

03-813

Объединенный институт ядерных исследований дубна

P1-93-213

В.П.Зрелов, В.П.Лупильцев, Я.Ружичка*

НАБЛЮДЕНИЕ АСИММЕТРИЧНОГО ДВУХКОНУСНОГО ИЗЛУЧЕНИЯ ВАВИЛОВА — ЧЕРЕНКОВА В ДВУХОСНОМ КРИСТАЛЛЕ ТРИГЛИЦИНСУЛЬФАТА, ИСПУСКАЕМОГО ПРОТОНАМИ С ЭНЕРГИЕЙ 658 МЭВ ПРИ ПРОЛЕТЕ ИХ ВДОЛЬ БИНОРМАЛИ

Направлено в «Журнал экспериментальной и теоретической физики»

*Университет Коменского, Братислава, Словацкая Республика

1. ВВЕДЕНИЕ

В работе [1] уже исследовалось излучение Вавилова — Черенкова (ИВЧ) в двухосном кристалле триглицинсульфата (ТГС) при движении протонов с энергией 660 МэВ вдоль главных диэлектрических осей ε_1 , ε_2 , ε_3 . При этом были обнаружены интересные особенности ИВЧ. Так, при пролете протонов вдоль малой биссектрисы (ось X_1) азимутальное распределение $F(\varphi)$ интенсивности волн F_-^* было овальным с равномерным распределением, а волны F_+ имели вид «лепестков», расположенных вблизи плоскости оптических осей (X_10X_3) и симметрично относительно нее, так что в целом излучение в этом случае можно коротко назвать «овально-лепестковым».

При движении протонов вдоль главных осей X_2 (перпендикулярно ПОО) и X_3 (вдоль большой биссектрисы) распределение интенсивности ИВЧ по азимутальному углу φ (как волн F_+ , так и F_-) было эллипсоидальным и неравномерным, поэтому излучение в этом случае можно условно назвать «двухэллипсным».

Экспериментальные азимутальные распределения, направленность и поляризация излучения полностью объяснялись теорией Музикаржа [2] и Обдржалека [3].

Что касается случая движения частиц вдоль бинормали, то перед постановкой настоящих опытов имелось лишь два предсказания. Одно — Музикаржа [4], касающееся случая движения частицы вдоль бирадиали двухосного кристалла с околопороговой скоростью, показавшее, что в этом случае интенсивность излучения нарастает более круто, чем при движении частиц по другим направлениям.

Другое самое общее высказывание по поводу особенностей ИВЧ в двухосном кристалле было сделано Гинзбургом [5] более пятидесяти лет назад**.

^{*}Волны F₊ и F₋ — это ИВЧ с взаимноперпендикулярной поляризацией.

^{***}В случае двухосного кристалла имеется большое число физически выделенных направлений. Однако качественно картина излучения остается такой же, как в одноосном кристалле, за исключением двух особенностей. Первая особенность малосущественна и связана с дисперсией осей. Дисперсия осей, которая общими формулами (10') и (15) неявно учитывается, должна приводить к хроматическим эффектам. Так, например, если электрон движется по главной оси для частоты v, то для других частот это направление не будет главной осью; следовательно, характер излучения несколько изменится (например, изменится зависимость v₀ от φ)».

2. УСЛОВИЯ ПРОВЕДЕНИЯ ОПЫТОВ

В эксперименте использовался кристалл ТГС размером $20 \times 20 \times 5$ мм, вырезанный в Институте кристаллографии РАН так, что бинормаль кристалла была перпендикулярна граням 20×20 мм (с точностью ~ $\pm 0,5^{\circ}$ для $\lambda = 546,1$ нм), а плоскость оптических осей (X_1, X_3) была параллельна грани 20×5 мм, как это показано на рис.1. Величины главных диэлектрических проницаемостей этого кристалла приведены в работе [6] и табл.1. Точность определения показателей преломления n_p, n_m и n_g по графикам работы [6] составляет примерно $\pm 0,002$.

Рис.1. Ориентация бинормалей O_1 и O_2 кристалла ТГС относительно его плоскости среза (пучок частиц направлялся вдоль бинормали O_1). Размеры кристалла даны в мм

Опыт производился на выведенном коллимированном пучке протонов от реконструированного фазотрона ОИЯИ. Диаметр коллиматора был 5 мм, а длина 700 мм. Средняя

Рис.2. Схема работы черенковской фотокамеры: 1 — коллиматор, формирующий пучок протонов; 2 — пучок протонов; 3 кристалл ТГС; 4 — фокусирующая (и одновременно реперная) линза; 5 — излучение от кристалла ТГС; 6 — плоский тонкий поляроид; 7 — черенковское излучение от линзы 4; 8 — фотопластинка или цветная негативная фотопленка

энергия пучка измерялась так называемым комбинированным черен-ковским методом [7] и была равна 658 МэВ.

Для регистрации всего азимутального распределения излучения, испускаемого протонами в кристалле, использовалась специальная черенковская фотокамера*, схема работы которой показана на рис.2. Пучок прото-

^{*}Разработка В.П.Зрелова.

λ, нм	$\varepsilon_1 = \varepsilon_x = n_p^2$	$\varepsilon_2 = \varepsilon_y = n_m^2$	$\varepsilon_3 = \varepsilon_z = n_g^2$
400	1,5034 ²	1,5784 ²	1,6067 ²
500	1,490 ²	1,561 ²	1,587 ²
546,1	1,489 ²	1,556 ²	l,582 ²
600	I,482 ²	1,551 ²	1,576 ²
650	1,479 ²	1,547 ²	1,572 ²

Таблица 1

нов (2) через коллиматор (1) пропускался вдоль бинормали кристалла ТГС (3), находившегося в оптическом контакте (смазка «SISS compound S17») с толстой (12 мм по оси) плоскопараболической линзой (4) с $f_D = (22,7 \pm 0,1)$ мм и показателем преломления $n_D = 1.512 \pm 0,001$.

ИВЧ (5), испущенное в кристалле, фокусировалось линзой, в фокальной плоскости которой располагалась плоская цветная негативная фотопленка (8) NC19 «ORWOCOLOR» размером 18×24 см и чувствительностью 19 DIN или фотопластинки типа «Изоортохром» (90 ед. ГОСТа). В поляризационных опытах использовался полихлорвиниловый поляроид (б). ИВЧ (7), возникшее в самой линзе (4), также регистрировалось на фотопленке в виде правильного кольца и служило репером при определении углов испускания ИВЧ в кристалле.

3. СВОЙСТВА НАПРАВЛЕННОСТИ ИВЧ ДЛЯ СЛУЧАЯ ДВИЖЕНИЯ ЧАСТИЦ ВДОЛЬ БИНОРМАЛИ

3.1. Углы черенковского излучения в плоскости оптических осей (ПОО)

Из построений по методу Пафомова [8] можно показать, что углы ИВЧ в этом случае для волн F_{\perp} имеют вид:

$$\operatorname{tg} \theta^{\pm} = \beta_0 X_{1,2},\tag{1}$$

где β_0 — скорость протонов в центре пластинки ТГС (вычислялась из измерений средней энергии),

$$X_{1,2} = \frac{b}{a} \pm \frac{\sqrt{b^2 - ac}}{a},$$

$$a = n_x^2 \cos^2 \beta + n_z^2 \sin^2 \beta;$$

$$b = p \sin \beta \cos \beta (n_z^2 - n_x^2);$$

$$c = p^2 n_x^2 \sin^2 \beta + p^2 n_z^2 \cos^2 \beta - n_x^2 n_z^2;$$

$$p = \frac{1}{\beta_0}, \ \sin \beta = \frac{n_z}{n_y} \sqrt{\frac{n_y^2 - n_x^2}{n_z^2 - n_x^2}},$$

при условии $n_z > n_y > n_x$.

Для длины волны $\lambda = 600$ нм (при которой производились измерения углов излучения) и значений $n_z = 1,576$; $n_y = 1,551$; $n_x = 1,482$ расчет по формуле (1) для скорости $\beta_0 = 0,809$ дает значения углов ИВЧ:

 $\theta^{(-)} = 38°14,5' (\varphi = 0°, т.е. над плоскостью, проходящей через ось пучка перпендикулярно ПОО),$

$$\theta^{(+)} = -34^{\circ}25'$$
 (знак (-) соответствует $\varphi = 180^{\circ}$, т.е. под пучком),

а $\Delta \theta = \theta^- - |\theta^+| = 3^{\circ}49,5'$ определяет асимметрию волн F_- и F_+ в этой плоскости^{*}.

Углы излучения волн $F_{\rm B}$ ПОО для $\varphi = 0^{\circ}$ и $\varphi = 180^{\circ}$ должны быть одинаковыми (например, как это следует из графических построений), а условие направленности для них имеет вид

$$\cos\theta^{\pm} = \frac{1}{n_y \beta_0}.$$
 (2)

При $n_v = 1,5509$ и $\beta_0 = 0,809$ $\theta^- = 37^{\circ}06,5'$.

3.2. Углы испускания ИВЧ в плоскости, перпендикулярной ПОО (φ = 90°)

Свойства направленности в этом случае определяются следующими формулами (частный случай общей формулы (4) при $\varphi = 90^\circ$):

^{*}Знаки (+) и (-) как у углов θ , так и у волн F_+ и F_- относятся соответственно к внутреннему и внешнему конусам ИВЧ.

$$\iota g^2 \theta^{+,-} = \frac{U}{p^2},\tag{3}$$

$$U = -\frac{B'}{2\varepsilon_y} \pm \frac{\sqrt{(B')^2 - 4D'\varepsilon_y}}{2\varepsilon_y};$$

$$B' = n_z^2 \left(\varepsilon_y - \frac{B}{n_z^2} + \varepsilon_z \cos^2\beta + \varepsilon_x \sin^2\beta\right);$$

$$D' = n_z^4 (\varepsilon_x \sin^2\beta + \varepsilon_z \cos^2\beta) - n_z^2 (A \sin^2\beta + C \cos^2\beta) + D;$$

$$A = \varepsilon_x (\varepsilon_y + \varepsilon_z); \quad B = \varepsilon_y (\varepsilon_x + \varepsilon_z);$$

$$C = \varepsilon_z (\varepsilon_x + \varepsilon_y); \quad D = \varepsilon_x \varepsilon_y \varepsilon_z.$$

$$n_z^2 = \frac{1}{\beta_0^2} = p^2; \quad n_z^4 = p^4.$$

3.3. Выражение для направленности ИВЧ в произвольной плоскости φ

Довольно громоздкие вычисления приводят к общему уравнению для определения углов θ^{\pm} в двухосном кристалле при любом φ , которое имеет вид:

$$A_{0}^{'}(\varphi) \operatorname{tg}^{4} \theta^{\pm}(\varphi) + B_{0}^{'}(\varphi) \operatorname{tg}^{3} \theta^{\pm}(\varphi) +$$

+ $C_{0}^{'}(\varphi) \operatorname{tg}^{2} \theta^{\pm}(\varphi) + D_{0}^{'}(\varphi) \operatorname{tg} \theta^{\pm}(\varphi) + \varepsilon_{0} = 0,$ (4)

где

$$\begin{aligned} A_0'(\varphi) &= p^4 \left(\varepsilon_x \cos^2\beta \cos^2\varphi + \varepsilon_y \sin^2\varphi + \varepsilon_z \sin^2\beta \cos^2\varphi \right); \\ B_0'(\varphi) &= 2p^4 \sin\beta \cos\beta \cos\varphi \left(\varepsilon_x - \varepsilon_z \right); \\ C_0'(\varphi) &= p^2 \left\{ \varepsilon_x p^2 \left(\cos^2\varphi + \sin^2\varphi \sin^2\beta \right) + \varepsilon_y p^2 \sin^2\varphi + \right. \\ &+ \varepsilon_z p^2 \left(\cos^2\varphi + \sin^2\varphi \cos^2\beta \right) - A \cos^2\varphi \cos^2\beta - B \sin^2\varphi - C \sin^2\beta \cos^2\varphi \}; \\ D_0' &= 2p^2 \sin\beta \cos\beta \cos\varphi \left\{ p^2 (\varepsilon_x - \varepsilon_z) - A + C \right\}; \\ &\varepsilon_0 &= p^2 \sin^2\beta \left(\varepsilon_x p^2 - A \right) + p^2 \cos^2\beta \left(\varepsilon_z p^2 - C \right) + D; \\ D &= \varepsilon_x \varepsilon_y \varepsilon_z \end{aligned}$$

и где, в свою очередь,

$$A = \epsilon_x (\epsilon_y + \epsilon_z); \quad B = \epsilon_y (\epsilon_x + \epsilon_z);$$

$$C = \varepsilon_z \left(\varepsilon_x + \varepsilon_y \right); \quad D = \varepsilon_x \varepsilon_y \varepsilon_z;$$
$$tg^2 \beta = \frac{n_z^2 \left(n_y^2 - n_x^2 \right)}{n_x^2 \left(n_z^2 - n_y^2 \right)},$$

а φ отсчитывается от ПОО в той ее части, куда направлена вторая бинормаль $O - O_2$ (рис.1).

Заметим, что хотя формула (4) при $\varphi = 0^{\circ}$ (ПОО) имеет несколько иное выражение по сравнению с формулой (1), при расчетах они дают одинаковый результат.

4. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

4.1. Направленность ИВЧ в ТГС

На рис.3 представлена фотография ИВЧ, полученная в этом опыте (рис.2), на которой видны внешний и внутренний конусы ИВЧ, имеющие вид двух «подков», вложенных одна в другую асимметричным образом и «дугами» наружу, т.е. наружная «дуга» (внешний конус ИВЧ — конус над пучком) отстоит от кольца ИВЧ (испущенного в линзе) дальше, чем внутренняя «дуга» (внутренний конус ИВЧ — конус под пучком).

Более наглядно эту асимметрию конусов ИВЧ можно увидеть по фотометрическим кривым, измеренным с помощью автоматического микрофотометра [9] для сечений $\varphi = 0^{\circ}$ и $\varphi = 90^{\circ}$, показанных на рис.4. (Центральный пик на этих кривых — это пучок протонов.)

Экспериментальные данные об углах θ^{\pm} испускания ИВЧ под различными углами φ были получены путем измерения «диаметров» этих распределений на цветных негативных фотопленках с помощью компаратора Аббс («Carl Zeiss Jena») в области $\lambda \sim (600 \pm 25)$ нм, которые вместе с учетом диаметра кольца от реперной линзы позволяли определять радиусы $R^{\pm}(\varphi)$ внешнего и внутренного конусов при данном φ . Эти радиусы затем переводились в соответствующие углы с помощью калибровочной кривой, полученной, в свою очередь, на специальном устройстве, позволявшем направлять параллельный пучок света от лазера «ЛНГ-76» на плоскую поверхность реперной линзы (см. рис.2) под различными углами с точностью $\pm 0,001^{\circ}$.

Измеренное соответствие между углами в реперной линзе от лазера и расстояниями на фотопленке аппроксимировалось аналитической зависимостью (для использованной фотокамеры) в виде:

$$D = C_1 + C_2 \theta_{\lambda}(\varphi) + C_3 \theta_{\lambda}^2(\varphi) + C_4 \theta_{\lambda}^3(\varphi) + C_5 \theta_{\lambda}^4(\varphi), \qquad (5)$$

і'ис.3. Фотография ИВЧ, испущенного протонами при прохождении вдоль бинормали кристалла ТГС (стрелкой обозначена плоскость оптических осей — $\varphi = 0^\circ$)

$$C_1 = 0,14785;$$
 $C_2 = 1,032364;$ $C_3 = 0,024577;$
 $C_4 = -0,00088487;$ $C_5 = 0,000013745,$

D — диаметр в мм, а $\theta(\varphi)$ — в градусах.

Углы $\theta_{\lambda}^{\pm}(\varphi)$, определенные по калибровочной кривой, соответствуют ИВЧ, испущенному в кристалле и претерпевшему преломление на границе кристалл — линза. Для перехода от них к углам θ^{\pm} в кристалле учитывалось преломление на этой границе

Рис.4. Фотометрические кривые негативного изображения ИВЧ (приведенного на рис.3): а) сечение в плоскости оптических осей $\varphi = 0$ (ПОО – X_1OX_3): 1 – пик от пучка протонов; 2 – внешний конус ИВЧ; 3 – внутренний конус ИВЧ; 4 – конус ИВЧ от реперной линзы (кольцо); 6) сечение в плоскости, перпендикулярной ПОО $\varphi = 90^{\circ}$ (плоскость Z'OY): 1 – пучок протонов; 2 – внешний конус ИВЧ; 3, 4 – слившиеся конусы – от внутреннего ТГС и от реперной линзы. (По оси ординат обоих рисунков отложена плотность почернения S в относительных единицах)

$$\sin \theta^{\pm}(\varphi) = \frac{n_{\pi} \sin \theta^{\pm}_{\pi}(\varphi)}{n^{\pm}(\varphi)}, \qquad (6)$$

$$n^{\pm}(\varphi) = \frac{p}{\cos \theta^{\pm}(\varphi)}, \quad a \ p = \frac{1}{\beta_0}.$$

Экспериментальные углы $\theta(\varphi)$ в кристалле ТГС определялись также с помощью эмпирической формулы (проверявшейся ранее в отдельном опыте, в котором сразу несколько радиаторов с различными *n* одновременно пронизывались пучком протонов с энергией ~ 660 МэВ), по отношению радиусов $R_{\rm TFC}^{\pm}$ к радиусу кольца ИВЧ от линзы R_n (см. [1]).

Данные по $\theta^{\pm}(\varphi)$, полученные двумя методами, усреднялись и вместе с расчетными (произведенными по формуле (4)) показаны на рис.5. Ошибки измерения углов θ_3^{\pm} определялись факторами, приведенными в табл.2. Среднеквадратичная из них составила $\pm 17'$, которая и нанесена на рис.5.

Рис.5. Азимутальная направленность ИВЧ ($\theta^{\pm}(\varphi)$) для волн F_+ и F_- , испущенных при движении протонов с $\beta = 0.81$ вдоль бинормали кристалла ТГС: а) сплошные кривые — теоретические (форм. (4)): 1 и 3 для $\lambda = 400$ нм; 2 и 4 для $\lambda = 600$ нм; 6) $\Delta = -3$ кспериментальные значения $\theta^-(\varphi)$ внешнего конуса $F_-(\varphi)$ для $\lambda \cong 600$ нм, $\Delta = -70$ конуса $F_-(\varphi)$ для $\lambda = 600$ нм; 6) $\Delta = -700$ конуса $F_-(\varphi)$ для $\lambda = 600$ нм; 6) $\Delta = -700$ конуса $F_-(\varphi)$ для $\lambda = 600$ нм; 6) $\Delta = -700$ конуса $F_-(\varphi)$ внешнего конуса $F_-(\varphi)$ для $\lambda = -700$ нм; 6) $\Delta = -700$ конуса $F_-(\varphi)$ след ставения $\Phi^-(\varphi)$ внешнего конуса $F_-(\varphi)$ для $\lambda = -700$ нм; 6) $\Delta = -700$ нм; 6) $\Delta = -700$ конуса $F_-(\varphi)$ след ставения $\Phi^-(\varphi)$ внешнего конуса $F_-(\varphi)$ для $\lambda = -700$ нм; 6) $\Delta = -700$ нм; 6)

В пределах ошибок измерений экспериментальные данные совпадают с теоретическими (отсутствие экспериментальных точек для F_{-} вблизи $\varphi = 180^{\circ}$ и F_{+} при $\varphi = 0^{\circ}$ ($\varphi = 360^{\circ}$) есть следствие спада интенсивности F_{+} и F_{-} вблизи этих углов к нулю). Однако обращает на себя внимание систематическое провышение измеренных углов излучения θ_{3}^{-} по сравнению с расчетной кривой, что может быть связано с тем, что плоскость среза крис-

Nº n/n	Ошибки в определении	Δ <i>θ</i> , мин
1	показателя преломления ТГС, $\Delta n = \pm 0,002$	± 6,0
2	средней энергии пучка протонов, Δ E = ± 0,6 МэВ	± 0,1
3	неопределенность в положении $\lambda \cong 600$ нм при измерениях на компараторе, $\Delta \lambda \cong \pm 25$ нм	± 6,0
4	ошибка усреднения измерений θ [±] (φ) двумя методиками	± 15

Таблица 2

Среднеквадратичная ошибка $\Delta \theta^{\pm}(\varphi) = \pm 17'$

9

талла относительно бинормали (для $\lambda = 546, 1$ нм) могла иметь отклонения от перпендикулярности в пределах $\sim \pm 0.5^{\circ}$.

Следует также отметить и менес плавный ход экспериментальных точек зависимости $F_+(\varphi)$, что обусловлено трудностями измерений углов $\theta^+(\varphi)$ в области наложения конуса ИВЧ F_+ и конуса от реперной линзы в диапазоне углов $\varphi \sim 90^\circ + 150^\circ$ и $\varphi \sim 270^\circ + 330^\circ$.

4.2. Поляризационные свойства ИВЧ

Для проверки этих свойств между реперной линзой и фотопленкой вводился поляроид. При ориентировке его в положение пропускания электрического вектора излучения в ПОО оказалось, что волны F_{-} поляризованы преимущественно в этой плоскости, так же поляризованы и волны F_{+} , но только под плоскостью, проходящей через направление пучка частиц и перпендикулярно ПОО, т.е. в диапазоне $\varphi \cong 180^{\circ} \pm 90^{\circ}$.

Поворот поляроида на угол $\varphi = 90^{\circ}$ приводил к пропусканию волн F_{+} в широком диапазоне $\varphi \cong 90^{\circ} \pm 60^{\circ}$. Таким образом, внешний конус F_{-} поляризован практически только в ПОО, а внутренний конус F_{+} — более сложно, т.е. как в ПОО, так и перпендикулярно ПОО.

5. ЗАКЛЮЧЕНИЕ

В работе изучены основные свойства ИВЧ — азимутальная направленность и поляризационные свойства, а также качественная картина азимутального распределения интенсивности ИВЧ при движении протонов с энергией 658 МэВ вдоль бинормали двухосного кристалла триглицинсульфата. Обнаружена новая особенность ИВЧ в таких кристаллах — его асимметричное угловое распределение относительно плоскости, проходящей через бинормаль перпендикулярно плоскости оптических осей.

Получены формулы, описывающие асимметричное распределение двухконусного ИВЧ, и их согласие с экспериментальными данными в пределах погрешностей измерений.

Обращается внимание на отсутствие полной теории, предсказывающей азимутальное распределение интенсивности волн F_+ и F_- ИВЧ и его поляризационных свойств для такого случая.

Авторы благодарны дирекции ЛЯП ОИЯИ за поддержку работы, Л.А.Шувалову и Н.Р.Иванову из Института кристаллографии РАН за кристаллы ТГС, В.М.Цупко-Ситникову и Г.А.Кононенко за фотомстрирование негативов с изображениями ИВЧ на автоматическом микрофотометре, а также Н.Н.Лебедеву за помощь при работе на ускорителе и Г.В.Горбуновой за изготовление фотокопий рисунков.

ЛИТЕРАТУРА

- 1. Zrelov V.P., Pavlovič P., Šulek P. Czech.J. Phys., 1976, B26, p.1229.
- Muzikař Č. Частное сообщение. В кн.: Зрелов В.П. «Излучение Вавилова — Черенкова и его применение в физике высоких энергий». М.: Атомиздат, 1968, с.205 (часть 1).
- 3. Obdržalek J. PhD thesis. Faculty of Mathematics and Physics, Charles University, Prague, 194, 1970.
- 4. Muzikař Č. Czech J. Phys., 1962, B12, p.561.
- 5. Гинзбург В.Л. ЖЭТФ, 1940, 10, с.608.
- 6. Иванов Н.Р., Зотов В.Ф. Кристаллография, 1966, 11, с.924.
- 7. Зрелов В.П. и др. ПТЭ, 1990, 1, с.72.
- 8. Пафомов В.Е. ЖЭТФ, 1957, 32, с.366.
- 9. Ислам зв Т.А., Кононенко Г.А. и др. Препринт ОИЯИ Р10-12794, Дубна, 1979.

Рукопись поступила в издательский отдел 9 июня 1993 года.