

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P1-92-131

1992

В.А.Баранов, С.М.Коренченко, Б.Ф.Костин, Н.П.Кравчук, Н.А.Кучинский, Д.А.Мжавия*, З.Б.Цамалаидзе*

О РАСПАДЕ $\pi^+ \rightarrow \mu^+ + e^+ + e^- + \nu_{\mu}$

•Институт физики высоких энергий ТГУ, Тбилиси

rí

введение

За последние годы после начала работы мезонных фабрик, благодаря значительному росту интенсивностей пучков и усовершенствованию регистрирующей аппаратуры, достигнуты большие успехи в изучении редких процессов. Постоянный интерес представляют процессы, обусловленные совместным проявлением слабого и электромагнитного взаимодействий. В настоящей работе рассматривается процесс

$$\pi^{+} \to \mu^{+} + e^{+} + e^{-} + \nu_{\mu}, \qquad (1)$$

который обусловлен слабым и электромагнитным взаимодействием. Распад (1) не наблюдался на опыте, за исключением одного события, случайно зарегистрированного еще в 1955 г. в фотоэмульсиях [1]. Теоретические оценки процесса (1) даны в [2,3]. В [2] получены полная вероятность распада (1) и отношение вероятности рассматриваемого распада к вероятности основного распада $\pi \rightarrow \mu\nu$:

$$R = W(\pi \to \mu c e \nu) / W(\pi \to \mu \nu) = 2,59 \cdot 10^{-6}.$$
 (2)

В работе [3] также вычислена полная вероятность распада (1):

$$R = W(\pi \to \mu e e \nu) / W(\pi \to \mu \nu) = 0.33 \cdot 10^{-6}.$$
 (3)

Таким образом, теоретические оценки отличаются в ≈ 8 раз, и поэтому представляет интерес экспериментально измерить вероятность распада (1). В данной работе вычислена полная вероятность процесса (1), получена эф-фективность регистрации этого распада в установке APEC [4,5], построены гистограммы импульсных и угловых распределений для e^+ , e^- , μ^+ .

МОДЕЛИРОВАНИЕ, РЕЗУЛЬТАТЫ, ОБСУЖДЕНИЕ

На первом этапе были сгенерированы события с использованием матричного элемента, который приведен в [6] и выражается следующим образом:

Obschung milli HHCTETYY Пасиных псследованой *БИБЛИОТЕНА*

$$\begin{split} M &= \frac{e^{2} f_{\pi} G}{\sqrt{2}} \cdot \frac{\varepsilon_{a}}{K^{2}} \left(m_{\mu} \overline{U}(P) \left(1 - \gamma_{5} \right) \left[\frac{2Q_{a} + K_{a}}{2(QK) + K^{2}} - \frac{2P_{1a} + \hat{K}\gamma_{a}}{2(P_{1}K) + K^{2}} \right] U(-P_{1}) + \\ &+ \frac{i}{M^{2}} \left\{ -\varepsilon_{a\beta\rho\sigma} K_{\rho} Q_{\sigma} a(K^{2}, Q^{2}) + (Q_{a}K_{\beta} - (QK)\delta_{a\beta}b(K^{2}, Q^{2}) + \\ &+ (K_{a}K_{\beta} - K^{2}\delta_{a\beta})c(K^{2}, Q^{2}) + (K^{2}Q_{a} - (QK)k_{a})Q_{\beta} \times \\ &\times \left[\frac{2M^{2}}{Q^{2} + M^{2}} \cdot \frac{1 - F(K^{2})}{K^{2}} + \frac{d(K^{2}, Q^{2})}{K^{2}} \right] \right\} l_{\beta} \bigg), \end{split}$$

где M — масса π -мезона, m_{μ} — масса μ -мезона; q, P, P_1, P_2, P_3 — 4-импульсы л-мезона, нейтрино, µ-мезона, позитрона и электрона соответственно;

$$\begin{split} &K = P_2 + P_3; \, Q = P_1 + P; \, G = 10^{-5} / M_p^2; \, e^2 / 4\pi = 1 / 137; \\ &\varepsilon_a = \overline{U}(P_3) \gamma_a U(-P_2); \, \, l_\beta = \overline{U}(P) \gamma_\beta (1 + \gamma_5) U(-P_1); \end{split}$$

 f_{π} определяется вероятностью W_{π} распада $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$:

$$W_{\pi} = (G^2 f_{\pi}^2 / 8\pi) M m_{\mu}^2 (1 - m_{\mu}^2 / M^2)^2;$$

 $F(K^2)$ — электромагнитный формфактор реального π -мезона, зависящий только от одного инварианта К² и удовлетворяющий условию нормировки (F(0) = 1); a, b, c, d — формфакторы.

Детальные расчеты вероятности распада (1), выполненные в [3,6], показали, что вклады, содержащие формфактор d и множитель 1 - $F(K^2)$, пренебрежимо малы, поэтому амплитуда распада (1) эффективно характеризуется тремя параметрами: a, b, c. Как и в работах [3,6], для удобства мы тоже введем параметры у и Е:

$$\gamma = b/a_0; \ \xi = c/a_0,$$

где a_0 — амплитуда распада $\pi_0 \rightarrow \gamma\gamma$. Мы полагаем знак $s = \text{sign}(a, f_{\pi}) = -1$

В низшем порядке теории возмущений по слабому и электромагнитно-

му взаимодействию процесс (1) описывается диаграммами рис. 1.

efat we en **(5)**

Согласно работе [3]. вероятность процесса (1) может быть записана следующим образом:

 $dW = dW_{IB} + dW_{SD} + dW_{IBSD},$ (6) Рис. І. Диаграммы, описывающие распад (1)

где dW_{IB} , dW_{SD} , dW_{IBSD} представляют собой, соответственно, вклады внутреннего тормозного излучения, структурного излучения и их интерференции. Отношение вероятности структурного излучения интерференции к вероятности обычного распада выражается формулами:

$$R_{SD} = W_{SD} / W(\pi \to \mu^+ + \nu_{\mu}) = SD + \gamma^2 SD_{\gamma^2} + \gamma \xi SD_{\gamma\xi} + \xi^2 SD_{\xi^2}, \quad (7)$$

$$R_{IBSD} = W_{IBSD} / W(\pi \rightarrow \mu^{+} + \nu_{\mu}) = IBSD + \gamma IBSD_{\gamma} + \xi IBSD_{\xi}.$$
 (8)

Используя матричный элемент (4), мы вычислили эти вклады. Они приведены в таблице. В нашем случае было принято $\xi = 2,56$, $\gamma = 0,74$. Как видно из таблицы, полная вероятность процесса (1) определяется практически полностью вкладом внутреннего тормозного излучения, и ее можно представить в виде

$$R(\pi^+ \to \mu^+ e^+ e^- \nu_{\mu}) = W(\pi^+ \to \mu^+ e^+ e^- \nu_{\mu}) / W(\pi^+ \to \mu^+ \nu_{\mu}) = R_{IB} = 0.33 \cdot 10^{-6}.$$
(9)

Таким образом, полученная нами величина R совпадает с результатами работы [3], разница только во вкладах SD и IBSD, но это на окончательный результат не влияет.

На втором этапе моделирования мы рассчитали вероятность регистрации распада $\pi \rightarrow \mu eev$, пропуская события, полученные на первом этапе моделирования, через АРЕС. Програм дения ча здана с **GEANT**3

распадались в вакууме в цилиндре,

имеющем длину 70 см и диаметр 10 см.

Таблица. Численные значения величин, входящих в равенcmoa (7), (8)

		Ĺ
программа моделирования прохож-	SD	
дения частиц через спектрометр со-	50.2	ĺ
здана с использованием системы	<u> </u>	Ļ
GEANT3 [7].	SD	l
Установка АРЕС (рис. 2.) описана		r
в работах [4,5]. В нашем случае в ус-	SD_{ξ^2}	
тановке АРЕС не было первого ряда	IBSD	
сцинтилляционных счетчиков и ми-	IBSD	
шени. Пионы с импульсом 170 МэВ/с		r

18	$(33,17\pm0,08)10^{-8}$
SD	$(7,61 \pm 0,02) 10^{-13}$
SD_{γ}^{2}	(9,17∓0,02)10 ⁻¹³
SD _{yξ}	(5,17∓0,02)10 ⁻¹⁴
SD _ξ 2	$(3,73 \pm 0,02) 10^{-15}$
IBSD	$(-23,87 \pm 0,07)10^{-11}$
IBSD _y	(48,47 ∓0,09)10 ⁻¹¹
IBSD _ξ	$(12,11 \pm 0,04) 10^{-12}$

Для уменьшения фоновых эффектов входное и выходное окна выполнены из лавсана толщиной 0,1 мм, а стенки — из кевлара и эпоксидной смолы с суммарной толщиной в распадной зоне 1,2 мм (≈4·10⁻³ рад.дл.). Распадная зона — 40 см ограничивается условиями триггера. Траектория пучковых частиц π^+ регистрируется двумя парами разнесенных двухкоординатных пропорциональных камер. Вторичные частицы детектировались системой из 12 цилиндрических пропорциональных камер с общим числом

3

Рис.2. Схема эксперимента по изучению распада $\pi^+ \to \mu^+ e^+ e^- \nu_\mu$. Крестами на тре-

ках частиц отмечено срабатывание детекторов: 1 — двухкоординатные пучковые пропорциональные камеры, 2 — вакуумированный объем, 3 — вакуумированный распадный объем, 4 — цилиндрические пропорциональные камеры (точками отмечены двухкоординатные камеры), 5 — сцинтилляторы

4

от кинетической энергии

анодных проволочек ≈ 8 тыс. и двумя цилиндрическими сцинтилляционными годоскопами (32 счетчика).

Камеры 1, 2, 4 и 9 являются стриповыми камерами, регистрирующими азимутальную и осевую (Z) координаты, что мы и используем для выбора триггера. Моделирование было проведено при магнитном поле 500 Гс.

Полученные пространственные и энергетические распределения для e^+ , e^- , μ^+ изображены на рис. 3—5. Из рис. 3, на котором показано распределение позитронов и электронов по углам вылета, энергии и поперечным импульсам, видно, что средний угол, энергия и поперечный импульс позитрона и электрона равны 45°, 8 МэВ и 4 МэВ/с соответственно. Максимумы в распределениях электронов и позитронов по углу, энергии и поперечному импульсу равны при 30° 5 МэВ и 3 МэВ/с соответственно. Как видно из рис. 4, максимум в распределении μ^+ -мезонов по углу находится при $\theta = 9^\circ$. Из рис. 5 видно, что кинетическая энергия μ -мезона меняется в области от 30 до 100 МэВ. Максимальный угол вылета μ -мезона составляет 13°, т.е. μ^+ -мезоны вылетают вперед и не детектируются цилиндрическими камерами и годоскопом. Спектрометр АРЕС может использоваться для регистрации позитрона и электрона от распада π^+ на лету. Проволочки в камере 4

и камере 9 скомпонованы в 48 групп. Для запуска установки требуются разные варианты срабатывания этих групп.

Вероятность того, что e^+ и e^- дойдут до 4-й камеры, составляет E(4,4) =0,012, что одна из этих частиц дойдет и до 9-й камеры - Е(4,9) = 0,0092, что обе частицы дойдут до 9-й камеры - E(9,9) = 0,0053. Во всех этих вычислениях не учитывались сцинтилляционные счетчики. Мы вычислили вероятности и при наличии сцинтилляционных счетчиков, и они равны $E_{cu}(4,4) =$ 0,0053, $E_{cu}(4,9) = 0,0044$, $E_{cu}(9,9) = 0,0023$. При вычислении эффективности учитывалась вероятность распада π^+ -мезона. Ожидаемое число случаев детектирования процесса (1) определяется по формуле

$$N_{\pi \to \mu e e \nu} = IRE(9,9)t = 430-450$$
 случаев,

где $I = 5 \cdot 10^5$ /с — интенсивность пионов, $R = 3.3 \cdot 10^{-7}$ — полученная нами оценка отношения вероятностей, E(9,9) = 0,0053 — вероятность того, что обе частицы доходят до 9-й камеры, $t = 5 \cdot 10^5$ с — время экспозиции. Когда присутствует первый ряд сцинтилляционных счетчиков, имеем

$$N_{\pi \to \mu e e \nu} = IRE_{cu}(9,9)t = 180-100$$
 случаев.

Данные оценки не учитывают потери, связанные с эффективностью установки и восстановления треков частиц.

Из всего сказанного выше следует, что есть реальная возможность изучать распад $\pi^+ \rightarrow \mu^+ e^+ e^- \nu_{\mu}$ на ус**р**ановке APEC.

ЛИТЕРАТУРА

1. Fry W., Schneps J., Asnow G. - Phys. Rev., 1955, v.99, p.1055. 2. Пикин С.А., Харкац Ю.Н. - ЯФ, 1965, 1, с.291. 3. Бардин Д.Ю. и др. - ЯФ, 1971, 14, с.427. 4. Baranov V.A. et al. - Nucl. Instr. Meth., 1986, B17, p.438. 5. Baranov V.A. et al. - J. Phys. G., 1991, 17, p.57. 6. Бардин Д.Ю., Иванов Е.А. - ЭЧАЯ, 1976, т.7, вып.3, с.726. 7. Brun R. et al. - GEANT3 Code Version 3.14, Users Guide. CERN

Alexie agencies in the could

والأربع فغروانا الربي الروافق

31. S. S. S. S.

The second se

DD/EE/84-1, Geneva, 1984.

Рукопись поступила в издательский отдел ала и на во селото и селото и 25 марта 1992 года. По селото на селото на селото на селото на селото на селото н

1. 1. A. B. B. B.