

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P1-91-85

BOKAA, C.

ОБРАЗОВАНИЕ ДВУХ МНОГОЗАРЯДНЫХ ФРАГМЕНТОВ ПРИ ФРАГМЕНТАЦИИ РЕЛЯТИВИСТСКОГО ЯДРА ²⁸Si НА ЯДРАХ ФОТОЭМУЛЬСИИ

Сотрудничество: Дубна - Ереван - Ленинград

С.Вокал, Г.С.Шабратова Объединенный институт ядерных исследований, Дубна Ф.А.Аветян, В.М.Крищян, Н.А.Марутян, Л.Т.Саркисова, В.Ф.Саркисян Ереванский физический институт

В.Г.Богданов, В.А.Плющев, З.И.Соловьева Радиевый институт, Ленинград

ł

При изучении топологических характеристик процесса фрагментации релятивистских ядер ²²Ne и ²⁸Si с импульсом около 4 А·ГэВ/с было показано^{'1, 2'}, что реакция происходит по трем группам каналов: а) с полным расщеплением ядер до одно- и двухзарядных фрагментов — (ПР);

б) с сохранением одного многозарядного фрагмента с $Z \ge 3 - (1f)$; в) с образованием двух многозарядных фрагментов - (2f).

Последний класс событий на ²²Ne составляет 0,5% (22 соб. из 4300), а на ²⁸Si — 1,8% (35 соб. из 1980) от полного числа неупругих взаимодействий. Среди событий фрагментации ядер ²⁸Si было обнаружено одно, которое представляло собой 2f-расщепление ядра кремния на углерод и кислород без какого-либо видимого возбуждения ядра-мишени и было интерпретировано как деление легкого ядра ³.

В настоящей работе проводится исследование 2f-событий ²⁸ Si на увеличенном статистическом материале (162 события) с целью изучения их характеристик, необходимых для понимания механизма мультифрагментации сравнительно легких ядер.

Возникновение одного фрагмента в расщеплении можно понять как образование ядра-остатка в результате испускания возбужденным релятивистским спектатором одно- и двухзарядных фрагментов. Фрагменты с зарядами Z= 3-4 могут быть в редких случаях сами испарительными частицами '4'. Представляет интерес попытка выяснить, будет ли образование двух фрагментов результатом испарения легкого фрагмента с образованием ядра-остатка или это процесс типа квазиделения возбужденного спектатора.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И АНАЛИЗА

ł

Во всех 2 f -событиях методом счета δ -электронов были определены заряды всех релятивистских фрагментов, образовавшихся из спектаторной части ядра, их полярные ($\theta \leq 3^\circ$) и азимутальные углы испускания. Для однозарядных фрагментов с помощью метода многократного рассеяния оценивались импульсы, что позволило провести для них статистическое разделение на группы p, d,t. Идентификация ядра-мишени производилась по множественности сильноионизирующих частиц N_b.

1

тафинца ј	Ta	блица	1
-----------	----	-------	---

Мишень	N _h	N _{2f}	N _{hy}	$\stackrel{N_{1f}}{2 \ge 6}$	(N ₂₁ /N _{Hy})%	$(N_{ef}/N_{1f})\%$
н	0-1	60	1929	1357	$3,1\pm0,4$	$4,4\pm0,6$
CNO	2-7	76	3276	1655	$2,3 \pm 0,3$	4,5 ± 0,6
AgBr	≥8	24	3666	749	0,7±0,1	3,2±0,7

В табл.1 приведено число 21 -событий для различных интервалов N_h и количество всех неупругих взаимодействий N_{Hy} , которое приходится на наблюдаемое число 21 -событий (оценено по⁽²⁾). Там же показано соответствующее количество событий с одним фрагментом, заряд которого (Z>6) сравним с суммарным зарядом в 21 -событиях.

Из таблицы видно, что доли N_{2f}/N_{Hy} и N_{1f}/N_{Hy} снижаются с массой ядра-мишени, а их относительный выход N_{2f}/N_{1f} при этом почти не изменяется, что может указывать на связанность этих процессов.

На рис.1 показано распределение по суммарному заряду $Q = \Sigma Z_i$ всех спектаторных фрагментов в 2f -событиях, включая одно- и двухзарядные. Значения Q, сосредоточенные в интервале 10 $\leq Q \leq 14$, соответствуют периферическим взаимодействиям ядра ²⁸Si. Здесь же показано распределение по сумме зарядов двух многозарядных фрагментов $Z = Z_{f1} + Z_{f2}$. Сдвиг распределений $\langle \Delta Z \rangle = 3.4 \pm 0.3$ характеризует суммарный заряд одно- и двухзарядных частиц сопровождения, которые можно рассматривать как частицы испарения из возбужденного спектатора. Это значение в сравнении с $\langle \Delta Z \rangle = 2.8 \pm 0.1$ для 1f -событий с $Z_f \geq 6$ свидетельствует о несколько большем уровне начального возбуждения спектаторной части в 2f-событиях. Следует обратить внимание, что Z распределение по положению и форме соответствует зарядовому

распределению фрагментов из 1f-событий (рис.2), что может указывать на их появление в результате 2f-распада возбужденной 1f-подсистемы.

Рис.1. Распределения 21-событий по $Q \approx \Sigma Z_{f_1}$ — сплошная гистограмма и $Z = Z_{f_1} + Z_{f_2}$ — штриховая.

На рис.3 представлена матрица, иллюстрирующая соотношение между зарядами двух многозарядных фрагментов в событии. Обращает на себя внимание тот факт, что более половины событий имеют в своем составе фрагмент f_1 с зарядом $Z_f = 3$. Известно ⁴, что такие фрагменты могут являться частицами испарения.

Представляется интересным сравнить распределения по зарядам фрагментов в 1f-событиях и фрагментов f_2 в тех 2f-событиях, где один из фрагментов f_1 имеет заряд $Z_1 = 3$. Если бы оба процесса отличались лишь тем, что во втором одной из "частиц испарения" является частица с $Z_1 = 3$, то зарядовые распределения фрагментов-остатков были бы сдвинуты друг относительно друга примерно на 1-2 единицы заряда. Из рис.2 видно, что этот сдвиг составляет 3-4 единицы и указывает на иную схему, по которой, в основном, осуществляется распад спектатора с образованием трехзарядных фрагментов. Это не исключает возможности возникновения фрагмента с Z = 3 и как испарительной частицы. Из хода зависимости средней множественности фрагментов-спектаторов '2' видно, что их вклад может составить до 20-30%.

Была сделана попытка сравнить некоторые полученные экспериментальные данные с расчетами по модели перколяции ⁶. Для этого

3

Таблица	2
---------	---

N _f (Z _f ≥ 3) (в процентах)	01	11	21	31
Расчет при Р = 0,6	0,3	66	30	4
Расчет при Р = 0,55	0	75	22	3
Эксперимент	17	80	3	0

Рис.4. Распределение фрагментов в 2f-событиях. а — по заряду Z_f ; б — по сумме зарядов $Z = Z_{f1} + Z_{f2}$ Пустые треугольники и кружочки расчет при P = 0,55 и P = 0,6 соответственно. Зачерненные кружочки эксперимент.

было разыграно 10⁴ взаимодействий нуклона с решеткой 3x3x3, имитирующей ядро, близкое к кремнию, при параметре перколяции P, характеризующем вероятность разрыва межнуклонных связей. Чтобы сравнить полученные распределения фрагментов по массам с экспериментальными по зарядам, для A = 5-6 принимался заряд равным 3, . для A = 7-8 — заряд 4 и т.д. В табл.2 показано, как распределены события по множественности фрагментов с $Z \ge 3$ при P = 0,6 и 0,55. Экспериментальные данные приведены для квазинуклонных взаимодействий ²⁸Si (N_h = 0-1) из полного ансамбля неупругих взаимодействий, описанного в работе ^{'2'}.

Из табл.2 видно, что наблюдаемые соотношения не согласуются с расчетными. Однако распределение фрагментов в 21-событиях по заряду (рис.4а) и по суммарному заряду $Z = Z_{f1} + Z_{f2}$ (рис.4б) можно

качественно описать в рамках модели, тем более если увеличить значение P > 0,6; но при этом множественность фрагментов (табл.2) еще больше разойдется с экспериментом. Из сказанного следует, что модель перколяции, иллюстрирующая роль случайных процессов в описании реакции, не воспроизводит в должной мере экспериментальные результаты.

Поперечные импульсы фрагментов определялись по формуле $P_{\perp} = P_0 \, m \sin \theta$, где $P_0 = 4,5 \, \Gamma$ эВ/с и m = 2Z. Для однозарядных фрагментов масса бралась в соответствии с оценкой импульса. Векторная сумма поперечных импульсов всех фрагментов спектаторной части в лабораторной системе характеризует величину импульса "бокового отскока" системы в результате взаимодействия. С точностью до ненаблюдаемых нейтронов-спектаторов, переходя в систему спектатора, можно получить не искаженные боковым движением значения P_{\perp} всех фрагментов и их азимутальные углы Ψ . На рис.5 показано распределение по разности азимутальных углов $\Delta \Psi = \Psi_1 - \Psi_2$ в лабораторной системе, которое близко к изотропному, не считая небольшого превышения при $\Delta \Psi$ вблизи 180°. В системе спектатора распределение по $\Delta \Psi$ обнаруживает существенное стремление к противоиспусканию многозарядных фрагментов.

Рис.6. Зависимость < Р > в системе спектатора от заряда фрагмента в 21- (пустые кружки) и 11-событиях (зачерненнь:е кружки).

Рис.5. Распределение по ∆¥для 21 событий в лабораторной системе — сплошная гистограмма и в системе спектатора — штриховая гистограмма.

Форма импульсных распределений по P_{\perp} в 21-событиях оказалась близкой к распределению Релея, как это наблюдалось и для 11-событий 77 :

$$f(P_{\perp}) dP_{\perp} = (P_{\perp} / \sigma^2) \exp(-P_{\perp}^2 / 2\sigma^2) dP_{\perp}.$$

где параметр распределения σ связан со значением среднего поперечного импульса как $\sigma = < P_1 > \sqrt{2/\pi}$.

Значения $\langle \mathbf{P} \rangle = \mathbf{B}$ системе спектатора существенно зависят от заряда фрагмента (рис.6). На этом же рисунке приведены значения $\langle \mathbf{P} \rangle \geq \mathbf{A}_{JR}$ 1f -событий, соответствующих 2f -событиям по величине Q (Q =10-14). Видно, что $\langle \mathbf{P} \rangle$, а следовательно, и σ в 2f-событиях земетно выше, особенно для фрагментов с $\mathbf{Z}_f \geq 5$, что свидетельствует о более широких импульсных распределениях фрагментов, испущенных в 2f-событиях. Превышение параметра σ в 2f-событиях может свидетельствовать о вкладе дополнительного механизма типа, например, квазиделения возбужденного спектатора.

Заметим, что средний импульс фрагментов в системе спектатора (рис.6) соответствует их кинетической энергии порядка 6-8 МэВ, что неплохо согласуется с величиной кулоновской энергии в системе таких двух фрагментов.

Таким образом, можно высказать предположение, что 2f-события являются периферическими взаимодействиями ядра ²⁸Si, в результате которых полученное спектаторной частью возбуждение снимается последовательным испусканием нескольких частиц испарения, в депочке которого могут возникнуть ядра, нестабильные относительно 2f-распада. Такой картине не противоречит поведение зарядовых характеристик фрагментов, распределение по разности азимутальных углов в системе спектатора, а также уширение импульсных спектров в 2f -событиях.

Мы выражаем благодарность К.Г.Денисенко за проведение расчетов по модели перколяции и сотрудникам лабораторий, проводившим измерения.

ЛИТЕРАТУРА.

÷

- 1. Андреева Н.И. и др. Сообщение ОИЯИ Р1-85-692, Дубна, 1985.
- 2. Краснов С.А. и др. Сообщение ОИЯИ Р1-88-252, Дубна, 1988.
- 3. Богданов В.Г. и др. Письма в ЖЭТФ, 1986, т.44, вып.7, с.306.
- 4. Sobotka L.G. et al. Phys. Rev. Lett., 1985, 51, p.2187.
- 5. Антончик В.А. и др. РЖ Физика, 1978, 9, 9В431, деп.
- 6. Bauer W. et al. Nucl. Phys. A, 1986, 152, p.699.
- 7. Андреева Н.П. и др. ЯФ, 1988, 47, вып.4, с.949.

Рукопись поступила в издательский отдел

11 февраля 1991 года.