

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

P1-95-289

В.В.Белага, А.И.Бондаренко¹, Д.А.Каршиев¹, Е.Н.Кладницкая, А.А.Кузнецов, М.М.Муминов (мл.), Г.П.Тонеева, Г.М.Чернов, Б.С.Юлдашев¹

ФРАГМЕНТАЦИОННЫЕ ХАРАКТЕРИСТИКИ РЕЛЯТИВИСТСКОГО ЯДРА УГЛЕРОДА ПРИ ЕГО ВЗАИМОДЕЙСТВИИ С ВОДОРОДОМ

Направлено в журнал «Ядерная физика»

Институт ядерной физики АН Узбекистана, Ташкент

1 Введение

Появление ускорителей тяжелых нонов на релятивистские опергии в 70-е годы открыло перед вкспериментальной физикой возможность изучать в цетанах процесс фрагментации ядер при малых передачах им онергии-импульса. При регистрации осколков от расщепления ядер, имеющих околосистовые скорости в набораторной системе (л.с.), какие-либо пороговые ограничения отсутствуют, что сильно облегчает также идентифыкацию осколков с любыми массами и/или зарядами. Изучение фрагментации релятивистских ядер-спарядов стало в последнее время одним из популярных направлений в области релятивистской ядерной физики.

Пастоящая работа посвящена изучению общих характеристик фрагментации ядра углерода-12 на свободном водороде при перничном импульсе $p_0 = 4.2$ l'oB/с на пуклон. Подобные работы, число которых крайне невелико, дают информацию о ряде характеристик протон-ядерных воаммодействий в антилабораторной системе координат (а.л.с.), трудно (или вовсе не) измеряемых в экспериментах с ядрами, покоящимися в л.с. Фрагментационные характеристики релативистских ядер при их воаммодействиях с водородом представляют также исключительный интерес для одной из важных проблем астрофизики - прохождения потоков частиц через межовездную среду.

2 Об отборе соударений с водородом из (С—С₃H₈)взаимодействий

Экспериментальный материан, использованный для отбора ${}^{12}C - II$ взаимодействий, состоял из 39465 неупругих взаимодействий ядер углерода ${}^{12}C$ при $p_0 = 4.2$ ГоВ/с на нуклон, ускоренных на сипхрофавотроне ЛВЭ ОИЯИ, с рабочим веществом (пропан, C_3II_8) двухметровой пронановой пусырьковой камеры ЛВЭ ОИЯИ. Эти взаимодействия были получены в течение ряда лет Международным сотрудничеством по обработке ядро-ядерных соударений с помощью указанной камеры; детали экспериментов можно найти в работах [1 - 3]. В работе [4] мы провсии исследование основных характеристик фрагментации ${}^{12}C$ при их

нсупругих взаимодейстниях с ядрами, входящими в состав пронана, на полном окснериментальном материале, накопленном к настоящему времени. В этой же работе были описаны детали выполненных измерений, методика выделения спектаторных фрагментов ядра-спаряда, разделение одноварядных фрагментов на протоны, дейтроны и тритоны (p, d, t соответственно) и другие методические особенности эксперимента с двухмстровой пропановой пувырьковой камерой.

Важное вначение для целей натоящей работы имсет методика выделения событий на водороде из полного набора взаимодействий с мишенью сложного состава. Ках известно, совершенно строгих "рецентов" выделения столкновений с мишенью определенного типа в таких случаях не существует вследствие больших флуктуаций в характеристиках процессов множественного рождения частиц и фрагментации ядер. Тем не менее методология такого разделения рассматривалась и использовалась в ряде работ; для окспериментов с двухметровой пропановой пузырьковой камерой критерии отбора событий на углероде и водороде мишени рассматривались, в частности, в работах [5, 6].

В работе [5] для выделения СС - всаимодействий из (С--С₃H₈)- событий, сарегистрированных в пропановой камере, были предложены следующие критерии отбора:

- n₊'-n₋ > z_c + 1 = 7. Здесь n₊(n₋) число положительных (отрицательных) частиц в событии, z_c - варяд ядра ¹²C. Критерий 1 очевидное следствие вакона сохранения влектрического варяда в соударении.
- 2. $n_p(\theta > \pi/2) > 0$, где n_p число протонов в событии; вылет протона отдачи в переднюю полусферу обязательное следствие кинематики *pp*-соударения.
- п_p(p_{па5} < 0.75 ГоВ/с) > 1. Это неравенство следствие малой вероитности образования > 1 "мецленного" протона в СП - соударении при рассматриваемой первичной энергии.
- 4. *n*₋ > 2. Это неравенство следствие эмпирического рассмотрения имеющихся экспериментальных данных по *pC* соударениям в а.л.с.

5. $m_t = \sum_i (\varepsilon_i - p_i \cos \theta_i) > \cos t \cdot m_p$. При суммировании по всем вторичным частицам const = 1 и неравенство переходит в равенство $(m_t \cdot \text{масса мишени}, m_p - \text{масса протона})$ для рр-соударений (критерий Биргер-Смородина). Цля отбора СС-соударений оначение const в последнем неравенстве должно быть выбрано на основе опытных данных. В работе [5] было выбрано вначение const = 1.1; однако в [6] было показано, что критерий 5 при отом оначении постоянной работает крайне неоффективно, "пропуская" большое количество СШ-- событий. Па основании данных [6] разумное оначение отой постоянной должно быть увеличено до ~ 1.5.

Несколько иной набор критериев разделения ядро-ядерных и ядропротонных соударений был предложен в работе [7] (см. также ссылки в ней). Два из них (точнее, их аналоги) не были использованы в [5, 6]. Это - следующие критерии:

- 6. Q < z_c 2. Здесь Q суммарный варяд "сохранившейся" (снектаторной) части ядра-снаряда. Это неравенство - следствие быстро уменьшающейся всроятности реаливации рС-соударения с увеличением числа *v* нуклонов ядра-мишени, принимающих участие во вваимодействии.
 - 7. $Q + n_s \ge 8$. Эдесь n_s число релятивистских частиц, исключая сисктаторные фрагменты ядра ¹²C. Это полуомнирическое неравенство - следствие ограниченности числа n_h медленных варяженных частиц в ал.с. СН - соударения ($n_h \le 7$ в подавляющем большинстве отих событий).

При использовании критериев 1 - 7 отбора СС-соударений в нашем случае следует иметь в виду, что в окспериментах с пропановой пузырьковой камерой варяд фрагментов ядра ${}^{12}C$ с $z \ge 2$ не измерялся. Мы располагаем, таким образом, лишь нижней границей Q_{min} величины Q (за исключением событий с тремя такими фрагментами или их отсутствием), определяемой как

$$Q_{min} = 2n_f + n_{p,d,t},\tag{1}$$

где n_j - число фрагментов с $z \ge 2$. Ясно, что в (1) преднолагалось, что исс фрагменты с $z \ge 2$ суть *а*-частицы.

Значение Q_{min} можно использовать в неравенстве 7 вместо Q, при отом указанное неравенство лишь усиливается. При использовании 6-го критерия ваменять Q на Q_{min} нельвя; отот критерий можно использовать лишь для событий, в которых $n_f = 0$.

Привсдем конечный результат применения критериев 1 - 7 (с указанными оговорками) к $C - C_3 H_8$ соударениям: они отбирают 21318 событий, являющихся с нысокой вероятностью СС-соударениями. Мы добавили к иям 121 событис "чистого" Засобразования, интерпретируемые как случаи когерентной диссоциации ${}^{12}C \rightarrow 3\alpha$ на ядра углерода [8]. Таким обравом, полное число событий СС-типа составило 21439 или 54.3 %($C - C_3 H_8$)соударений, что хорошо согласуется с их долей в втом наборс, ожидаемой в соответствии со вначениями неупругих сечений рС-и СС-соударений (53.2 %) [5, 6].

Остальные 18026 событий были отнессны нами к CH-соударсниям, которые в составляют предмет изучения в настоящей работе.

3 Множественности фрагментации

В нашем оксперименте уверенно идентифицировались многоварядные $(z \ge 2)$ фрагменты ядра-спаряда. Среднее число этих фрагментов, $\langle n_f \rangle$, в событиях, квалифицируемых нами (см. предыдущий раздел) как СН-соударения, равно 1.21 ± 0.01 (табл. 1).

Значительно менее однозначна идентификация различных типов однозарядных снектаторных фрагментов – протонов, дейтронов и тритонов. Довольно вначительные погрешности в проведенных нами импульсных иомерениях на треках одноварядных релятивистских частиц приводят к заметному "перекрытию" измерений спектров для этих частиц; к тому же это разделение осложияется наличием существенного фона от "нефрагментов" - провзаимодействовавших фрагментов снаряда и мишени, а также – рожденных частиц.

На рис.1 представлено распределение по обратным величинам (1/p) импульсов одноварядных релятивистских частиц с $\theta \leq 5^{\circ}$ в отобран-

Рис.1 Распределение по 1/р для релятивистских одноварядных частиц с θ ≤ 5° в соударениях СП при 4.2 А ГоВ/с. Стрелки указывают ожидаемые средние для тритонов, дейтронов и протонов-спектаторов.

́Та	бл	ип	a	1	
	~			_	

Характеристика	Группа событий			
	Bce CH	$n_f = 0$	$n_f = 1$	$n_f \geq 2$
Средняя множественность (х100)				
протонов, $\langle n_p \rangle$	42 ± 1	227 ± 13	39 ± 1	43 ± 2
цейтронов, (n _d)	21 ± 1	164 ± 9	18 ± 1	19 ± 1
тритонов, (n _i)	5.0 ± 0.2	4.8 ± 0.4	4.4 ± 0.2	4.1 ± 0.3
фрагментов с $z \ge 2, \langle n_f \rangle$	123 ± 1	-	100	210 ± 2
Доля среди фрагментов с $z = 1(\%)$:				
протонов	62 ± 2	52 ± 4	63 ± 2	65 ± 2
цейтронов	31 ± 2	37 ± 3	30 ± 2	29 ± 2
тритонов	7±1	11 ± 3	7 ± 1	6 ± 1

ных СН-соударсниях. Отчетливые максимумы при $1/p = 1/p_0$ и $1/2p_0$ соответствуют спектаторным протонам и дейтронам, разделение между дейтронами и тритонами, а также между спектаторными протонами и "исФрагментами" выражено исчевающе слабо.

Для определения чисся спектаторных p, d, t и "нефрагментов" среди одноварядных релятивистских частиц мы, следуя [4], выполнили анпровсимацию распределения рис.1 суммой трех гауссовых распределений с центрами при ожидаемых для спектаторных фрагментов вначениях обратных импульсов. Для уменьшения влияния прововимодействовавших одноварядных фрагментов и рожденных частиц фитирование выполнянось в области $(1/p) < (1/p_0)$. Оцененные таким обравом числа спектатерных p, d, t новволили нам вычислить средние множественности отих частиц, которые приведены в табл.1. Указанные в отой таблице ногреншости – чисто статистические.

Как видно из данных табл.1, более трети однозарядных фрагментов мдра угнерода ($38 \pm 2\%$) составляют ядра тяжелых изотонов водорода — дейтроны и тритоны. Отметим, что полученное нами вначение существенно превышает величину, оцененную в фотозмульсионном эксперименте [7] – 17 ± 2%. Возможно, это связано с большей неопределенностью выделенных соударений со свободным водородом в фотоомульсии, составляющих всего около 10% полного числа неупругих взаимодействий в этой, весьма сложной минена.

Для получения качественной информации о вависимости средних множественностей фрагментации от прицельного нараметра рС-соударения мы рассмотрели подгруппы событий с $n_f = 0$; 1 и ≥ 2 . Если рассматривать вначения n_f как грубую характеристику среднего прицельного нараметра ("малые" n_f - малые прицельные нараметры, "большие" n_f - большие) соударения, можно констатировать слабую вависимость как множественностей фрагментации одноварядных фрагментов, так и комновиции ядер различных ивотонов водорода среди них - от величины n_f . Исключения составляют случаи так навываемого "полного" распада ядра углерода (события с $n_f = 0$). Таких событий оказалось 279 (~ 1.5% всех событий рС-типа); средние множественности одноварядных фрагментов в них в несколько раз превышают таховые в группах реакций с

 $n_f = 1$ и ≥ 2 , а компориция одноварядных фрагментов ваметно изменяется всторону увеличения доли тяжелых фрагментов до вначения, почти равного половине от полного числа фрагментов с z = 1. Необходимо отметить, однако, что абсолютное воврастание средних множественностей одноварядных фрагментов в событиях с $n_f = 0$ в вначительной степени инициировано примененными критериями отбора СШ-соударений (в частности, критерием 6) и отсутствием информации о варядах фрагментов с $z \ge 2$, поотому к ним следует относиться с большой осторожностью.

4 Поперечные импульсы фрагментов

Поперсиные импульсы (*p_T*) продуктов фрагментации ядер - основной источник информации о волновых функциях различных внутриядерных "кластеров" нуклонов.

Интегральные распределения по измеренным в л.с.к. p_T для снектаторных дейтронов и тритонов из Ср-соударений при $p_0 = 4.2$ ГоВ/с на нуклон представлены на рис.2 в качестве примера. В табл.2 принедены средние значения $\langle p_T \rangle$ для всех типов одноварядных фрагментов в полном наборе СШ-соударений и подгрупнах событий с $n_f = 0; 1$ и > 2.

Простейщей теоретической формой *р*₁-спектра продуктов фрагментации ядер является распределение

$$f(p_T^2) = exp(-p_T^2/2\sigma^2),$$
 (2)

навываемое в математической статистике распределением Ролся. Это распределение соответствует пормальным парциальным распределениям $n(0, \sigma)$ по каждой из поперечных компонент p_x, p_y 3-импульса фрагмента и вытекает также из простой статистической моделя прямого распада ядра [9, 10]. В масштабе рис.2 распределению (2) соответствует прямая липия. Как видно из этого рисунка, эмпирические p_T -спектры фрагментов в СН-соударсниях не описываются простой формой (2). Этот вывод справедлив и для всех рассмотренных педгрупа СН-событий.

Ию таблицы 2 следует, что средние поперечные импульсы одноварядных фрагментов увеличиваются при уменьшении среднего придельного параметра соударения, т.е. при переходе от периферических вваимодействий

Рис.2 Примеры интегральных распределений снектаторов по p_T^2 : а) для дейтронов, б) для тритонов из полной группы СШ-соударений. Прямые – распределения Ролея при $\sigma = \sigma^{exp}$.

Группа	$\langle p_T \rangle$, MoB/c		
события	р	d	t
Bce CH	158 ± 1	206 ± 2	255 ± 6
$n_f = 0$	170 ± 4	214 ± 6	243 ± 13
$n_f = 1$	161 ± 1	207 ± 3	259 ± 8
$n_f \ge 2$	144 ± 2	195 ± 5	248 ± 14

Таблица 2

к "центральным". Это воврастание равлично для равных масс одноварядных фрагментов: при "переходе" от $n_f \ge 2 \ge n_f = 0 \quad \langle p_T \rangle$ воврастают на ~ 16% для протонов, ~ 11% для цейтронов и вовсе отсутствует (в предслах опнибок измерений) - для тритонов.

Другой вывод из данных таби.2 - наличие четкой ванисимости $\langle p_T \rangle$ от массы фрагмента: с увеличением $m_f \langle p_T \rangle$ воврастает. Относительные вначения $\langle p_T \rangle$ для протонов, дейтронов и тритонов удовлетворительно согласуются с ожидаемым в соответствии с параболическим ваконом [10]

$$\sigma_f^2 = \sigma_p^2 m_f (A_c - m_f) / (A_c - 1), \qquad (3)$$

где m_f - масса фрагмента в единицах массы нуклона, $A_c = 12$ - массовое число фрагментирующего ядра, σ_f^2 и σ_p^2 - пропорциональны средним квадратам поперечных импульсов для произвольного фрагмента и протона.

В ряде работ по фрагментация релятивистских ядер-снарядов в неупругих ядро-ядерных соударениях было установлено (см., например, [11, 12]), что распад остаточных ядер происходит "на лету" в наличие "перепосного" движения фрагментирующей системы существенно искажает (вавышает) "истипные" средние вначения поперечных импульсов фрагментов. Очень мало данных по отому вопросу в протоп-ядерных соударениях.

На рис.З представлено распределение по парным азимутальным углам $\varepsilon_{ij} = \arccos(\vec{p}_{T_i}\vec{p}_{T_j}/p_{T_i}p_{T_j})$ между ноперечными импульсами паряженных снектаторных фрагментов ядра углерода в нашем оксперименте. Оно характериоуется ваметной абимутальной асимметрией: фрагменты чаще вылетают в одну авимутальную полуплоскость, нежели в разные стороны. В то же время вакон сохранения онергии-импульса требует в случае отсутствия поперечного движения фрагментирующей системы превмущественного вылета фрагментов в разные стороны в ноперечной плоскости столкновения (т.е. максимума при $\varepsilon_{ij} \to \pi$). Таким обравом, остаточное фрагментирующее ядро приобретает поперечный импульс и в соударениях с протонами.

В работе [13] была выполнена апробация приближенного внемодельного получения блиских к "истинным" вначений полеречных импульсов фрагментов, основанного на использовании симметричной по понеречным импульсам системы координат в понеречной пюскости столкно-

Рис.3 Распределения по парному авимутальному углу между поперечными импульсами варяженных фрагментов по СП-соударений.

Таблица 3

Группа	$\langle p_T^* \rangle$, MoB/c				$\langle p_T^* \rangle$, MoB/c	
событий	p	d	t			
Bce Cll	142 ± 1	176 ± 2	210 ± 4			
$n_f = 0$	155 ± 4	192 ± 5	202 ± 10			
$n_f = 1$	144 ± 1	175 ± 2	213 ± 5			
$n_f \ge 2$	133 ± 2	173 ± 4	203 ± 11			

Рис.4 То же, что на рис.2 для системы координат с нулевым суммаршым поперечным импульсом системы варяженных фрагментов.

всния. Для реализации этого метода в нашем эксперименте мы осуществили переход в систему координат с нулевым суммарным поперечным импульсом системы наблюдаемых заряженных фрагментов (в событии с их числом ≥ 2): $\sum_i \vec{p}_{T_i} = 0$, предполагая, что все фрагменты с $z \geq 2$ суть *с*-частицы. Средние значения поперечных импульсов $\langle p_T^* \rangle$ в этой системе приведены в табл.3; на рис.4, в качестве примера, представлены

распределения по $\langle p_T^{*2} \rangle$ для тех же фрагментов, что на рис.2 (в л.с.к.) Как и следовало ожидать, ноперечные импульсы фрагментов при пе-

как и следовало ожидать, поперечные импульсы фрагментов при переходе от л.с.к. к S-системе ваметно уменьшились. Обе характерные оссбенности, однако, отмеченные выше при рассмотрении *p*_T-распределений

в л.с.к., сохранились: а) для легких фрагментов (р, d) имеет место вависимость $\langle p_T^* \rangle$ от прицельного параметра соударения (воврастание $\langle p_T^* \rangle$ с уменьшением прицельного параметра), б) форма p_T^* -спектров отличается от ролеевской, обнаружился "избытов" частиц с большими p_T^* . Сравнивая данные рис.2 и 4 можно, однако, ваметить, что отличие от распределения (2) во втором случае меньше; таким обравом, видимый пестатистический "хвост" больших p_T в p_T -распределениях в л.с.к., по видимому, частично обусловлен переносным движением фрагментирующего остаточного ядра.

5 Заключение

Основные результаты проведенного исследования вкратце сводятся к следующим.

- Ивмерены выходы протонов, дейтролов, тритонов и осколков с z ≥ 2
 продуктов фрагментации релятивистского ядра углерода при его столкновении с водородом при 4.2 ГоВ/с на пуклон. Соударения типа СП были выделены из пеупругих взаимодействий ¹²C в пронане (C₃ H₈).
- 2. Исследованы распределения понеречных импульсов различных тинов однозарядных фрагментов (p, d, t) в лабораторной системе я свстеме координат с равным пулю суммарным понеречным импульсом варяженных фрагментов. В обоих системах p_T -спектры всех рассмотренных частиц имсют "пестатистическую" форму. Часть избытка фрагментов с большими p_T в л.с.к. обусловлена понеречным движением остаточного фрагментирующего ядра.

Авторы благодарны участникам международного сотрудничества по обработке фильмовой информации с двухметровой пронановой пузырьковой камеры ЛВО ОИЯИ, принимавших участие в наборе окспериментального материала по ядро-ядерным взаимодействиям при 4.2 А ГэВ/с.

Литература

- 1. Абдурахманов Е.О. и др. ЯФ, 1978, т.28, с.1304.
- 2. Ахбабян И. и др. Препр. ОИЯИ, 1-12-114, Дубна, 1979.

3. Ахбабян II. и др. Препр. ОИЯИ, 1-12-424, Дубна, 1979.

4. Велага В.В. и др. Ирспр. ОИЯИ, Р1-95-233, Дубна, 1995.

- 5. Армутлийски Ц. и др. ЯФ, 1987, т.45, с.1047.
- 6. Кладинцкая Е.Н. и др. Препр. ОИЛИ, 1-83-662, Дубна, 1983; Сообщ. ОИЛИ, Р1-88-412, Дубна, 1988.

7. Абдуразакова У.А. Изучение фрагментации релятивистских ядер ¹²С,

- ²² Ne и ⁵⁶Fe при пеупругих соударениях с водородом фотоомульсии. Канд. диссертация, ИНФ АН УвССР, Ташкент, 1989.
- 8. Велага В.В. и др. Препр. ОИЯИ, Р1-95-218, Цубна, 1995; ЯФ (в псчати)
- 9. Feshbach II., Huang K. Phys. Lett. B, 1973, v.47, p.300.
- 10. Goldhaber A.S. Phys. Lett. B, 1974, v.53, p.306.
- 11. Бенгус Л.Е. и др. Письма в ЖЭТФ, 1983, т.38, с.353.
- 12. Chernov G.M. et al. Nucl. Phys. A, 1984, v.412; p.534.
- 13. Бондарсико А.И. и др. ИТЭ, 1992, N 2, с.57.

Рукопись поступила в издательский отдел 3 июля 1995 года.