

Объединенный институт ядерных исследований дубна

P1-94-376

Р.Н.Бекмирзаев, Е.Н.Кладницкая, М.М.Муминов, С.А.Шарипова

БЫСТРОТНЫЕ РАСПРЕДЕЛЕНИЯ π⁻-МЕЗОНОВ В (d, α, C)Та-ВЗАИМОДЕЙСТВИЯХ ПРИ 4,2 ГэВ/с НА НУКЛОН

Направлено в журнал «Ядерная физика»

Работа посвящена анализу распределений π^- -мезонов по быстроте в зависимости от поперечного импульса пионов для dTa-, α Ta- и CTaвзаимодействий.

Подобный анализ для π^- -мезонов из *p*C-, *d*C-, *a*C-и CC-соударений проведен в работе [1], где было отмечено, что с увеличением поперечного импульса π^- -мезонов возрастает доля π^- в центральной области и сокращается в областях фрагментации сталкивающихся ядер. В [1] показано также, что модель кварк-глюонных струн (КГСМ) [2] удовлетворительно описывает экспериментальные распределения π^- -мезонов и сделан вывод, что Δ^- - и Δ^0 -изобары являются основными источниками π^- -мезонов в A_p C-взаимодействиях, причем, главным образом, источниками π^- с p, < 0,4 ГэВ/с.

Цель настоящей работы — проследить влияние поперечного импульса π^- -мезонов на быстротные распределения в (d, α, C) Та-взаимодействиях и сравнить экспериментальные данные с расчетами по модели кварк-глюонных струн [2]. Кроме того, предоставляется возможность провести сравнение быстротных характеристик π^- -мезонов в различных интервалах поперечного импульса, полученных во взаимодействиях (d, α, C) с легкой (C) и тяжелой (Ta) мишенями, а также исследовать влияние атомного веса ядра-мишени на распределения π^- -мезонов по поперечному импульсу. В частности, представляется интересным посмотреть, проявляется ли эффект усиления относительного выхода π^- -мезонов с малыми поперечными импульсами во взаимодействиях d, α и ядер углерода с тяжелой мишенью по сравнению с A_p С-соударениями, аналогичный тому, что наблюдался при сравнении p_t -спектров π^- -мезонов для CC-взаимодействий с различными n_{\pm} при 4,2 ГэВ/с на нуклон с соответствующими спектрами для нуклонных взаимодействий [3].

В последние годы исследованию и объяснению эффекта увеличения доли π^{-} -мезонов с $p_t < 0,2$ ГэВ/с в протон-ядерных и ядро-ядерных взаимодействиях по сравнению с *pp*-соударениями и взаимодействиями с легкой мишенью уделяют большое внимание как экспериментаторы [4—8], так и теоретики (см., например, [9] и ссылки там).

ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

В работе использован материал, полученный на двухметровой пропановой пузырьковой камере ЛВЭ ОИЯИ, облученной в пучках дейтронов, «-частиц и ядер углерода с импульсом 4,2 ГоВ/с на нуклон на синхрофазотроне ОИЯИ. В рабочем объеме камеры размещались три танталовые пластинки толщиной 1 мм на расстоянии 93 мм друг от друга.

Все отрицательные частицы в событии, кроме идентифицированных электронов, считались π^- -мезонами. Примесь неидентифицированных e^- и отрицательных странных частиц не превышает 5% и 1% соответственно [10]. Введены поправки на потерю частиц, вылетающих под углом, близким к 90°, и «застревающих» в пластинке, а также на потерю частиц, вылетающих под углом, близким к 90°, и «застревающих» в пластинке, а также на потерю частиц, вылетающих под углом, близким к 90°, и «застревающих» в пластинке, а также на потерю частиц, вылетающих под большими углами к плоскости фотографирования. В A_p Та-взаимодействиях π^- -мезоны надежно идентифицируются при импульсах $\rho > 0,08$ ГэВ/с.

Полная поправка на потери π^- -мезонов составляет 11% для дейтронного и ~7% для углеродного облучений. Болес подробно методические вопросы рассмотрены в работе [11]. Число событий и средняя множественность π^- -мезонов по типам взаимодействий представлены в табл.1.

•	Гин 105	Ν _{coű.}	(n_)	(Р), ГэВ/с	($ heta$), град.	(Р ₁). ГоВ/с
dTa		1475	0,86±0,03	0,46±0,01	57,2±1,4	0,24±0,01
aTa		1149	1,42±0,06	0,47±0,01	$52,1\pm1,3$	0,225±0,004
CTa	экси.	1989	3,40±0,04	0,44±0,01	51,4±0,6	0,220±0,004
	KICM	2914	5.18±0,04	0,374±0.003	53,0±.0,4	0,194±0,002

Таблица 1. Средние характеристики л -мезонов

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Быстротные распределения π^- -мезонов в различных интервалах поперечного импульса для СТа-взаимодействий показаны на рис.1. Распределения пионов имеют максимумы, сдвинутые в область фрагментации ядрамишени ($A_p < A_T$). По мере увеличения поперечного импульса π^- -мезонов максимум быстротных распределений смещается к $y_0 = y_{c.u.m.}$ для NN-

Рис. 1. Быстротные распределения π^- -мезонов в различных интервалах поперечного импульса для СТа-взаимодействий:

 $\begin{array}{l} a - \pi^{-} \ c \ p_{t} < 0,1 \ \Gamma \ni B/c; \\ \delta - \pi^{-} \ c \ 0,1 \ \leq p_{t} < 0,2 \ \Gamma \ni B/c; \\ a - \pi^{-} \ c \ 0,2 \ \leq p_{t} < 0,3 \ \Gamma \ni B/c; \\ \epsilon - \pi^{-} \ c \ 0,3 \ \leq p_{t} < 0,5 \ \Gamma \ni B/c; \\ \delta - \pi^{-} \ c \ p_{t} \ge 0,5 \ \Gamma \ni B/c. \end{array}$

Точки — экспериментальные данные, гистограмма — модель кварк-глюонных струн, кривые — вклад различных источнихов π^- -мезонов по КГСМ. Δ^- -изобара — (---), dir («прямые» π^- , см. текст) — сплошная кривая, ρ, ω — (**)

взаимодействий ($y_0 = 1,1$), т.е. обогащается π^- -мезонами центральная область, характерная для *NN*-соударений. При этом быстротные распределения становятся уже, т.е. уменьшается доля π^- -мезонов в областях фрагментации сталкивающихся ядер. С увеличением поперечного импульса $\pi^$ в быстротных распределениях π^- -мезонов для *d*Ta и α Ta-взаимодействий также возрастает доля π^- в центральной области.

Влияние атомного веса ядра-снаряда на быстротные распределения проявляется в положении максимума распределений. Наибольшим удалением от y_0 в область фрагментации ядра-мишени характеризуются быстротные распределения π^- -мезонов с $p_t < 0,2$ ГэВ/с в dTa-соударениях (см. $\langle y \rangle$) в табл.2).

	p, <	0,1	
	dTa	αΤα	СТа
(y) ^{3KCR}	0,63±0,06	0,64±0,05	0,68±0,02
(y)KICM	-	—	0,63±0,01
	0,1 ≤	p ₁ < 0,2	
(y) ^{3κcn.}	0,63±0,05	0,74±0,04	0,72±0,01
(y) ^{KICM}	-	-	0,67±0,01
. <u> </u>	0,2 ≤	$p_t < 0.3$	
(y) ^{5κcπ.}	0,66±0,05	0,80±0,04	0,80+0,03
(y) ^{KICM}		_	0,82±0,02
	0,3 ≤	$p_t < 0.5$	······································
(y) ^{3KCD.}	0,77±0,05	0,86±0,04	0,84±0,04
(y) ^{KICM}	_		0,85±0,02
	, ≥	≥ 0,5	
(y) ^{2KCH.}	0,76±0,06	0,92±0,05	0,97±0,07
(y) ^{KICM}	_	_	0,87±0,02
	BC	e p _t	
(у) ^{эксп.}	0,68±0,02	0,76±0,02	0,75±0,01
(у) ^{кгсм}		-	0,710±0,006

Таблица 2. Средние значения быстрот по интервалам p_{\star}^{π}

По мере увеличения атомного веса налетающего ядра (от $d \kappa C$) максимум быстротного распределения смещается к y_0 , причем эта зависимость от A_p усиливается с ростом $p_t \pi^-$ -мезонов в отличие от $(d, \alpha, C)C$ -взаимодействий, где для π^- с $p_t > 0,2$ ГэВ/с наблюдалась более слабая зависимость от A_p , чем для π^- с $p_t < 0,2$ ГэВ/с [1].

Проследим теперь влияние атомного веса ядра-мишени на распределение π^- -мезонов по поперечному импульсу. На рис.2 представлено отношение нормированных импульсных (по p_r) распределений π^- -мезонов из

$$A_p$$
Та- и A_p С-взаимодействий, $R = \frac{(1/N_- \cdot dN_-/dp_t)^{A_p Ta}}{(1/N_- \cdot dN_-/dp_t)^{A_p C}}$. Видно, что

использование тяжелой мишени приводит к увеличению доли π^- -мезонов с малыми поперечными импульсами ($p_t < 0.2 \ \Gamma$ эB/с) и уменьшению относительного выхода π^- в интервале $0.2 \le p_t < 0.6 \ \Gamma$ эB/с. Выше $p_t = 0.6 \ \Gamma$ эB/с

Рис. 2. Зависимость отношения *R* от величины поперечного импульса. Точки — эксперимент, кривая — КГСМ для СТа/СС

намечается возрастание отношения R^* . Следует отметить, что величина R в пределах ошибок не зависит от атомного веса ядра-снаряда в интервале $p_i < 0.5 \ \Gamma_{2}B/c$.

На рис.3 представлены отношения R_1 быстротных распределений π^- мезонов из СТа- и СС-взаимодействий в соответствующих интервалах поперечного импульса, которые позволяют определить влияние атомного веса ядра-мишени на быстротные распределения:

$$R_{1} = \frac{\left(\frac{1/N_{-} \cdot dN_{-}/dy}{0}\right)^{\text{CTa}}}{\left(\frac{1/N_{-} \cdot dN_{-}/dy}{0}\right)^{\text{CC}}}.$$

л⁻-мезоны с малыми p_t(p_t < 0,2 ГоВ/с) из СТа-взаимодействий явно превалируют в задней полусфере, т.е. в области фрагментации ядра Та (рис.3, *a*, *б*). В центральной области быстрот ($y \approx 1, 1$) отношение $R_1 \approx 1$, т.е. оба типа взаимодействий дают в эту область одинаковый относительный вклад π^- -мезонов. Эта особенность сохраняется во всех интервалах поперечного импульса л⁻-мезонов. В передней полусфере для интервала $p_t < 0,2$ ГэВ/с отношение $R_1 < 1$, т.е. доля π^- -мезонов с малыми p, в этой области быстрот в СТа-соударениях меньше, чем в СС-взаимодействиях. С увеличением поперечного импульса π^- -мезонов характер зависимости R_1 от быстроты меняется (рис.3, в, г, д): величина R, уменьшается в области фрагментации ядра-мишени и возрастает в области фрагментации ядраснаряда. При $p_t \ge 0,5$ ГэВ/с величина R_1 в пределах ошибок постоянна на уровне $R_1 \approx 0.9$ почти во всем интервале быстрот, исключение составляет область у ≈ 0 (рис.3,д). Этот результат свидетельствует о том, что относительный выход π^{-} -мезонов с $p_{t} \ge 0.5 \ \Gamma_{2}B/c$ не зависит от атомного веса ядра-мишени в широком интервале быстрот.

Следует отметить, что независимость R_1 от A_T в широком интервале быстрот характерна для π^- -мезонов именно с большими поперечными, а не с полными импульсами в определенной части спектра. На рис.3, д светлыми точками показаны значения R_1 для π^- -мезонов с $p_1 < 0,1$ ГэВ/с и импуль-

^{*}Из-за малой статистической обеспеченности значения R в области $p_i > 0.8$ ГэВ/с не приводятся.

Рис.3. Зависимость R_1 от быстроты в различных интервалах поперечного импульса: $a - \pi^- c p_t < 0,1 \ \Gamma \ 2B/c;$ $b - \pi^- c 0,1 \le p_t < 0,2 \ \Gamma \ 3B/c;$ $a - \pi^- c 0,2 \le p_t < 0,3 \ \Gamma \ 3B/c;$ $c - \pi^- c 0,3 \le p_t < 0,5 \ \Gamma \ 3B/c;$ $d - \pi^- c p_t \ge 0,5 \ \Gamma \ 3B/c.$ $0 - \pi^- c p_t < 0,1 \ \Gamma \ 3B/c u p_{na6.} > 0,5 \ \Gamma \ 3B/c$

сами в той же части спектра, что и π^- с $p_t \ge 0.5$ ГэВ/с ($p_{лаб.} > 0.5$ ГэВ/с). Видно, что все эти точки сосредоточены в узком интервале быстрот, соответствующем области фрагментации ядра-снаряда.

На рис.4 представлена зависимость отношения средних множественностей π^- -мезонов в СТа- и СС-взаимодействиях (R_2) от быстроты. Как и ожидалось, увсличение $\langle n_- \rangle$ при переходе от СС- к СТа-соударениям происходит неравномерно по интервалам быстрот. Наибольший рост множественности π^- -мезонов наблюдается в области фрагментации ядрамишени (в 4—5 раз), в меньшей степени (~в 2 раза) увеличивается $\langle n_- \rangle$ в центральной области быстрот. В области фрагментации ядра-снаряда R_2 близко к 1, поскольку в обоих типах взаимодействий одно и то же ядро углерода налетает на мишени.

Рис.4. Зависимость R2 от быстроты

Ранес [10] было показано, что увеличение множественности π^- -мезонов с увеличением атомного веса налетающего ядра в A_p Та-взаимодействиях происходит практически равномерно по всему интервалу быстрот.

СРАВНЕНИЕ С МОДЕЛЬЮ КВАРК-ГЛЮОННЫХ СТРУН

Экспериментальные данные, полученные для СТа-взаимодействий, сравнивались с мсделью кварк-глюонных струн, адаптированной к энергиям $\sqrt{s} \leq 4$ ГэВ [2]. В качестве источников π -мезонов в модели фигурируют Δ^- и Δ^0 -изобары ρ^- , ρ^0 , ω , η - и η' -мезоны. Кроме того, в модели часть π^- -мезонов образуется не от распада резонансов, а прямо в адрон-адронных взаимодействиях («прямые» π^- -мезоны). Это могут быть первичные и вторичные *NN*-соударения (*NN* \rightarrow *NN* π), а также взаимодействия вторичных мезонов с нуклонами ($\pi N \rightarrow \pi\pi N$, $\rho N \rightarrow \pi N$).

Сравнение средних множественностей π^{-} -мезонов показало, что модель КГС завышает (n_{-}) в 1,5 раза (см. табл. 1) по отношению к (n_{-})^{эксп.}.

Общее представление о степени согласия экспериментальных данных с моделью КГС можно получить из рис.5-8, где показаны нормированные на полное число π^- -мезонов инклюзивные распределения π^- -мезонов по кинематическим переменным для СТа-взаимодействий. Наблюдается заметное различие между экспериментом и КГСМ в импульсных, угловых и быстротных распределениях π^- -мезонов и в средних значениях переменных (см. табл.1). Импульсный спектр π^- в модели мягче, угловое распределение шире. Продолжая сравнение экспериментальных распределений л мезонов с моделью КГС, можно видеть, что расхождение между ними проявляется и в быстротных распределениях для разных интервалов p_t (рис.1). Так что можно говорить лишь о том, что модель КГС качественно воспроизводит форму экспериментальных распределений л - мезонов. Вклады л -мезонов от различных источников в рассматриваемые интервалы поперечных импульсов для СТа-взаимодействий представлены на рис.9. По модели КГС более 60% π^- -мезонов образуется от распада Δ^- - и Δ^0 -изобар. Особенно большой вклад изобары Δ^- и Δ^0 дают в интервале поперечных импульсов π^{-} меньше 0,3 ГэВ/с. С ростом p_t роль Δ -изобар уменьшается, и в диапазоне больших $p_t(p_t \ge 0.5 \ \Gamma \ni B/c)$ их вклад сокращается до 30%. При

Рис.5. Импульсные распределение π^- -мезонов для СТа-взаимодействий. Точки экспериментальные данные, гистограмма — КГСМ

Рис.7. Угловое распределение π^- -мезонов для СТа-взаимодействий. Точки — эксперимент, гистограмма -- КГСМ. Кривые вклад различных источников π^- -мезонов по КГСМ. Δ^0 — (---), η , η^- — (···). Другие обозначения, как на рис.1

Рис.6. Распределение π^- -мезонов по поперечному импульсу для СТа-взаимодействий. Обозначения, как на рис.5

Рис.8. Распределение *л*⁻-мезонов по быстроте для СТа-взаимодействий. Обозначения, как на рис.7

этом несколько увеличивается доля π^- от распада мезонных резонансов (φ , ω) и существенно возрастает вклад прямых π^- -мезонов (до 50%), см. рис.9. Доля π^- -мезонов от распада η и η' не превышает 2%. Аналогичная картина наблюдалась для π^- -мезонов из (ρ , d, α , C)C-взаимодействий [1]. Быстро-

та: ∴ деления π⁷-мезонов от различных источников для моделирован-СТа-соударений показаны ных на рис.1,8, по которым можно проследить изменение формы этих распределений с величиной р. Следует отметить, что максимумы углового (рис.7) и быстротраспределений π-мезонов ных (рис.1,8) из моделированных СТа-событий по положению совпалают С максимумами распределений л-мезонов от распада Д-изобар, и можно думать, что наблюдаемые расхождения между экспериментальными и модельными распределениями связаны с завышенным вкладом А-изобар в КГСМ. По

Рис.9. Относительный вклад источников π⁻-мезонов в импульсный спектр (*p*_t) по КГСМ для СТа-взаимодействий

модели КГС источником ~80% «прямых» π^- -мезонов служат вторичные мезон-нуклонные взаимодействия [12].

ЗАКЛЮЧЕНИЕ

Проведено исследование быстротных распределений π^- -мезонов в различных интервалах поперечного импульса для d Та-, α Та-, СТа-взаимодействий при 4,2 ГэВ/с на нуклон. Экспериментальные результаты, полученные для СТа-соударений, сравнивались с моделью кварк-глюонных струн [2].

Показано, что по мерс увеличения поперечного импульса π^- -мезонов возрастает доля π^- -мезонов в центральной области и сокращается в областях фрагментации сталкивающихся ядер, максимум быстротных распределений смещается к $y_0 = y_{c.u.m.}$ для нуклон-нуклонных соударений. Форма у-распределений зависит от атомного веса налетающего ядра: с увеличением A_p (от $d \in C$) максимум у-распределений смещается в область больших быстрот, причем в большей степени для $p, \ge 0,5 \Gamma \ge B/c$ (см. табл.2).

Исследовано влияние атомного веса ядра-мишени на форму быстротных распределений π^- -мезонов и распределений по поперечному импульсу. Переход от легкой мишени (С) к тяжелой (Та) приводит к значительному увеличению относительного выхода π^- -мезонов с малыми поперечными

12

импульсами ($p_t < 0,2$ ГэВ/с) (рис.2). Если сравнить быстротные распределения π^- с малыми p_t для СТа- и СС-взаимодействий, то можно увидеть (рис.3, *a*, *b*) существенное влияние атомного веса ядра мишени на быстротные распределения π^- -мезонов с $p_t < 0,2$ ГэВ/с. Переход к тяжелой мишени приводит к увеличению доли π^- с $p_t < 0,2$ ГэВ/с в области фрагментации ядра-мишени и уменьшению выхода таких π^- в области фрагментации ядра-снаряда. С увеличением $p_t \pi^-$ -мезонов уменьшается влияние атомного веса ядра-мишени на их быстротные распределения (рис.3, *a*, *c*, *d*). Относительный выход π^- -мезонов с $p_t \ge 0,5$ ГэВ/с не зависит от A_T в широком интервале быстрот (рис.3,*d*).

Увеличение средней множественности π^- -мезонов (см.табл.1) в СТавзаимодействиях по сравнению с углерод-углеродными происходит за счет роста $\langle n_{-} \rangle$ в области фрагментации ядра-мишени (в 4—5 раз) и ~ в 2 раза в центральной области быстрот (рис.4). Явление увеличения доли π^- -мезонов с малыми p_t в pA_T - и A_pA_T -взаимодействиях по сравнению с *pp*-соударениями и взаимодействиями на более легкой мишени, наблюдавшееся при более высоких энергиях (14—275 ГэВ) [4—8], привлекло внимание многих теоретиков [9]. Успех в описании экспериментальных результатов сопут-ствовал моделям, учитывающим образование π^- -мезонов через распад Δ -изобар и мезонных резонансов [13—15].

При энергии данного эксперимента $E_0 = 3,36$ А ГэВ хорошее описание зависимости R от p_t при малых поперечных импульсах π^- -мезонов получено по модели КГС, учитывающей рождение π^- через распад Δ -изобар и мезонных резонансов. По модели КГС увеличение относительного выхода π^- мезонов с $p \leq 0,1$ ГэВ/с в СТа-взаимодействиях происходит за счет увеличения доли π^- -мезонов от распада изобар и в большей степени от распада ρ - и ω -мезонов $\left(\frac{\rho + \omega}{\Delta^0 + \Delta^-} \approx 2\right)$.

Сравнение экспериментальных данных для СТа-взаимодействий с моделью кварк-глюонных струн показало, что использованный нами вариант КГСМ может претендовать лишь на качественное описание формы инклюзивных распределений π^- -мезонов по кинематическим переменным. В модели КГС существенно завышена (в 1,5 раза) средняя множественность π^- -мезонов для СТа-взаимодействий. Тот факт, что эта модель удовлегворительно описывает экспериментальные данные, полученные при анализе pC-, dC-, aC-и CC-взаимодействий [1], где роль вторичных процессов невелика, позволяет сделать вывод, что расхождение модели с экспериментом связано с не совсем корректным учетом вторичных взаимодействий частиц в ядре тантала. Вместе с тем, модель КГС [2] хорошо описывает зависимость величины R от поперечного импульса π -мезонов до 0,5 ГэВ/с (рис.2).

Авторы благодарят С.Ю.Сивоклокова за представление моделированных событий и полезные обсуждения, В.Д.Тонеева — за полезные обсуждения и замечания, участников сотрудничества — за вклад в получение экспериментального материала, лаборантов — за просмотр пленок и измерения событий, Л.А.Ратникову — за помощь в оформлении рукописи.

ЛИТЕРАТУРА

- 1. Бекмирзаев Р.Н., Кладницкая Е.Н., Шарипова С.А. Препринт ОИЯИ Р1-93-464, Дубна, 1993; ЯФ, 1995, т.58, вып.1.
- 2. Амелин Н. С. и др. ЯФ, 1990, т.52, вып. 1(7), с.272.
- 3. Simić L. et al. Z. Phys. C., 1990, vol.48, p.577.
- 4. Garbutt D. et al. Phys. Lett., 1977, vol. B67, p.355.
- 5. Ahmad S. et al. Phys. Lett., 1992, vol. B281, p.29.
- 6. Stachel J. et al. -- Nucl. Phys., 1994, vol.A566, p.183c.
- 7. Röhrich D. et al. Nucl. Phys., 1994, vol.A566, p.35c.
- 8. Ströbele 11. et al. Z. Phys., 1988, vol.38, p.89.
- 9. Simon Gillo J. Nucl. Phys., 1994, vol.A566, p.175c.
- 10. Агакишев Г.Н. и др. ЯФ, 1981, т.34, с.1517.
- 1. Ивановская И.А. Сообщение ОИЯИ Р1-91-264, Дубна, 1991.
- 12. Backović S. et al. Preprint JINR E1-91-376, Dubna, 1991.
- 13. Brown G.E. et al. Phys. Lett., 1991, vol. B253, p.19.
- 14. Hemmick T.K. Nucl. Phys., 1994, vol.A566, p.435c.
- 15. Sollfrank J., Koch R., Heinz U. Phys. Lett., 1990, vol. B252, p.256.

Рукопись поступила в издательский отдел 23 сентября 1994 года.