

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

P1-92-45

ПОПЕРЕЧНОЕ СЕЧЕНИЕ ¹⁶ор-ВЗАИМОДЕЙСТВИЙ ПРИ 3,1 А·ГэВ/с И ИЗОТОПНЫЙ СОСТАВ ДВУХЗАРЯДНЫХ ФРАГМЕНТОВ

Ботвина А.С. и др.

Поперечное сечение ¹⁶ Ор-взаимодействий при 3,1 А·ГэВ/с и изотопный состав двухзарядных фрагментов

Представлены экспериментальные данные по поперечному сечению, множественности и относительному выходу двухзарядных фрагментов ядра кислорода (ядра ³ He₂, ⁴ He₂), образованных в ¹⁶ Ор-соударениях при импульсе 3,1 А·ГэВ/с. Данные сопоставляются с результатами расчетов, выполненных в рамках каскадно-фрагментационно-испарительной модели протон-ядерных взаимодействий.

Работа выполнена сотрудничеством Алма-Ата — Варшава — Дубна — Ташкент — Тбилиси.

Сообщение Объединенного института ядерных исследований. Дубна 1992

Перевод авторов

Botvina A.S. et al. The Transverse Cross Section in ¹⁶ Op-Interactions at 3.1 A·GeV/c and Isotope Composition of Two-Charge Fragments

The experimental data for the transverse cross section, multiplicity and relative yield of two-charge fragments of the oxygen nucleus (3 He₂ and 4 He₂ nuclei), produced in 16 Op-interactions at momentum 3.1 A·GeV/c are presented. The data are compared with the results made in the frame of the CFEM of proton-nucleus interactions.

The investigation has been performed by Collaboration of Alma-Ata – Warsaw – Dubna – Tashkent – Tbilisi.

Communication of the Joint Institute for Nuclear Research. Dubna 1992

P1-92-45

А.С.Ботвина¹, Н.А.Буздавина⁴, В.Вислицкий², А.Ш.Гайтинов³, В.В.Глаголев⁴, К.Г.Гуламов⁵, А.С.Ильинов¹, В.Г.Иванов⁴, А.К.Качарава⁶, А.П.Коленько³, К.Куниш², Р.М.Лебедев⁴, В.Д.Липин⁵, И.Н.Мишустин⁷, Ш.З.Насыров⁸, М.С.Ниорадзе⁶, К.Олимов⁵, Г.Д.Пестова⁴, В.В.Первушов⁴, З.Р.Салуквадзе⁶, Т.Семярчук², Г.Стефанек², М.А.Трутько⁸, И.Урбан⁹, И.Я.Часников³, С.С.Шиманский³, И.Э.Шокиров⁸, С.Н.Шпилев⁵, Т.Эрдэнэдэлгер⁴, А.А.Юлдашев⁵

1.	Институт ядерных исследований РАН, Москва, Россия
2.	Институт ядерных проблем, Варшава, Польша
3.	Институт физики высоких энергий АН, Алма-Ата, Казахстан
4.	Объединенный институт ядерных исследований, Дубна
5.	Физико-технический институт АН, Ташкент, Узбекистан
6.	Институт физики высоких энергий ТГУ, Тбилиси, Грузия
7.	Институт атомной энергии им.И.В.Курчатова, Москва, Россия
8.	Институт ядерной физики АН, Ташкент, Узбекистан
9.	Университет им.П.П.Шафарика, Кошице, ЧСФР
٦.	ливерситет им.п.п.шафарика, КОШИЦС, ЧСФР

I. BBEIIEHNE

Настоящая работа является продолжением систематического изучения процессов фрагментации легких ядер^[1,7]. В работах [1] были рассмотрены множественности вторичных частиц и зарядовые распределения фрагментов с Z > 1 в ¹⁶0р - взаимодействиях. Проводилось сравнение результатов с моделью КФИМ (каскадно-фрагментационно-испарительная-модель)^[2]. Было отмечено. что модель систематически недооценивает вероятность появления двухзарядных фрагментов. В связи с этим мы попытались более детально изучить этот набор фрагментов.

2. ЭКСПЕРИМЕНТ

Экспериментальные данные были получены с помощью 100 -см водородной камеры, экспонированной на синхрофазотроне ЛВЭ ОИЯИ в пучке ядер кислорода при импульсе 3,1 А-ГэВ/с. ¹⁶Ор –взаимодействий проводился с Отбор использованием сохранения электрического заряда (сумма зарядов закона вторичных частиц равна девяти). Наиболее надёжным этот отбор был для событий с одно- и двухзарядными вторичными частицами или при наличии вторичных взаимодействий фрагментов. В других случаях вводились поправки в зарядовые распределения [3]. Измерения событий проводились полуавтоматах ПУОС. на Математическая обработка велась на ЭВМ ЕС-1066 по модифицированной программе геометрической реконструкции[4]. специально разработанный набор процедур Использовался обработки: ZINPUT-GEOMOP-CLEPHOP-PASPORTматематической COLLDST-DSTWRT, позволявший сшивать данные просмотра результатами расчетов геометрии. получать тестовые методические распределения, списки ошибок, перемеров и т.д. Ряд изменений был сделан в программе геометрии:

1) введена таблица стабильных изотопов с Z > 1;

2) с учетом закона сохранения электрического заряда и топологии события исключены лишние гипотезы массового фита;

3) для однозначности сопоставления с результатами просмотра обеспечивалось сохранение координат вершин событий в плоскости первой проекции;

4) введен контроль за временем обработки текущего события, обеспечено прохождение меток, вводимых при измерениях, с целью облегчения идентификации частиц по массам и уменьшения ошибок TRACK-MATCH.

Разработанная система позволяла автоматически продолжать счет в сеансах вычислений на ЭВМ. Набор SCANфайлов (результаты просмотра) осуществлялся через терминал (на ЭВМ ЕС-1066) в системе виртуальных машин (CBM) c программ^[5](панелей). Во использованием сервисных время коррекции файлов SCAN для однозарядных треков вводились результаты идентификации частиц по массе, что использовалось в программе CLEPHOP для отбора реальных массовых гипотез и ускоряло получение DST (магнитной ленты суммарных результатов). В настоящее время на DST накоплено более 10000 событий. Эффективность просмотра для двухлучевых событий составила 89%, а для остальных топологий была 98,2%^[3]. Обработка снимков в лабораториях сотрудничества велась по единой процедуре.

3. ОПРЕДЕЛЕНИЕ ПОЛНОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ ¹⁶Ор-ВЗАИМОДЕЙСТВИЙ

Исходя из суммарного числа пучковых треков (36897). область эффективную ВХОДЯЩИХ В камеры, числа взаимодействий (11423)рабочей области в камеры $(32,97\pm0,05c\mu)$ и плотности водорода^[6] ($\rho = 0.0584 \pm 0.0001$ г/с¹с³), было определено полное видимое сечение. Оно оказалось $\sigma_{tot}^{vis} = 361 \pm 5$ мбарн.

Из сравнения распределений по множественности по результатам просмотра (SCAN) и измерений (DST) (рис.1) видно, что нет заметных систематических потерь в топологии после измерений событий. Поэтому дальнейшие оценки проводились на

Рис.1. Распределение по множественности заряженных частиц в ¹⁶Ор – взаимодействиях. Квадратики – результаты просмотра, гистограмма – события на DST.

Рис.2. Распределение по квадрату переданного 4 -импульса от мишени к медленному протону в двухлучевых событиях.

2

уровне DST. Был определен миллибарн-эквивалент как 0,036 мбарн/событие. Для оценки потерянных двухлучевых событий рассмотрено распределение по квадрату 4-мерного импульса, переданного к протону мишени (рис.2).Доля упругих рассеяний составляет 50% эт числа двухлучевых событий^[7]. Поэтому мы смогли оценить лишь минимальную границу потерь двухлучевых событий, экстраполируя распределение $d\sigma/dt$ (t) к [t] = 0 (19 ± 2 мбарн).Полное сечение 16 Op -взаимодействий оказалось равным σ_{tot} = 380 ± 7 мбарн.Определено полное инклюзивное сечение выхода двухзарядных фрагментов $\sigma_{inc}^{z=2}$ = 235 ± 6 мбарн.

4. ИЗОТОПНЫЙ СОСТАВ ФРАГМЕНТОВ С Z=2

Для определения изотопного состава двухзарядных фрагментов были рассмотрены распределения по кривизне (1/P), рисунок 3. В ¹⁶0р – взаимодействиях можно выделить

Рис.З. X=1/р - распределение двухзарядных фрагментов ядра кислорода.

4

четыре группы событий с различным (от одного до четырех) числом двухзарядных фрагментов. На рис.4 приведено распределение по кривизне (X=1/P) для событий с четырьмя двухзарядными фрагментами. На обоих рисунках видны два

Рис.4. X=1/р – распределение для событий с четырьмя двухварядными фрагментами ядра кислорода.

³Не, и ⁴He₂. соответствующие Такие ядрам максимума. распределения были построены для каждой группы событий и профитированы с помощью программы FUMILI двумя функциями ⁴He изотопа оценивался, ИСХОДЯ ИЗ Гаусса. Вклад предположения о симметрии соответствующего пика в Х -распределении относительно его позиции (Х). События, оставшиеся в распределении после вычитания пика ⁴Не,, относились к изотопу ³Не. На рис.5 приведено отношение выходов ядер ³Не, к ⁴Не, в зависимости от множественности двухзарядных фрагментов. Видно, что с увеличением множественности двухзарядных треков (Z=2) выход ³Не, уменьшается, доходя до 10% в с четырьмя фрагментами. Те же процедуры были событиях

проведены и с набором событий, генерированных по модели КФИМ^[2]. Модель не воспроизводит экпериментальных данных для четырех фрагментных событий (см.рис.5).

Рис.5. Зависимость отношений выходов ³Не₂ и ⁴Не₂ от числа двухзарядных фрагментов в событии.

5. ЗАКЛЮЧЕНИЕ

 Определено полное сечение ¹⁶Op- взаимодействий при импульсе 3,1 А·ГэВ/с, σ_{tot} = 380 ± 7 мбарн.
Представлены экспериментальные данные по изотопам гелия в ¹⁶Op- взаимодействиях. Показано систематическое уменьшение выхода изотопа ³He₂ с ростом множественности двухзарядных фрагментов. Расхождение с моделью КФИМ для четырехфрагментных событий указывает на необходимость учета дополнительных механизмов образования α – частиц.

1. Ботвина А.С. и др. Препринт ФТИ НПО "Физика-Солнце" им. С.В.Стародубцева. 146-91-ФВЭ, г. Ташкент, 1991; Ботвина А.С.и др. Сообщение ОМЯИ PI-90-560, Дубна, 1990. Глаголев В.В.и др. Сообщение ОИЯИ Р1-90-584, Дубна, 1990. 2. Botvina A.S. et. al. Nucl. Phys. 1990, A507, p649; Ботвина А.С.и др. ИЯИ АН СССР, препринт №626, Москва, 1989; препринт П-0490,1986. 3. Глаголев В.В.и др. Сообщение ОИЯИ Р1-89-218, Дубна, 1989: Блгансурэн Я. и др. Сообщение ОИЯИ Р10-89-41, Дубна, 1989; Глаголев В.В.и др. Сообщение ОИЯИ Р1-90-306. Дубна. 1990. 4. Балгансурэн Я.и др. Сообщение ОИЯИ РІО-89-40, Дубна, 1989. 5. Буздавина Н.А., Эрдэнэделгэр Т. Сообщение ОИЯИ Р10-91-81. Дубна,1991; Шокиров И.Э., Эрдэнэдэлгэр Т. Сообщение ОИЯИ Р10-91-86. Дубна,1991. 6. Аладашвили Б.С. и др. Сообщение ОИЯИ 1-7645. Дубна. 1973. 7. Глаголев В.В.и др. Сообщение ОИНИ Р1-90-561, Дубна, 1990.

Литература

Рукопись поступила в издательский отдел ЗІ января 1992 года.