ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P1 - 9434

ТРАНСМИССИОННАЯ РЕГЕНЕРАЦИЯ НЕЙТРАЛЬНЫХ К-МЕЗОНОВ НА ВОДОРОДЕ

Будапешт - Дубна - Прага -Серпухов - София

is dies vol die states en die been die 1913 - Jack opport die states die 1930 och die 1933 - Jack vol 1937 (die states en die states)

P1 - 9434

ТРАНСМИССИОННАЯ РЕГЕНЕРАЦИЯ НЕЙТРАЛЬНЫХ К-МЕЗОНОВ НА ВОДОРОДЕ

Будапешт - Дубна - Прага -Серпухов - София *

Направлено в ЯФ

* Перечень авторов см. на обороте.

63-8-80

В.К.Бирулев, В.И.Генчев, Н.Н.Говорун, Т.С.Григалашвили, Б.Н.Гуськов, И.М.Иванченко, В.Д.Кекелидзе, В.Г.Кривохижин, В.В.Кухтин, М.Ф.Лихачев, Ю.И.Саломатин, И.А.Савин, Л.В.Сильвестров, В.Е.Симонов, Д.А.Смолин, Г.Г.Тахтамышев, А.С.Вовенко, Г.Вестергомби, Л

Объединенный институт ядерных исследований, Дубна.

Д.Киш, Э.Надь, Л.Урбан,

Центральный институт физических исследований, Будапешт.

Я.Гладки, М.Новак, А.Прокеш, Я.Вотруба

Физический институт Чехословацкой Академии наук, Прага.

П.Т.Тодоров,

Институт ядерных исследований и ядерной энергетики, София.

1. Введение

Sec. 1.

Как хорошо нзвестно^{/1/}, интенсивность трансмиссионной /или когерентной/ регенерации $K_L^\circ - K_S^\circ$ в веществе при данном импульсе р определяется квадратом комплексного коэффициента $\rho(\mathbf{p}) - |\rho(\mathbf{p})| \cdot \exp[i \Phi_{\rho}(\mathbf{p})]$, который равен:

$$\rho(\mathbf{p}) = i\pi \frac{2f_{21}^{\circ}(\mathbf{p})}{k} \cdot A_{S} \cdot N \cdot \rho'(\mathbf{p}), \qquad /1/$$

где

 $\rho'(p) = \{1 - \exp[(i\Lambda m/I_S - 1/2)\ell]\}/(1/2 - i\Lambda m/I_S), /2/$

 $k = p/\hbar$, $\Lambda_S = c\beta\gamma\tau_S$ -распадная длина KS, N - плотность вещества, $\Lambda_m = (\hat{m}_L - m_S)/\hbar$ - разность масс K^o_L и K^o_S, $\Gamma_S = 1/\tau_S$ - скорость распада K^o_S, $\ell = L/\Lambda_S$, L - длина регенератора, а

 $f_{21}^{\circ}(p) = |f_{21}^{\circ}(p)| \cdot exp[i\phi_{21}^{\circ}(p)] = \frac{1}{2}[f^{\circ}(p) - f^{\circ}(p)] - /3/$

амплитуда трансмиссионной регенерации, равная по определению полуразности амплитуд рассеяния вперед каонов и антикаонов на соответствующем веществе.

Особый интерес представляет изучение регенерации $K_L^\circ - K_S^\circ$ при высоких энергиях в водороде $^{/2-4/}$, поскольку полученные при этом результаты могут быть использованы для критической проверки основных теоретических моделей, предсказывающих энергетическое поведение амплитуды регенерации $K_L^\circ - K_S^\circ$ на протонах на основе дисперсионных соотношений /ДС/ $^{/5-7/}$ или модели комплексных угловых моментов /КУМ/ $^{/8-10/}$.

В модели КУМ амплитуды рассеяния обычно записываются в виде суммы парциальных амплитуд, каждая из которых соответствует обмену между частицами полюсов с определенным набором квантовых чисел. В частности, в амплитуду регенерации $K_L^\circ - K_S^\circ$ на водороде дают вклад только полюса ω и ρ , вследствие чего амплитуда f_{21}° в случае выполнимости теоремы Померанчука/11/ имеет вид:

$$f_{21}^{\circ} = B_{\rho}(0) [tg \frac{\pi a_{\rho}(0)}{2} + i] (\frac{1}{E})^{+1-a_{\rho}(0)} - \frac{\pi a_{\omega}(0)}{2} + i] (\frac{1}{E})^{1-a_{\omega}(0)},$$
(4/

где $B_{\rho,\omega}(0)$ - значения вычетов в перекрестном канале при t=0, Е- энергия каона в лаб. системе, $a_{\rho,\omega}(0)$ - значения траекторий полюсов при t = 0. Если, согласно экспериментальным данным, принять во внимание, что $a_{\rho}(0)$ = = $a_{\omega}(0) \approx a(0) \approx 0.5$, то вид амплитуды /8/ упрощается:

$$f_{21}^{\circ} = -\sigma_{12} \left[tg \frac{\pi a(0)}{2} + i \right] \cdot \frac{1}{\sqrt{E}} ,$$
 /5,

Здесь $\sigma_{12} = B_{\omega}(0) - B_{\rho}(0)$. Отсюда следуют предсказания /8,9/, что фаза амплитуды регенерации на протоиах не зависит от энергии и равна

$$\operatorname{tg} \phi_{21}^{\circ}(\mathbf{p}) = \frac{\operatorname{Im} f_{21}^{\circ}(\mathbf{p})}{\operatorname{Re} f_{21}^{\circ}(\mathbf{p})} = \operatorname{ctg} \frac{\pi a(0)}{2} ; \phi_{21}^{\circ} = -135^{\circ}, \quad /6/2$$

а дифференциальное сечение регенерации при нулевых переданных импульсах имеет энергетическую зависимость вида

$$\left(\frac{d\sigma}{dt}\right)_{t=0} = \frac{\left|f_{21}^{o}(p)\right|^{2}}{16 \pi E} \approx p^{2\alpha(0)-2} .$$
 (77)

Учет других особенностей мало меняет эти соотношения ^{/8/}. В случае нарушения теоремы Померанчука ряд моделей КУМ предсказывает сильное изменение этих закономерностей: фаза ϕ_{21}° становится функцией энергии, a $(d\sigma/dt)_{t=0}$ имеет более сложную, чем /7/, зависимость от импульса каона с переходом через минимум в области 50-100 $\Gamma \ni B/c^{-/8,9/}$.

Предсказания ДС^{/5,7/} для амплитуды регенерации на водороде в случае выполнимости теоремы Померанчука совпадают с предсказаниями КУМ, а в случае нарушения теоремы носят более качественный характер.

Мнимая часть амплитуды регенерации на водороде через оптическую теорему связана с $\Delta \sigma(p)$ - разностью полных сечений взаимодействий К° и \overline{K}° на протонах, а также /с помощью изотопинвариантности/ с разностью полных сечений взаимодействий К⁺ и K⁻ на нейтронах:

$$2\mathrm{Im} \, \mathrm{f}_{21}^{\circ}(\mathbf{p})/\mathrm{k} = \frac{1}{4\pi} \cdot [\sigma_{\mathrm{T}}(\mathrm{K}^{\circ}\mathrm{p}) - \sigma_{\mathrm{T}}(\mathrm{\overline{K}}^{\circ}\mathrm{p})] =$$

$$=\frac{1}{4\pi}\left[\sigma_{\mathrm{T}}\left(\mathrm{K}^{+}\mathrm{n}\right)-\sigma_{\mathrm{T}}\left(\mathrm{K}^{-}\mathrm{n}\right)\right]=\frac{1}{4\pi}\cdot\Delta\sigma(\mathrm{p})$$

Это обстоятельство позволяет оригинальным способом измерять разность полных сечений взаимодействий каонов и независимо от прямых измерений последних судить об их асимптотическом поведении при р $\rightarrow \infty$ или обнаружить аномалии в сечениях в предасимптотической области. В частности, согласно упрощенной модели КУМ^{/8/}, из соотношений /5/ и /8/ следует, что

 $\Delta \sigma (\mathbf{p}) \approx \mathbf{p}^{-0.5}$. /9/

Экспериментально модуль и фазу коэффициента регенерации $K_L^\circ - K_S^\circ$ на протонах можно определить, изучая интерференцию амплитуд СР - нарушающего распада $K_L^\circ \to \pi^+ \pi^-$ и нормального распада $K_S^\circ \to \pi^+ \pi^-$, возникающую в пространстве за водородной мишенью, где K_S° образовались в результате регенерации. Распределение числа таких распадов описывается известной интерференционной формулой:

/8/

$$\frac{\mathrm{d}^2 \mathrm{N}}{\mathrm{d} \mathrm{p} \,\mathrm{d} \mathrm{t}} (\mathrm{p}, \mathrm{t}) \Delta \mathrm{p} \Delta \mathrm{t} = \mathrm{M}_{\mathrm{H}} \cdot \mathrm{S}(\mathrm{p}) \cdot \epsilon (\mathrm{p}, \mathrm{t}) \cdot \Gamma_{\mathrm{S}(\mathrm{+-})} \cdot |\eta_{\mathrm{+-}}|^2 \cdot \mathrm{I}_{2\pi} \Delta \mathrm{p} \Delta \mathrm{t}, /10/$$

где M_H и S(p) - полное число прошедших сквозь мишень K_L° и их спектр, $\epsilon(p,t)$ - эффективность регистрации установкой двухпионных распадов каонов, Γ_S (+-) - парциальная скорость распада $K_S^\circ \rightarrow \pi^+\pi^-$, $\eta_{+-} = |\eta_{+-}| \cdot \exp(i\Phi_+)$ - параметр нарушения СР -инвариантности в распадах каонов, а

$$I_{2\pi} = \left| \frac{\rho(p)}{\eta_{+-}} \right|^{2} \cdot e^{-\Gamma_{S} t} + e^{-\Gamma_{L} t} \left| \frac{\rho(p)}{\eta_{+-}} \right| \cdot e^{-\frac{\Gamma_{L} + \Gamma_{S}}{2} t} \cdot \cos(\Delta m t + \Phi_{\rho} (p) - \sqrt{11/2})$$

$$-\Phi_{+-}),$$

где, в свою очередь, $\Gamma_L = 1/\tau_L$,

$$\Phi_{\rho}(\mathbf{p}) = \phi_{21}^{\circ}(\mathbf{p}) + \frac{\pi}{2} + \arg \rho'(\mathbf{p}), \qquad /12/$$

а $t=z/\gamma\beta c=zm/p$, z - расстояние точки распада К°-мезона от конца мишени-регенератора. Все величины, входящие в формулы /10/÷/12/, кроме| ρ (p)| и Φ_{ρ} (p), либо известны/¹²/, либо могут быть определены в том же эксперименте.

Таким образом, изучив распределения числа двухпионных распадов К°-мезонов при разных импульсах падающих каонов и аппроксимируя их формулами типа /10/, /11/, мы получим $|\rho(p)| \mu \Phi_{\rho}(p)$, а затем из соотношений /1/÷/3/, /12/ - $|f_{21}^{\circ}(p)|^{\rho}$ и ϕ_{21}° , что позволяет полностью определить энергетическую зависимость разности амплитуды рассеяния вперед каонов и антикаонов, ее мнимой и действительной частей отдельно.

Настоящий эксперимент выполнен на ускорителе на 70 ГэВ ИФВЭ в Серпухове. Его первые предварительные результаты /13//около 6ОО случаев двухпионных распадов каонов/ указывали на уменьшение разности полных сечений взаимодействий каонов и антикаонов с нуклонами при увеличении импульса в интервале 14:42 ГэВ/с и в связи с этим соответственно на возможный рост полного сечения взаимодействия K^{+} п. Это было экспериментальным указанием на возможное объяснение аномалии в сечениях, наблюдавшейся в работе/14/.

Дальнейшие результаты 15/, полученные с числом случаев около 2000 двухпионных распадов К₁° и К₅°, зарегистрированных в объеме длиной около 6 м, показали, что величина 2 | f^o₂₁ (p) | /k , называемая модифицирован-ной амплитудой регенерации, а также разность полных сечений взаимодействий каонов и антикаонов с нуклонами уменьшаются с увеличением импульса. Этот факт вместе с фактом постоянства в том же интервале энергий полного сечения К⁻n - взаимодействия являлся неза-висимым от прямых измерений / ^{16/} результатом, устанавливавшим рост полного сечения К⁺ п - взаимодействия. В работе $^{/15/}$ было показано также, что фаза $\phi_{21}^{
m o}$ (р), повидимому, постоянна и имеет в исследуемом интервале энергий среднее значение, равное /-118+13/ . Для получения более детальных сведений об энергетическом поведении $\phi_{21}^{\circ}(\mathbf{p})$ необходимо было получить большее число событий, а также увеличить длину пространства, в котором амплитуды распадов К $_S^\circ \to \pi^+ \pi^-$ и К $_L^\circ \to \pi^+ \pi^-$ интерферируют. Это было реализовано в следующем эксперименте, где интерференция изучалась в объеме длиной около 9 м и было зарегистрировано около 5000 распадов $K_{1,S}^{\circ} \to \pi^{+}\pi^{-}$ в интервале импульсов 14-50 *ГэВ/с*. Предва-рительные данные этого эксперимента были сообщены в работах/17, 18/.

Ниже представлены окончательные результаты, полученные нами в ходе перечисленных экспериментов по измерению амплитуды трансмиссионной регенерации нейтральных каонов на водороде в интервале импульсов 14-50 ГэВ/с.

2. Проведение экспериментов

Для проведения экспериментов был сооружен канал нейтральных частиц, ориентированный на внутреннюю мишень /алюминий, $\phi = 2$ мм, длина 2 см/ в камере ускорителя под углом около 1°к направлению движения

ускоренных протонов. Формирование пучка осуществлялось системой трех стальных коллиматоров прямоугольной формы общей длиной 8,5 м, задававших горизонтальную и вертикальную расходимости +0,35 и +0,6 мрад, соответственно. Очищающий магнит с напряженностью поля до 1,8 Т и эффективной длиной около 5 м, перед которым устанавливался свинцовый гамма-конвертор топшиной 10 см, устраняли из пучка заряженные частицы и гамма-кванты. Сформированный пучок нейтральных частиц на выходе из коллиматора имел поперечные размеры 36,8 и 62,1 мм по горизонтали и вертикали, соответственно. Пучок частиц после прохождения = 4 м заполненного гелием объема падал на мишень-регенератор. Расстояние от внутренней мишени ускорителя, где рождались каоны, до мишени-регенератора составляло ≈ 56 м или более 20 распадных длин К_с° с импульсом 50 ГэВ/с. Интенсивность нейтронов и К₁°-мезонов в пучке при сбросе на внутреннюю мишень 1011 протонов была соответственно $\approx 3.10^6$ и 8.10^4 частиц/с.

Эксперимент выполнялся с помощью бесфильмового искрового спектрометра/19//БИС//рис. 1/ на линии с ЭВМ БЭСМ-3М, осуществлявшей прием, контроль и запись информации на магнитные ленты/20/. В установке использовался спектрометрический магнит /М/ с эффективной длиной полюсных наконечников 200 см, шириной 100 см и высотой зазора 25 см. Величина напряженности магнитного поля была постоянной в пределах $\pm 1\%$ на ширине зазора 80 см.

Установка регистрировала известные типы / $K_{\pi^0}^{\circ} \pi^+ \pi^-$,

 $K_{\mu3}^{\circ} \rightarrow \pi \mu \nu, K_{e3}^{\circ} \rightarrow \pi e \nu, K_{\pi3}^{\circ} \rightarrow \pi^{+} \pi^{-} \pi^{0} /$ распадов $K_{L,S}^{\circ}$ -мезонов на две заряженные частицы, происходившие в пространстве за водородной мишенью (DV) в объеме, заполненном гелием. Точка распада определялась по траекториям распадных частиц, восстановленным с помощью 18 двухкоординатных искровых камер с магнитострикционным съемом информации/21/ (SCI-18), расположенных перед и за магнитом группами по три. По отклонению частиц в магните определялся их импульс \vec{p}_1 и \vec{p}_2 . Используя информацию о траекториях распадных частиц и их импульсах, можно вычислить ряд кинематических

Рис. 1: Схема экспериментальной установки /вид сверху и сбоку/: BEAM - пучок падающих КС-мезонов; MNI, MN2 - телескопы сцинтилляционных счетчиков для мониторирования пучка; V - объем, заполненный гелием. Обозначение остальных элементов см. в тексте.

(a) Strategy and the second second second and a second se second seco переменных, таких, как, например, $m_{\pi\pi}$ -инвариантная масса частиц, в предположении, что они обе были пионами: $m_{\pi\pi}^2 = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2$, $E_{1,2}^2 = p_{1,2}^2 + m_{\pi}^2$, угол θ между прямой, соединяющей точку распада с мишенью в ускорителе н суммарным вектором - импульсом обеих частиц, и другие. Анализ событий по этим переменным позволяет установить критерии отбора нужных распадов.

При проведении эксперимента использовалась так называемая "перекрестная геометрия"/22/, когда траектории распадных частиц за магнитом перекрещивались в районе счетчнков A_L и A_R . Перекрестная геометрия при высокой энергии каонов обеспечивала хорошее разрешение установки по импульсу и инвариантной массе без существенной потери однородности в эффективности регистрации распадов вдоль распадного объема.

Выбор конфигурации распадов и запуск искровых камер осуществлялись с помощью сцинтилляционных счетчиков^{23/}, расположенных в плоскостях [·], [·]], [·], [·]] по четыре слева и справа от оси пучка. Запуск спектрометра производился при одновременном срабатывании по крайней мере одного из счетчиков в каждой четверке и отсутствии сигналов от счетчиков А, АL и АВ.

Для идентификации трехчастичных распадов $K^{\circ}_{\mu3}$ и к° использовались детекторы мюонов и электронов. Детектор мюонов/24/ /ДМ/ состоял из двух рядов сцинтилляционных счетчиков и двух секций чугунного фильтра длиной по 125 см каждая, поглощавшего сильновзаимодействующие частицы. Первый ряд из четырех сцинтилляционных счетчиков располагался между секциями фильтра и включался на совпадения со вторым для уменьшения случайных срабатываний детектора. Второй ряд, имевший десять счетчиков размером 20х64х2 см³ каждый, служил мюонным годоскопом.

Детектор электронов^{/25/} /ДЕ/ типа полного поглощения состоял из четырех счетчиков, которые располагались по два справа и слева от оси пучка. Каждый из них имел два одинаковых блока, собранных из 10 пластин сцинтиллятора с площадью 555х3ОО *мм*² и толщиной 10 *мм* и пластин свинца между ними толщиной 5 *мм*. Свет, возникавший в данном блоке, собирался с его верхнего и нижнего торцов и передавался на два фотоумножителя ФЭУ-65 с помощью световодов, выполненных в виде усеченных пирамид.

В момент запука искровых камер регистрировались и передавались в ЭВМ состояние мюонного годоскопа и преобразованная в цифровой код амплитуда сигналов с детектора электронов. Эта информация использовалась впоследствии для идентификации типов распада. Событие классифицировалось как кандидат в $K_{\mu3}^{\circ}$, если продолжение одной из траекторий распадных частиц пересекало сработавший счетчик мюонного детектора. Если величина сигнала детектора электронов превышала определенный уровень и через этот счетчик проходила одна из траекторий распадных частиц, то событие классифицировалось как кандидат в $K_{\alpha3}^{\circ}$.

В качестве регенератора в установке использовалась /II₂ / трехметровая жидководородная мишень/^{26/} с диаметром рабочего объема 12 см и количеством водорода на пути пучка 21,3 г/см². Толщина майларовых окон на входе и выходе мишени составляла по 0,53 г/см². Для измерений без водорода применялся вакуумированный макет мишенц по длине и количеству вещества окон идентичный самой мишени.

Эксперимент проводился при двух положениях мишени, определявших длину распадной области около 6 м /геометрия 1/•и 9 м /геометрия 2/. Величина магнитного поля спектрометрического магнита, оптимизированная для получения максимальной эффективности регистрации двухпионных распадов каонов в каждом из положений мишени, была 1,05 и 1,3 T, соответственно. Расположение элементов установки, логика ее запуска и напряженность магнитного поля были определены с помощью расчетов методом Монте-Карло. В условиях геометрии 1 эффективная область исследуемых импульсов K_L° -мезонов оказалась равной 10-30 $Г \ni B/c$, а в геометрии 2 - 20-40 $\Gamma \ni B/c$. Эффективность установки к K_0° -распадам разных импульсов в указанных интервалах π^2 составляла /5-20/%.

Эксперимент проводился при выбранной интенсивности сброса на внутрениюю мишень в камере ускорителя /1-3/.10¹¹ протонов за цикл и времени сброса от 0,4 до 1,5 с. Всего было зарегистрировано следующее

количество запусков установки /в тысячах/ в измерениях с водородом и макетом, соответственно: геометрия 1 -240 и 80, геометрия 2 - 1500 и 500.

3. Анализ данных

Окончательный анализ информации проводился одинаковым методом для геометрии 1 и 2 и состоялиз следующих основных этапов: 1/ геометрическая реконструкция V°-событий/27/; 2/ статистическая обработка реконструированных событий, выбор критериев отбора и отбор по каналам распадов; 3/ расчеты эффективности установки к распадам по разным каналам; 4/ аппроксимация интенсивности наблюдавшихся К 2 распадов теоретической формулой /10/ и определение физических параметров.

После геометрической реконструкции на вторичные магнитные ленты для статистического анализа были записаны характеристики следующего количества событий /в тысячах/: геометрии 1 - 145 /водород/, 48 /макет/; геометрия 2 - 700 /водород/, 200 /макет/. Большую часть этих событий составляли трехчастичные распады $K^{\circ}_{\pi3}$, $K^{\circ}_{\mu3}$, K°_{e3}

В процессе статистического анализа были изучены геометрические и кинематические характеристики событий, проведена их классификация и разделение по модам распада с помощью детекторов мюонов и электронов; проанализирован фон от $K^{\circ}_{\mu 3}$ и $K^{\circ}_{\sigma 2}$ - распадов среди событий, идентифицированных как $K^{\circ e3}_{\pi 2}$; проведено исследование разрешающей способности спектрометра по инвариантной массе $m_{\pi\pi}$ и углу θ в зависимости от импульса К°-мезона/28/" Анализ показал, что разрешение спектрометра по массе и углу определяется формулами:

$$\sigma_{\rm m}$$
 (p) = (2,06 + 0,058.p) $M \partial B/c^2$ /13/

$$\sigma_{\rho^2}(p) = (0,0172 + 9,14. p^{-2}) \text{ mpad}^2, /14/$$

где _р - импульс каонов в ГэВ/с.

Как и раньше/18/, двухпионные распады каонов отбирались среди всех V°-событий с помощью 3-х основных критериев: 1/ распадные частицы не являются лептонами; 2/ инвариантная масса тат лежит в районе массы каона и 3/ угол θ близок к нулю. С учетом экспериментальных разрешений событие идентифицировалось как $K_{\pi 2}^{\circ}$ -распад, если его инвариантная масса была в ин-тервале 498 $M \ni B/c^2$ - 3 $\sigma_{\rm m}$ (p) $\leq m_{\pi\pi} \leq$ 498 $M \ni B/c$ + 498 МэВ/с +

+ $3\sigma_{\rm m}$ (p), а квадрат угла $\theta^2 \le 9\sigma_{\theta^2}$ (p) мрад. Для событий, являвшихся кандидатами в двухпионные распады, распределения по $m_{\pi\pi}$ и θ^2 содержали опре-деленное число фоновых событий, обусловленных в основном неупругими взаимодействиями пучковых частиц в мишени и трехчастичными распадами К., , К. Большая часть последних фоновых событий "была вычтена с помощью детекторов мюонов и электронов. Полученные распределения /см. рис. 2 и 3/были аппроксимированы с хорошей степенью достоверности функциями:

$$N(m_{\pi\pi}) = A_1(p) + A_2(p) \cdot exp[- \frac{(m_{\pi\pi} - \bar{m}_{\pi\pi}(p))^2}{2\sigma_m^2(p)}], /15/$$

$$N(\theta^2) = B_1 + B_2 \theta^2 + B_3 \cdot exp(-B_4 \cdot \theta^2), \quad B_4 = 1/\sigma_{\theta^2}(p),$$

/16/

где A₁₊₂, В₁₊₄ - константы для данного интервала им-пульсов. В этих выражениях последние члены определяют ожидаемое распределение двухпионных событий по соответствующей переменной, а первые - фон. Для окончательного определения числа двухпионных распадов в каждом интервале исследуемых импульсов оставшийся фон вычитался путем экстраполяции соответствующих θ^2 распределений из области больших значений θ^2 , где присутствуют только фоновые события, в область, где сосредоточены $K_{\pi 2}^{\circ}$ - распады. Полное число двухпионных распадов, отобранных таким образом, оказалось равным 2000 и 250 в измерениях с водородом и без него для

Рис. 2. Распределения событий по инвариантной массе $m_{\pi\pi}$. А - геометрия 1; В - геометрия 2. Взяты события, удовлетворяющие условию $\theta < 9\sigma_{\theta^2}(p)$ /см. формулу /14// для данного импульса К° - мезона. Средний импульс интервала в ГэВ указан в правом углу каждого графика. Сплошная линия - результат аппроксимации распределения функцией типа /15/, пунктирная линия фон.

Рис. За в. Распределения событий по углу () между направлениями полета падающего и распадающегося каонов: А - геометрия 1, В - геометрия 2. Взяты события, для которых инвариантная масса удовлетворяет условиям отбора двухпионных событий. Точки - результат аппроксимации распределений функцией типа /16/, пунктирная линия - фон. Над каждым распределением указан средний импульс интервала в ГзВ. Показано также распределение всех событий, наблюдавшихся в интервале импульсов 10-50 ГзВ при измерениях с водородом(H₂) и без водорода (VACUUM).

14

18.

геометрии 1 и 5000 и 800 - для геометрии 2, соответственно.

Как было показано во Введении, для изучения энергетической зависимости $f_{21}^{\circ}(p)$ необходимо получить распределения типа /10/. Для этого все наблюдавшиеся двухпионные распады были распределены по ячейкам (p_i, t_j) . Каждая ячейка содержала $N_{ij} \pm \Delta N_{ij}$ событий, где ошибки, кроме статистических, содержали неопределенности, связанные с процедурой вычитания фона. Распределения, представляющие собой левую часть соотношения /10/, были получены для восьми интервалов по p_i -импульсу каонов от 14 до 50 ГэВ/с, из них семь первых имели ширину $\Delta p = \pm 2 \ \Gamma \ni B/c$, а последний - $\pm 4 \ \Gamma \ni B/c$. Внутри каждого p_i интервала события распределялись по временным интервалам t в системе покоя К°-мезона с шагом $\Delta t = 5.10^{-11}c$.

Для осуществления процедуры аппроксимации этих распределений и получения данных $o|f_{21}^{o}(p)|$ и $\phi_{21}^{o}(p)$, как видно из формулы /10/, необходимо знать величины $\epsilon(p,t)$, S(p) и $M_{\rm H}$.

Форма импульсного спектра каонов была определена по распадам $K_{\mu3}^{\circ}$ и $K_{\pi3}^{\circ}$, зарегистрированным установкой одновременно с $K_{\pi2}^{\circ}$. Спектр был восстановлен^{/29/} путем сравнения экспериментальных и генерированных методом Монте-Карло распределений "истинных" и "ложных" энергий распадных частиц.

Эффективность регистрации событий ϵ (p, t) была вычислена^{/30/} методом Монте-Карло по числу событий, примерно в 10 раз превышающему число экспериментально наблюдавшихся событий. При вычислениях учитывались ошибки измерения координат треков в искровых камерах, эффективность искровых камер, многократное рассеяние частиц в веществе установки, эффективность программы геометрической реконструкции.

В выражение /10/ входит произведение: $K_{\rm H} = M_{\rm H} \cdot \Gamma_{\rm S} (+-) \cdot |\eta_{+-}|^2$. Его можно определить двумя способами. Первый способ состоит в том, что $M_{\rm H}$ вычисляется из сопоставления наблюдавшегося в эксперименте числа $K^{\circ}_{\mu3}(K^{\circ}_{\pi3})$ - распадов и эффективности регистрации этих мод установкой, а величины $\Gamma_{\rm S}(+-)$ и $|\eta_{+-}|^2$ берутся

из таблиц^{/12/} .Второй способ позволяет определить $K_{\rm H}$ целиком в рамках данного эксперимента. Для этого используются распады $K_{\rm L}^{\circ} \rightarrow \pi^+ \pi^-$,зарегистрированные при измерениях без водорода. Число этих распадов определяется выражением:

 $N_{2\pi} = M_{V} : \Gamma_{S}(+-) \cdot |\eta_{+-}|^{2} \cdot \iint e^{-\Gamma} t \cdot S(p) \cdot \epsilon(p,t) dp dt, \quad /17/$

куда входит произведение $K_V = M_V \cdot \Gamma_S(+-) \cdot |\eta_{+-}|^2$. Переход от $K_V \kappa K_H$ можно сделать, используя тот факт, что отношение полного числа трехчастичных распадов по любой моде /или всех вместе/, наблюдавшихся в измерениях с водородом и без него, равно отношению мониторов M_H/M_V .

При выполнении процедуры аппроксимации экспериментально наблюдавшихся интенсивностей двухпионных распадов формулой /10/ использовался метод наименьших квадратов /31/. При этом в качестве свободных параметров были взяты три величины $K_{\rm H}$, $R = |\rho(p)/\eta_{+\infty}|$ и ϕ_{21}° . Параметр К_н оставался свободным, но общим для всех импульсных интервалов. Предварительно было проверено, что значения получаемых величин коэффициента К_Н в каждом импульсном интервале совпали в пределах ошибок друг с другом и с его значением, определенным указанным выше способом при измерениях без водорода. Ошибки окончательных физических величин в случае аппроксимации данных формулой /10/ с указанными тремя свободными параметрами оказываются несколько больше, чем в случае, когда свободными параметрами выбираются только R и ϕ_{21}° . Но степень достоверности полученных данных возрастает, поскольку в ошибку, кроме статистических, включены также систематические неопределенности, связанные с неточностями экспериментальных значений параметров слабых взаимодействий, импульсного спектра падающих каонов и мониторирования последних.

Экспериментальные данные по зависимости числа двухпионных распадов K_L° и K_S° от времени и результаты их аппроксимации формулой /10/, как с учетом интерференционного члена в /11/, так и без него, показаны на рис. 4. Как видно из рисунка, гипотеза отсутствия интерференции имеет малый уровень достоверности.

Полученные в результате аппроксимации данных наилучшие значения параметров R и ϕ_{21}° для геометрии 1 и 2 представлены на *рис.* 5, а их средневзвешенные величины - в *таблице* 1. При вычислениях использовались следующие величины параметров:

 $\Phi_{+-} = 42^{\circ}, \tau_{\rm S} = 0,895.10^{-10} c, \Delta m = 0,54.10^{10} c^{-1}$ /18/

Из рис. 5 видно, что в пределах экспериментальных погрешностей результаты измерений в обоих экспериментах хорошо согласуются друг с другом. Для геометрии 1 ошибки измерений значительно больше, чем для геометрии 2, особенно при энергиях больше ЗО ГэВ, вследствие малости числа событий и корреляций между параметрами R и ϕ_{21}° , вызванных недостаточной длиной распадного объема. Для геометрии 2, вследствие существенного увеличения статистики и длины распадного объема, наилучшие значения параметров R и ϕ_{21}° оказались практически независимыми друг от друга при всех исследуемых импульсах.

Используя экспериментальные данные, полученные без водорода, и определив при этом число прошедших через установку $K_{\rm E}^{\circ}$ -мезонов по трехчастичным модам распада ($K_{\mu3}^{\circ}, K_{\pi3}^{\circ}$), мы нашли параметр | η_{+-} |=(2,14±0,15)·10⁻³, величина которого близка к средневзвешенному мировому значению 1974 года^{/12/}, но отличается от результатов последних экспериментов ^{/32,33/}. Имея в виду существующее в мире разногласие данных, в соответствующих местах мы приводим результаты для двух значений параметра | η_{+-} |*.

По средневзвешенным значениям R были вычислены величины $2|f_{21}^{\circ}(p)|/k$, $[d\sigma/dt]_{t=0}$, а также разность полных сечений: $\Delta\sigma(p)=4\pi|2f_{21}^{\circ}(p)/k|\cdot\sin\phi_{21}^{\circ}$, используя среднее значение ϕ_{21}° . Эти величины представлены на *рис.* 6 и 7 и в *табл.* 1.

* О совместимости значений $|\eta_{+-}|$ с экспериментами по регенерации см. /47.

Рис. 4. Наблюдавшаяся в условиях геометрии 2 зависимость интенсивности двухпионных распадов К°-мезонов от времени в системе покоя К°. Кривые - результат аппроксимации экспериментальных данных: сплошная формулой /10/, $\chi^2 = 51$ для 93 степеней свободы; штрих пунктирная - формулой /10/ без интерференционного члена, $\chi^2 = 307$, пунктирная - только распады $K_L^0 \to \pi^+\pi^-$. $\frac{1}{10}$

Рк. ГэВ/с

23

DH вычисленные на их основе дифференциальные результать 6 работы / 40/, Пунктиром на рис переданном четырех такие же расчеты, но с пара етом разрезов из работы^{/8} **πο μοφελμ κομηλεκζηδιχ y** 2λ - работы клубон определяется формулой pabombi θ обозначены n3 регенерации фазы à взятыми Øa3bi вничила / 34, мовэлен работы Результаты измерений учетом • трансмиссионной траекторий a Символами расчет ndu средняя виниг x 3 Õ *κοг*да регенерации Ξ траекторий настоящей работы, / □ / - работы^{/39}/ . ттрих-пунктирная обозначена Сплошная линия параметрами моментов, ્છે амплитуды umnynbce водороде метрами сечения ý. Puc. $B b I \chi$ à S

Рис. 7. Разность полных сечений взаимодействий каонов и антикаонов: (•) $-\Delta \sigma_T = \sigma_T(K^\circ p) - \sigma_T(K^\circ p)$ - данные настоящей работы; (0) и (Δ) $\Delta \sigma_T = \sigma_T(K^- n) - \sigma_T(K^+ n)$ результаты работы/16/ и /35/, соответственно. Сплошная линия - аппроксимация данных ИФВЭ и ФНАЛ зависимостью $\Lambda \cdot p^{-n}$ /см. табл. 2/, пунктир - то же для данных настоящей работы.

Габлица 1

амплитуды водороде рению Эксперим трансмис

ł										
	Pr.	,	- 60	2 f ^o ₂₁ (p) /k,	[do / dt]	t=0 ·	Δσ = σ _T (K°p)-σ _T (K°p),	-
	D'B/C	$\mathbf{R} = \rho(p)/\eta $	12	NXN		MCK0/(L	aB/c) ²		HOM	-
		•	rputych)I• ⁻⁺ 4	33	1-+ 4	.I0 ³		1n+-1 .10 ³	<u> </u>
			$(\Phi_{+-} = 42^{-1})$	2,35	2,I4	2,35	2,I4	2,35	2,14	
	I4-18	I,60 <u>+</u> 0,35	139 <u>+</u> 20	8#7612	₩ ₩	64+76	80±35	2,04+0,40	I,86 <u>±</u> 0,36	_
	I8-22	I,49 <u>+</u> 0,I5	I32 <u>+</u> I3	I73 <u>+</u> I8	157 <u>+</u> 16	60 <u>+</u> 12	50 <u>+</u> I0	I,61±0,17	I,46 <u>+</u> 0,I5	
	22-26	I,74±0,I4	127±11	181 <u>+</u> 15	165 <u>+</u> 14	66 <u>+</u> 11	55± 9	I,69±0,I4	I,53 <u>+</u> 0,I3	
	26-30	I,68±0,I6	139 <u>+</u> 12	161 <u>+</u> 16	I47 <u>+</u> I5	52 <u>+</u> 11	43 <u>+</u> 9	I,5040,I5	I,36±0,I3	
	30-34	I,80±0,I5	130+12	162 <u>+</u> 14	I48 <u>+</u> I3	53+ 9	444 8	I,51±0,13	I,38±0,I2	_
	34-38	I,65 <u>+</u> 0,I5	I27 <u>+</u> I6	I42 <u>+</u> I3	129412	4I <u>+</u> 8	34± 6	I,32 ±0,I2	I,20 <u>+</u> 0,II	
	38-42	I,32 <u>+</u> 0,29	I42 <u>+</u> 29	I09+24	99±22	24 - I0	204 8	I,02±0,22	0,93±0,20	
	42-50	I,46±0,25	109 <u>+</u> 34	116 <u>+</u> 19	106418	27± 9	22_ 8	I,08±0,I8	0,99 <u>+</u> 0,I6	
L	I4-50	-	132 <u>+</u> 5	-				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
1			-							

Для выяснения зависимости фазы амплитуды трансмиссионной регенерации от параметров слабых взаимодействий K_L° - K_S° - системы мы провели аппроксимацию наших данных для ряда значений параметров /18/. Оказалось, что возможные изменения средней величины фазы ϕ_{21}° могут быть выражены формулой:

$$\phi_{21}^{\circ} = (-132^{\circ} \pm 5^{\circ}) + 70^{\circ} \cdot \left[\frac{0,54 \cdot 10^{10} \text{ cek}^{-1} - \Delta \text{ m}}{0,54 \cdot 10^{10} \text{ cek}^{-1}}\right] + -10$$

+ $108^{\circ} \cdot \left[\frac{\tau_{\rm S}^{-0,895 \cdot 10^{-10}} \text{ cek}}{0,895 \cdot 10^{-10} \text{ cek}}\right] + (\Phi_{+-}^{-42^{\circ}}).$

Влияние других параметров слабых взаимодействий на наши данные пренебрежимо малы.

Для исследования систематических ошибок, связанных с процедурой выборки К[°]_{π2}-распадов и вычитания фона, был проведен анализ данных для матриц N_{ij}(p_i,t_j), полученных при различных значениях границ критериев отбора К[°]_{π2} - распадов. Систематические ошибки в этом случае для среднего значения фазы оказались равными ≈ ±3° и для величины 2 |f[°]₂₁(p)|/k -≈±8 мкбн. Для определения энергетической зависимости ве-

Для определения энергетической зависимости величин $2|f_{21}^{\circ}(p)|/k$, $[d\sigma/dt]_{t=0}$ и $\Delta\sigma(p)$ мы аппроксимировали приведенные в *табл*. *1* данные формулами типа $A \cdot p^{-n}$, где p - импульс каона, а A и n - искомые параметры. Результаты представлены в *табл*. 2 и на рис. 6 и 7.

4. Результаты эксперимента

Результаты, полученные в ходе проведения экспериментов по исследованию трансмиссионной регенерации $K_L^{\circ} - K_S^{\circ}$ на водороде, можно суммировать следующим образом.

1/ Прямым способом показано наличие интерференции в двухпионных распадах долгоживущих К^о_L-мезонов и регенерированных ими в жидком водороде короткожи-

28

Таблица 2

Результаты аппроксимации энергетической зависимости данных по регенерации и разности полных сечений взаимодействий функций типа $A \cdot p^{-n}$, где p - импульс K_{I}° в $\Gamma \Im B/c$

	· · · · · · · · · · · · · · · · · · ·			
Интервал импульсо ГэВ/с	в, Функция	Å	n	Примечания, /ссылка/
I4-50	2 f ^o ₂₁ (p) /k ,' MOH	0,77 <u>+</u> 0,38	0,49 <u>+</u> 0,14	настоящая работа,
				17,_1°I0 ³ =2,I4;
	-"-	0,84 <u>+</u> 0,42	0,50 <u>+</u> 0,15	₇₊₋ •10 ³ =2,35;
	[dø/d1] _{i=0} , MRØ/(ГЭВ/с) ²	1234 <u>+</u> 1202	I,02 <u>+</u> 0,29	_{7,-} •10 ³ =2,14;
a k _#_ a ^b	jane n <u>i</u> ng kaka seb	I474 <u>+</u> I575	1,04 <u>+</u> 0,32	17,_1°10 ³ =2,35;
-"- * .	o _t (K°р) - o _t (K°р) . Ион	8,4 <u>+</u> 3,2	0,55 <u>+</u> 0,11	₇₊₋ •10 ³ =2,14;
_ "_"	-"-	9,7 <u>+</u> 3,4	0,56 <u>+</u> 0,10	17,_1°10 ³ =2,35;
I 5 -65	σ _T (K ⁺ в) – σ _T (K ⁻ в) , мо́н	12,I <u>+</u> 4,I	0,65 <u>+</u> 0,10	/16/
23-280		12,1 <u>+</u> 5,9	0,57 <u>+</u> 0,II	/35/
15-280	-"-	6,8 <u>+</u> I,3	0, <u>\$6+</u> 0,05	/I6 w 35/
I,5-IO	ldσ/dtl _{t=0} μκσ/(ΓэΒ/с) ²	3255 <u>+</u> 988	1,33 <u>+</u> 0,24	/34/
I,5-50	-"-	3274 <u>+</u> 607	I,36 <u>+</u> 0,06	/34 m I8/

вущих K_S° -мезонов. Исследована амплитуда трансмиссионной регенерации $K_L^{\circ} - K_S^{\circ}$ на водороде, т.е. отдельно ее модуль и фаза, в интервале импульсов 14÷50 ГэВ/с.

2/ Модуль модифицированной амплитуды регенерацни и дифференциальное сечение трансмиссионной регенерации уменьшаются с увеличением импульса по законам /5,7/ с константами, указанными в табл. 2, что соответствует предсказаниям модели КУМ^{/8}/для случая выполнимости теоремы Померанчука.

3/ Установлено, что фаза амплитуды трансмиссионной регенерации ϕ_{21}° не зависит от энергии каонов в интервале 14-50 ГэВ и ее средняя величина равна $\phi_{21}^{\circ} =$ = -132° ±5°.Если рассмотреть всю совокупность экспериментальных данных в мире по регенерации на водороде, то можно видеть /*рис. 6а*/, что эта фаза в пределах ошнбок не зависит от энергии /или зависит очень слабо/ даже в ннтервале /1,5÷50/ ГэВ, где ее средняя величина есть $\phi_{21}^{\circ} = -133 \pm 3.2$. Полученная нами величина ϕ_{21}° хорошо совпадает с предсказаниями/8/ модели КУМ с учетом вклада в амплитуду ω - и *р*-полюсов и выполнимости теоремы Померанчука.

4/ Таким образом, измерения как фазы, так и модуля амплитуды регенерации в данном интервале энергий в пределах погрешностей эксперимента исключают возможность сильного нарушения теоремы Померанчука в рассеянии каонов и антикаонов на протонах, обсуждавшуюся в литературе/46/ в 1969-1971 г.г. Если степень нарушения теоремы характеризовать величиной $\Delta \sigma(\infty)$ разностью полных сечений взаимодействий при бесконечной энергии, то сравнение наших данных с моделью /8/ дает $\Delta \sigma(\infty) < 0,2$ мбн.

5/ Свойства аналитичности и перекрестной симметрии амплитуды рассеяния накладывают определенные ограничения на энергетическую зависимость ее мнимой и действительной частей. Основываясь на этих свойствах, можно показать /см/42÷45/ /, что, если модуль амплитуды регенерации имеет степенную энергетическую

зависимость вида $\frac{2|f_{21}^2(p)|}{k} \approx p^{-n}$, то фаза амплитуды

30

регенерации строго определена и не зависит от энергии, а именно

 $\phi^{\circ}_{21 \text{ reo p.}} = \frac{\pi}{2}n - \pi = -\pi(1-\frac{n}{2})$. /20/

Подставляя в/20/ полученное нами значенне $n=0,5\pm0,15$ /см. табл. 2/, будем иметь $\phi_{21 \text{ теор.}}^{\circ} = -135 \pm 13$, что находится в хорошем согласни с экспериментально определенной величиной ϕ_{21}° . Таким образом, установленные нами закономерности энергетического поведения модуля и фазы амплитуды регенерации свидетельствуют о том, что безотносительно к какой-либо модели амплитуда регенерации действительно удовлетворяет требованиям аналитнчности и перекрестной симметрии.

6/ Разность полных сечений взаимодействий каонов и антикаонов на протонах $\Delta \sigma_{\rm T}({\rm p}) = \sigma_{\rm T}({\rm K}^{\circ}{\rm p}) - \sigma_{\rm T}({\rm K}^{\circ}{\rm p})$, вычисленная на основании полученных нами данных, уменьшается с увеличением импульса по закону A·p⁻ⁿ с константами, указанными в *табл.* 2. Этот результат находится в хорошем согласии с прямыми измерениями разности полных изотопически инвариантных сечений взаимодействий K⁺-и K⁻-мезонов на нейтронах /16/ /см. *рис.* 7/. Степень согласия этих данных является одновременно экспериментальной проверкой изоспининвариантности для реакций с участием K - мезонов. Например, при 50 ГэВ/с различие в определении разности сечения по данным настоящей работы и работы/16/ составляет около 6% от $\Delta \sigma$ и около O,3% от величины любого из сечений.

Уменьшение с ростом импульса в интервале /10 -50/ ГэВ/с разности полных сечений взанмодействий каонов и антикаонов вместе с постоянством полных сечений взаимодействий отрицательных каонов /14/ независимо от прямых измерений /16/ устанавливали факт роста полных сечений взаимодействий положительных каонов при тех же энергиях.

Опираясь на установленный нами закон изменения разности полных сечений $\Delta \sigma_{\rm T}({\rm p})$ и выполнимость теоремы Померанчука, а также принимая во внимание данные по полным сечениям K[±] n -взаимодействий в области до 55 Γ эB/c, можно предсказать возрастание полного сечения $K^{-}n$ -взаимодействия уже в области 100 ÷ 200 $\Gamma \partial B/c$, что подтвердилось в недавно выполненной работе /35/.

В свою очередь, наблюдавшийся в работе/35/ закон изменения разности полных сечений $K^{\pm}n$ -взаимодействий в области 23÷280 ГэВ/с хорошо согласуется с нашими данными в перекрывающемся интервале импульсов /см. *табл.* 2/. Следовательно, можно ожидать, что установленные нами при 14÷ 50 ГэВ/с закономерности изменения модуля и фазы амплитуды регенерации на водороде будут справедливы и в более широкой области энергий, по крайней мере вплоть до ЗОО ГэВ.

7/ Из измерений амплитуды трансмиссионной регенерации на водороде согласно упрощенной модели КУМ можно определить значение траекторни ω -полюса при нулевом переданном импульсе, если этот полюс дает определяющий вклад в амплитуду. Как видно из формул /6/ и /7/, измерения ϕ_{21}° и $[d\sigma/dt]_{t=0}$ в этом случае должны давать одно и то же значение $\alpha(0)$. Из нашей средней величины фазы следует, что $\alpha(0) = 0,47\pm0,05$, а из энергетической зависимости сечения регенерации $\alpha(0) = 0,48\pm0,14$ /при $|\eta_{+-}| = 2,35.10^{-3}$ /. Таким образом, видно, что в данной области энергий два независимых метода определения величины $\alpha(0)$ дают согласующиеся результаты, которые, в свою очередь, согласуются с величиной $\alpha(0) \approx 0.5$, имеющейся в литературе /8,16/.

Следует заметить, что в работе $^{/34/}$ в области 1,5+10 ГэВ/с получена несколько отличная от нашей энергетическая зависимость дифференциального сечения регенерации под нулем, приводящая к величине a(0) == 0,33±0,03. В то же время из измерения фазы амплитуды регенерации в этой области следовало, что a(0) == 0,49±0,05. Авторы работы $^{/34/}$, таким образом, делают вывод, что имеет место нарушение зависимости фазы от энергии, предсказываемой моделью КУМ. Из наших данных таких указаний не следует. Более того, вычисления $[d\sigma/dt]_{t=0}$ и ϕ_{21}° с использованием общего вида амплитуды $f_{21}^{\circ}(p)$ /4/ и параметров вклада полюсов ω и ρ , определенных из других экспериментов/8,14/, показали /см. *рис.* 6/ хорошее согласие всех данных по регенерации на водороде с предсказаниями модели КУМ.

8/ В рамках моделей КУМ наблюдавшийся в Серпухове рост полных сечений взаимодействий К⁺-мезонов можно объяснить разными способами/¹⁰/ Эти же модели дают разные предсказания и для амплитуды регенерации на водороде. Их сравнение с нашими экспериментальными данными показало, что в пределах экспериментальных погрешностей предпочтение следует отдать модели, учитывающей только вклад в амплитуду полюсов ω и ρ . Как энергетический ход сечения регенерации, так и отношения реальных и мнимых частей амплитуды регенерации не требуют более сложных моделей, в которых учитываются диполи, комплексно-сопряженные полюса и другие особенности.

В заключение мы благодарим профессоров А.М.Балдина и А.А.Логунова за постоянную поддержку и внимание в данным экспериментам.

and the second second

and a start of the second start

Литература

and the second second

- 1. R.H.Good et al. Phys.Rev., 124, 1223 (1961).
- 2. А.С.Вовенко и др. ОИЯИ, Б2-1-5362, Дубна, 1970.
- 3. Э.О.Оконов. ОИЯИ, Р1-3788, Дубна, 1968.
- 4. K.Winter. Vorschlag zum Bau Eines 40 BeV Proton Synchrotrons, Kernforschungszentrum Karlsruhe Institut fur Experimentalle Kernphysik, Juli (1967).
- 5. И.Г.Азнаурян и Л.Д.Соловьев. ЯФ, 12, 638 /1970/.
- 6. M.Lusignoli, M.Restignoli, G.Violini. Nuovo Cim., 45A, 792 (1966). Phys.Lett., 24B, 296 (1967).
- 7. М.Е.Вишневский и др. ЯФ, 13, 855 /1971/.
- 8. V.I.Lisin et al. Nucl. Phys., B40, 298 (1972).
- 9. V.Barger, R.Phillips. Phys.Lett., 33B, 425 (1970).
- 10. G.V.Dass, C.Michel, R.Phillips. Nucl. Phys., B9, 549 (1969).
- 11. И.Я.Померанчук. ЖЭТФ, 34, 725 /1968/.
- 12. Review of Particle Properties. Phys.Lett., 50B, 1 (1974).
- 13. J.V.Allaby. Proc. of the XV Intern. Conf. on High Energy Physics, Kiev (1970), Kiev, Naukova Dumka, 1972, p. 11.

- 14. J.V.Allaby et al. Phys.Lett., 30B, 500 (1969).
- G.Giacomelli. Proc. of the Amsterdam Intern. Conf. on Elementary Particles (1971); North-Holand, Amsterdam, 1972. В.К.Бирулев и др. ЯФ 15, 959 /1972/; Phys.Lett., 38B, 452 (1972).
- 16. Ю.Горин и др. ЯФ, 17, 309 /1973/.
- 17. G.Giacomelli. Proc. of the XVI Int. Conf. on High Energy Phys., Chicago-Batavia (NAL, Batavia, 1972, v. 3, p. 319).
- 18. V.K. Birulev ét al. JINR, E1-6851, Dubna, 1972.
- 19. С.Г.Басилаозе и др. ОИЯИ, РІ-5361, Дубна, 1970.
- 20. А.С.Вовенко и ор. ОИЯИ, Р10-7460, Дубна, 1973.
- 21. Т.С.Григалашвили и ор. ОИЯИ, РЗ-5324, Дубна, 1970.
- 22. X. de Bouard et al. Nuovo Cim., 52A, 662 (1967).
- 23. В.К.Бирулев и ор. ОИЯИ, 1-6660; 1-6665, Дубна, 1972.
- 24. К.-Ф.Альбрехт и др. ОИЯИ, 1-7305, Дубна, 1973.
- 25. В.К.Бирулев и др. ОИЯИ, 1-7307, Дубна, 1973.
- 26. Л.Б.Голованов и др. ОИЯИ, 8-5416, Дубна, 1970.
- 27. Г.Вестергомби и др. ОИЯИ, РІО-7284, Дубна, 1973.
- 28. V.K.Birulev et al. Proc. of 1973 Int. Conf. on Instrum. for High Energy Phys., Frascati, Italy (Laboratori Nazionali del CNEN, Frascati, 1973) 688-706.
- 29. Г.Вестергомби и др. ЯФ, 20, 371 /1974/.
- 30. К.-Ф.Альбрехт и др. ОИЯИ, 1-7549, Дубна, 1973.
- 31. И.Н.Силин, Д-810, Дубна, 1961.
- 32. C.Geweniger et al. Phys.Lett., 48B, 487 (1974).
- 33. R.Messner et al. Phys.Rev.Lett., 30, 876 (1973).
- 34. G.W.Brandenburg et al. Phys.Rev., D8, 1978 (1973).
- 35. A.S.Carroll et al. Fermi National Accelerator
- Laboratory Preprint FERMILAB-PUB-75/51-EXP.
- 36. A.Firestone et al. Phys.Rev.Lett., 16 (1966), 556; 17 (1966) 116.
- 37. L.Leipunet et al. Phys. Rev., 132, 2285 (1963).
- 38. P.Darriulat et al. Phys.Lett., 33B, 433 (1970).
- 39. C.Buchman et al. Phys.Lett., 37B, 213(1971).
- 40. D.Freytag et al. Phys.Rev.Lett., 35, 412 (1975).
- 41. R.E.Hendrick et al. Phys. Rev., D11, 536 (1975).
- 42. A.A.Logunov et al. Ann. of Phys., 31, 203 (1965); Phys.Lett., 213, 71 (1969).
- 43. Нгуен Ван Хьеу. ТМФ, 8, 354 /1971/.
- 44. Р.Иден. Соударения элементарных частиц при высоких энергиях. М., Наука, 1970, спр. 254-260.
- 45. Я.Фишер, П.Коларж. Препринп ФИ ЧСАН, Прага, P-FZU 75/1.
- 46. V.N.Gribov et al. Phys.Lett., 32B, 129 (1970). А.А.Ансельм и ор. ЯФ, 11, 896 /1970/.

34

D.Horn. Phys.Lett., 31B, 30 (1970). R.J.Eden. Phys.Rev., 2D, 529 (1970). S.M.Roy. Phys.Lett., 34B, 407 (1971). C.C.Гершпейн и др. Письма в ЖЭТФ, 11, 72 /1970/. J.Finkelstein. Phys.Lett., 34B, 322 (1971);

см. также ссылки ^{/8,9/}. 47. V.G.Krivokhizhin, I.A.Savin. JINR Preprint, E1-9394, Dubna, 1975; submitted to Phys.Lett.

> Рукопись поступила в издательский отдел 5 января 1976 года.