

Объединенный институт ядерных исследований дубна

P1-94-497

Х.У.Абраамян, С.А.Чатрчян

АНАЛИЗ МОДЕЛИ КВАРКОВОЙ РЕКОМБИНАЦИИ ПО А-ЗАВИСИМОСТИ СЕЧЕНИЯ ОБРАЗОВАНИЯ ПИОНОВ В ПРОТОН-ЯДЕРНЫХ СТОЛКНОВЕНИЯХ

Направлено в журнал «Ядерная физика»

Абраамян Х.У., Чатрчян С.А. Анализ модели кварковой рекомбинации по *А*-зависимости сечения образования пионов в протон-ядерных столкновениях

Проведен анализ модели кварк-партонной рекомбинации применительно к протон-ядерным взаимодействиям с образованием мезонов с большими x и малыми поперечными импульсами. Анализ сделан на основе экспериментальных данных по зависимости сечения рождения *л*-мезонов от массы ядра-мишени при импульсе налетающего протона до 10 ГэВ. Использованы различные функции плотности ядра: экспоненциальные, гауссовского типа, фермиевского типа и др. Показано, что модель кваркпартонной рекомбинации хорошо описывает экспериментальные данные при использовании для плотности ядра фермиевской функции с параметрами, различными в разных областях атомных весов.

P1-94-497

P1-94-497

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1994

Перевод авторов

Abraamyan Kh.U., Chatrchyan S.A. The Analysis of Quark Recombination Model by the A-Dependence of Pion Production Cross Section in Proton-Nucleus Collisions

The quark-parton recombination model of meson production with large x and small transverse momentum in proton-nucleus interactions have been analysed. The analysis was performed on the base of the experimental data on the dependence of mesons production cross section on nucleus-target mass at the energies of incident protons up to 10 GeV. Different functions of nuclear density — exponential, Gaussian type, Fermi type and other, are used. It is shown that the quark-parton recombination model describes well the experimental data by using Fermi type density function with the different parameters in the diverse atomic weight regions.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1994

В настоящее время накоплен богатый экспериментальный материал по образованию мезонов в релятивистских нуклон – ядерных и ядро – ядерных взаимодействиях. Создано и развивается много теоретических моделей, описывающих эти процессы, и, хотя некоторое качественное понимание процессов фрагментации релятивистских нуклонов и ядер уже достигнуто, удовлетворительное количественное объяснение имеющихся данных еще далеко от завершения.

Цель данной работы – количественный анализ предсказаний модели кварк-партонной рекомбинации [1,2] применительно к процессам образования мезонов с малыми поперечными импульсами ($\theta \leq 16^{\circ}$, где θ угол вылета мезона в лабораторной системе) и большими x ($x \geq 0.6$, где x – переменная Бьёркена). Анализ проведен на основе сравнения предсказаний модели с экспериментальными данными [3,4] по зависимости сечения от атомного веса ядра в процессах

$$p + A \to \pi + X \tag{1}$$

при энергии налетающего протона до 10 ГэВ. В качестве мишеней в экспериментах использованы ядра A = Be, C, Cu, Pb. Отношение сечений образования пионов на различных ядрах в реакции (1) параметризовалось в форме

$$R = \sigma(p+A_1)/\sigma(p+A_2) = (A_1/A_2)^{\alpha(x,P_\perp)}.$$
 (2)

Согласно модели кварк-партонной рекомбинации, налетающий адрон фрагментирует, когда один из составляющих кварков сталкивается с мишенью. Спектаторный кварк с большим x, не участвующий во взаимодействии и таким образом сохраняющий первоначальную долю импульса, может фрагментировать или претерпеть рекомбинацию с медленным антикварком ($x \simeq 0$) и образовать мезон с большим x и малым

Goechentsiigh Heterpy AX RECRETES БИБЛИОТЕНА

 P_{\perp} . При этом если вновь образуемый адрон имеет общий со снарядом валентный кварк, то, согласно модели, при малых P_{\perp} доминирующим механизмом рождения мезонов является кварковая рекомбинация, а распределение фрагментов совпадает с распределением кварков в снаряде и не зависит от свойств ядра-мишени. Сечение такого процесса можно представить в виде [5]:

$$\sigma(pA \to M) = C(\sigma_{NA} - \sigma_{qA})q_N(x, P_{\perp}), \qquad (3)$$

где C – константа, $q_N(x, P_{\perp})$ – функция распределения по x и P_{\perp} кварков из налетающего протона, а σ_{jA} – полное эффективное сечение взаимодействия частицы j с ядром мишени A' [1,5]:

1.18.20

$$\sigma_{jA} = \int [1 - exp(-\sigma_{jN}^{tot}T(b))]db.$$
(4)

Здесь $T(b) = \int \rho(r) dz$, $\rho(r) - функция плотности ядра, <math>r^2 = b^2 + z^2$, z- координата вдоль оси пучка, b – прицельный параметр, σ_{jN}^{tot} – полное сечение взаимодействия частицы j с нуклоном (в рамках аддитивной кваркой модели $\sigma_{qN}^{tot} = \frac{1}{3}\sigma_{NN}^{tot}$ [6,7]).

Согласно (2) и (3), параметр α не зависит от x и P_{\perp} и равен

$$\alpha = \frac{1}{\ln(A_1/A_2)} \ln \frac{\sigma_{NA_1} - \sigma_{qA_1}}{\sigma_{NA_2} - \sigma_{qA_2}}.$$
 (5)

Для расчетов параметра α по формулам (3) – (5) использовались следующие функции плотности ядра [8]:

однородная сферически-симметричная :

$$\rho_s(r) = \begin{cases}
\rho_{so} , & \text{при } r \leq R_o, \\
0 , & \text{при } r > R_o,
\end{cases}$$
(F1)

где $R_o^2 = 5/3 < R^2 > fm^2$, $< R^2 >$ - среднеквадратичный радиус ядра,

экспоненциальная функция :

$$\rho_e(r) = \rho_{eo}(1 + r/a_e)exp(-r/a_e), \qquad (F2)$$

где $a_e^2 = 1/18 < R^2 > \phi M^2$; гауссовские функции :

 $\rho_g(r) = \rho_{go}(1 + wr^2/a_g^2)[exp(-r^2/d_g^2)], \qquad (F3)$

при

$$w = 0, \ a_g^2 = d_g^2 = 2/13 < R^2 > \ \mbox{$\sc mathemath{\sc mathemathm{\sc mathemathm{\sc mathemathm{\sc matham{\sc mathemathm{\sc mathemathm{\sc mathemathm{\sc mathemathm{\sc mathemathm{\sc mathemathm{\sc matham{\sc mathemathm{\sc mathemathm{\sc matham{\sc matham{\sc mathm{\sc matham{\sc matham{\sc matham{\sc matham{\sc mathm{\sc mathm{\sc matham{\sc mathm{\sc mathm$$

$$w = 4/3, \ a_g^2 = d_g^2 = 6/13 < R^2 > \Phi^2,$$
 (F3.b)

фермиевские функции :

$$\rho_w(r) = \rho_{wo} [1 + exp((r - a_w(A))/d_w)]^{-1}, \qquad (F4)$$

при

$$a_w(A) = 1.1A^{1/3} \, \text{фм}, \ d_w = 0.54 \, \, \text{фм}, \quad (F4.a)$$

$$a_w(A) = 1.19A^{1/3} - 1.61A^{-1/3} \ \Phi_M, \ d_w = 0.54 \ \Phi_M.$$
 [9] (F4.b)

Для среднеквадратичного радиуса ядра $< R^2 >$ использованы значения, приведенные в [8]. Нормировочные коэффиценты ρ_o определяются из условия

$$A = 4\pi \int \rho_A(r) r^2 dr.$$
 (6)

Экспериментальные данные по зависимости $\alpha(x)$, полученные разными группами, представлены на рис. 1,2.

Как видно из рисунков, в области $x \ge 0.6$ и $P_{\perp} < 0.5$ ГэВ/с параметр α практически не зависит от x и P_{\perp} , что совпадает с поведением α , предсказанным моделью. Средние значения α , измеренные в экспериментах на различных ядрах (Pb/Be; Cu/C), практически одинаковы и составляют $\alpha \simeq 0.37 \div 0.41$.

2

Рис.1. Зависимость степени α в параметризации (2) от переменной x в реакции (1) с образованием π^- (а)-и π^+ (б) – мезонов при разных энергиях налетающего протона, $A_r = Pb$, Be. Данные взяты из работы [3]. Сплошными линиями представлены результаты расчетов ($\alpha = 0.39$), выполненых в [5] с применением для описания плотности ядер функции F4.a.

4

Рис.2. Зависимость параметра α от переменных X_F (a) и P_{\perp}^2 (б) в реакции (1) с образованием нейтральных пионов при энергии налетающего протона $E = 4.6 \ \Gamma$ эB, $A_r = Cu, C$. Данные взяты из работы [4]. Пунктирными линиями представлено среднее значение $\alpha \simeq 0.40$.

Сплошными линиями на рис. 1 представлен результат расчетов ($\alpha = 0.39$), выполненных в работе [5] с применением для распределений плотности ядер *Be* и *Pb* функции *F*4.*a*. Как будет показано

5

ниже, распределения плотности указанных ядер описываются различными функциями, отличными от функции F4.a.

Результаты расчетов параметра α с применением функций плотности $F1 \div F4$ представлены на рис. 3,4 и в таблице.

Таблица. Значения α в параметризации (2), полученные в результате расчетов с применением функций плотности $F1 \div F4$

Функция	Pb / Be	Ta / Be	Cu / C	Pb / Cu	Cu / Si	Y / Si
F1	0.253	0.312	0.377	0.133	0.312	0.239
F2	0.567	0.588	0.610	0.589	0.603	0.576
F3.a	0.529	0.552	0.575	0.546	0.564	0.532
F3.b	0.633	0.650	0.669	0.663	0.670	0.649
F4.a	0.390	0.395	0.427	0.297	0.377	0.362
F4.b	0.464	0.470	0.504	0.377	0.466	0.451

Как видно из таблицы, применение одинаковой функции плотности приводит к различным значениям параметра α для разных пар ядер. Это указывает на то, что распределения плотности легких, средних и тяжелых ядер, по-видимому, описываются различными функциями.

На рис. З представлены результаты расчетов, полученные с применением для распределения плотности параметризации (F4) при значениях функции $a_w(A)$, определенных из экспериментов по eA – рассеянию (ссылки в [8]). Из рисунка видно удовлетворительное согласие результатов расчетов с экспериментальными данными. Это указывает на справедливость применения параметризации F4. Для установления области применимости функций $a_w(A)$ (F4.a и F4.b) на рис. 4 сравниваются результаты расчетов с применением указанных функций для ядер от A = 4 до A = 240. Параметр $\alpha(A)$ определялся из отношения сечения реакции (1) на ядре A к сечению на ядрах алюминия (рис. 4а) и свинца (рис. 46), при этом в расчетах для ядра алюминия использо–

Рис.3. Результаты расчетов параметра α из отношений $\sigma(pA)/\sigma(pSi)$ (a) и $\sigma(pA)/\sigma(pPb)$ (б) с применением параметризации F4 при значениях a_w и d_w , определенных из экспериментов по eA – рассеянию [8]. Пунктирными линиями указана область экспериментальных значений α .

7

Рис.4. Результаты расчетов параметра α из отношений $\sigma(pA)/\sigma(pAl)$ (а) и $\sigma(pA)/\sigma(pPb)$ (б) с применением функций F4.a и F4.b.

валась функция F4.a, а для ядра свинца – функция F4.b. Как видно из рисунков, удовлетворительное согласие с экспериментальными данными достигается при описании плотности ядер функцией F4.a в области атомных весов 20 $\lesssim A \lesssim 80$ и функцией F4.b в области A > 80. Для легких ядер с A < 10 указанные функции, по-видимому, неприменимы.

Таким образом, проведенный анализ позволяет сделать следующие выводы:

1. В рамках модели кварк-партонной рекомбипации, применительно к процессам образования пионов с параметрами $x \gtrsim 0.6$ и $P_{\perp} < 0.5\Gamma$ эB/с, возможно воспроизведение как поведения, так и абсолютного значения параметра α .

2. Удовлетворительное согласие с экспериментальными данными достигается при описании распределения плотности ядра фермиевской функцией

$$\rho_w(r) = \rho_{wo} [1 + exp((r - a_w(A))/d_w)]^{-1}$$

с параметрами:

$$a_w(A) = 1.1 A^{1/3} \, {
m ф}$$
м, $d_w = 0.54 \, {
m ф}$ м

для ядер с 20 $\stackrel{<}{\sim} A \stackrel{<}{\sim} 80$, и

 $a_w(A) = 1.19A^{1/3} - 1.61A^{-1/3}$ фм, $d_w = 0.54$ фм

для ядер с A > 80.

В заключение следует отметить, что увеличение энергии налетающей частицы, возможно, приведет к изменению значения параметра α . Это связано с тем, что при высоких энергиях возрастает вклад в сечение малых прицельных параметров. В центральной области ядра плотность, возможно, отличается от плотности в средней и периферической областях и различна для легких, средних и тяжелых ядер. Это приведет к необходимости описания плотности ядра функцией, отличной от фермиевской F4. Таким образом, точные измерения параметра α при более высоких энергиях позволят исследовать характер изменения плотности в центральной области ядра, в частности, возможные проявления кварк-глюонной плазмы.

8

9 ...

Авторы выражают свою искреннюю благодарность Г.Л.Мелкумову, М.Н.Хачатуряну и А.Г.Худавердяну за стимулирующие обсуждения и внимание к работе и И.С.Саитову за полезные замечания.

Литература

1. V.V.Anisovich, Yu.M.Shabelsky, V.M.Shekhter // Nucl.Phys. **B113**,(1978), 477.

N.N.Nikolaev, S.Pororski // Phys.Lett. 80B, (1979),
 290.

3. J.Papp et al. // Phys.Rev.Lett. 34, (1975), 601.

4. Х.У.Абраамян и др. // ОИЯИ Р1-94-289, Дубна, 1994.

5. G.Berlad, A.Dar // Phys.Lett. 102B,(1981), 385.

6. E.M.Levin, L.L.Frankfurt // JETP Lett. 2, (1965), 108.

7. H.I.Lipkin, F.Sheck // Phys.Rev.Lett. 16, (1966), 71.

8. H. de Vries et al. // Atomic Data and Nuclear Data Tables 36,(1987), 495.

9. K.Werner // Z.Phys. C42, (1989),85.

Рукопись поступила в издательский отдел 23 декабря 1994 года.