не скоррелированных с общим количеством событий в области структуры, может стать дополнительным тестом для отличия физического эффекта от статистического выброса, выясняющим детали образования и распада изучаемой структуры.

В работе проведен поиск особенностей структуры К(1627)-К⁰_Sπ⁺π⁻, связанных с механизмом её образования и распада, отличающих собы-

тия из области структуры от событий из других интервалов спектра эффективных масс $K_{s}^{0} \pi^{+} \pi^{-}$ -системы.

3. Из результатов многочисленных опубликованных работ по изучению инклюзивных и эксклюзивных процессов в различных взаимодействиях частиц следует, что вторичные частицы, тождественные сталкивающимся, можно рассматривать как индикаторы степени неупругости адронных столкновений и использовать их для разделения процессов по неупругости.

В π^- р-взаимодействиях при 16 ГэВ/с при анализе распределений параметров частицы, тождественной налетающей, сопровождающей образование $K_S^0 \pi^+ \pi^-$ -системы, обнаружена особенность в области изучаемой структуры, указывающая на то, что К(1627) образуется в процессах с повышенной неупругостью.

4. По результатам изучения двухчастичных корреляций в π^- рвзаимодействиях при 40 ГэВ/с авторами работы [14] был сделан вывод о возможном влиянии образования ρ^0 -мезона на распределение углов между поперечными импульсами π^+ , π^- -мезонов.

Похожий анализ выполнен в $\pi^- p$ -взаимодействиях при 16 ГэВ/с. При изучении распределений углов между поперечными импульсами частиц, входящих в систему $K_S^0 \pi^+ \pi^-$, обнаружена особенность в области изучаемой структуры, которая, по-видимому, является отражением свойств, связанных с механизмом распада К(1627).

5. Эвентуальный подход к анализу через параметр асимметрии A отражает в одном распределении существование обеих обнаруженных особенностей изучаемой структуры, кинематически не скоррелированных между собой. Особенность образования и распада кинематически не скоррелирована с общим количеством событий в области структуры. Оценка вероятности случайного появления особенности, связанной с механизмом образования и распада, в области изучаемой структуры спектра масс $K_{\rm S}^0 \pi^+ \pi^-$ по сравнению с соседними симметричными боковыми интервалами того же размера даёт значение $1 \cdot 10^{-7}$. Этот и другие результаты работы подтверждают указания на существование K(1627)-мезона с $\Gamma = (12_{-12}^{+14})$ МэВ/с², полученные в [1].

6. Особенность образования К(1627) дала возможность ввести ограничения в спектр масс $K_S^0 \pi^+ \pi^-$ и значительно уменьшить фон. Проверка с использованием особенности распада показала, что из спектра вычеркнуты фоновые комбинации. В соответствии с формализмом подхода к неупругости адронных столкновений показано, что К(1627) действительно образуется в процессах с повышенной неупругостью, по-видимому, в центральных столкновениях. Разделение процессов по неупругости возможно ограничением значений импульса частицы, тождественной налетающей, и угла отклонения направления той же частицы от направления налетающей в лабораторной системе.

7. Предложенные способы выявления особенностей образования и распада К(1627), способы разделения процессов по неупругости, вероятно, можно использовать при выяснении вопросов о существовании других физических эффектов и при постановке целевых электронных экспериментов для выделения процессов в центральных или периферических столкновениях частиц.

Автор благодарит ЦЕРН за предоставленную возможность обработки фотоснимков облучения π^- -мезонами при 16 ГэВ/с двухметровой водородной пузырьковой камеры. За полезные обсуждения на разных этапах работы автор благодарен В.И.Морозу, Н.Ангелову, Э.Г.Бубелеву, Ф.А.Гарееву, А.П.Иерусалимову.

Литература

- Карнаухов В.М., Кока К., Мороз В.И., Сообщение ОИЯИ Р1-95-187, Дубна, 1995.
- 2. Karnaukhov V.M. et al., Phys. Lett., 1992, B281, 148.
- 3. Карнаухов В.М. и др., Препринт ОИЯИ Р1-93-121, Дубна, 1993; ЯФ, 1994, 57, 841.
- 4. Карнаухов В.М., Сообщение ОИЯИ Р1-93-375, Дубна, 1993.
- 5. Карнаухов В.М., Кока К., Мороз В.И., ЯФ, 1995, 58, 860.
- Particle Data Group, Review of particle properties, Phys. Rev., 1994, D50, 1173.
- 7. Honecker R. et al., Nucl. Phys., 1969, B13, 571.
- 8. Morrison D.R.O., CERN/D.Ph.II/Phys 72-19, 1972.
- 9. Roberts R.G., Proceedings of the Seventh finnish summer school in physics, Loma-Koli, Finland, 119, 1972.
- 10. Дрёмин И.М., Квигг К., УФН, 1978, 124, 535.
- 11. Eadie W.T. et al., Statistical Methods in Experimental Physics, North-Holland, Amsterdam, 1971.
- 12. Bromberg G. et al., Phys. Rev., 1974, D9, 1864.
- 13. Ranft G. et al., Nucl. Phys., 1975, B86, 63.
- 14. Ангелов Н. и др., Препринт ОИЯИ Р1-10177, Дубна, 1976.
- 15. Абдурахимов А.У. и др., Препринт ОИЯИ Р1-7680,

Дубна, 1974; ЯФ, 1974, 20, 954.

Рукопись поступила в издательский отдел 5 июля 1995 года.