

P1-91-110

И.В.Кисель, Е.В.Конотопская, С.М.Коренченко, Н.П.Кравчук

ВОССТАНОВЛЕНИЕ ДЕТЕКТИРУЕМЫХ В УСТАНОВКЕ АРЕС ТРЕКОВ (X-Y ПЛОСКОСТЬ)

1. Введение

Спектрометр АРЕС [1, 2, 3] активно используется для поиска и изучения редких процессов. Он представляет собой систему коаксиальных цилиндрических пропорциональных камер [4] и сцинтилляционных годоскопов [5], помещенную в магнитное поле, направленное вдоль оси камер. Так как магнитное поле почти однородно, то проекции треков заряженных частиц на плоскость X-Y, перпендикулярную оси спектрометра, представляют собой приблизительно дуги окружностей. Восстановление этих проекций с минимальной потерей времени является важной задачей при реконструкции всей геометрии события. В настоящей работе описывается реализация метода восстановления треков в X-Yплоскости для установки АРЕС. Для апробации этого метода использовались данные, полученные в эксперименте по поиску распада $\mu \rightarrow 3e$ [6].

2. Пропорциональные камеры

Треки восстанавливались на основе информации, полученной с цилиндрических многопроволочных пропорциональных камер (табл. 1). Эффективность работы камер и системы считывания информации с них в среднем составляла 97%.

Среднее число сработавших проволочек в области прохождения трека приведено в табл. 2. Возрастание числа сработавших проволочек с ростом диаметра камеры связано с увеличением среднего угла прохождения трека через камеру. В дальнейшем эксперимен-

> OBSERENEWIER RICTERY MANNER RECORDERNE

Таблица 1. Характеристики цилиндрических многопроволочных пропорциональных камер (камеры 7 и 8 не использовались)

	Диаметр	Число	Шаг	Расстояние	Длина	
Камера	анодного	анодных	анодных	анод-катод,	камеры,	
	слоя, мм	прово-	проволо-	MM	MM	
•		лочек	чек, мм			
1	128.0	192	2.09	2.5	360	
2	164.0	256	2.01	6.0	400	
3	212.0	320	2.08	6.0	400	
4	274.0	384	2.24	4.0	500	
5	319.6	480	2.09	6.0	500	
6	343.6	512	2.11	6.0	500	
9	478.8	768	1.96	4.0	600	
10	539.3	768	2.21	6.0	600	
11	563.3	768	2.30	6.0	600	
12	629.2	960	2.06	6.0	600	

тальной точкой считалась середина кластера.

На рис. 1 показано распределение числа дополнительно сработавших проволочек *n*, не лежащих на треке (по всем камерам). Статистика набрана на однотрековых событиях в рабочих условиях и свидетельствует о низком уровне шума в камерах.

Приведенные характеристики показывают высокое качество работы камер и возможность надежной регистрации треков.

2

Таблица 2. Среднее число проволочек в кластере

Номер камеры	1	2	3	4	5	6	9	10	11	12
Ширина кластера	1.4	1.2	1.2	1.4	1.3	1.4	1.7	2.1	2.1	2.4

Рис. 1. Распределение числа дополнительно сработавших проволочек *n*.

3. Метод Крауфорда

- 5-

Исследовались два метода приближения трека окружностью: метод Крауфорда [7] и метод конформных преобразований [8].

Метод Крауфорда применялся в SIN при обработке экспериментальных данных, полученных на установке SINDRUM [9]. Уравне-

. 3

ние окружности (обозначения очевидны):

$$(x-a)^2 + (y-b)^2 = R^2.$$
 (1)

Метод наименьших квадратов требует минимизации по отношению кa,b,Rфункции

$$S_2 = \sum_{i=1}^{N} \{\sqrt{((x_i - a)^2 + (y_i - b)^2)} - R\}^2,$$
 (2)

что является непростой задачей, т.к. ведет к системе нелинейных уравнений и, следовательно, к итерационным методам. Вместо этого в [7] предлагается минимизировать функцию

$$S = \sum_{i=1}^{N} \{ (x_i - a)^2 + (y_i - b)^2 - R^2 \}^2.$$
 (3)

В результате получаем систему уравнений :

$$\partial S/\partial a = -4\sum (x_i - a)\{(x_i - a)^2 + (y_i - b)^2 - R^2\} = 0,$$
 (4)

$$\partial S/\partial b = -4\sum (y_i - b)\{(x_i - a)^2 + (y_i - b)^2 - R^2\} = 0,$$
 (5)

$$\partial S/\partial R = -4\sum R\{(x_i - a)^2 + (y_i - b)^2 - R^2\} = 0.$$
 (6)

Уравнение (6) показывает, что в минимуме

$$\sum \{ (x_i - a)^2 + (y_i - b)^2 - R^2 \} = 0.$$
 (7)

Это позволяет упростить систему уравнений и преобразовать ее к следующему виду:

$$a^{2} + b^{2} - R^{2} = \frac{1}{N} \{ 2a(x) + 2b(y) - (xx) - (yy) \},$$
(8)

$$a\{(xx) - \frac{(x)^2}{N}\} + b\{(xy) - \frac{(x)(y)}{N}\} = \frac{1}{2}\{(xxx) + (xyy) - (x)\frac{(xx) + (yy)}{N}\}$$

$$a\{(xy) - \frac{(x)(y)}{N}\} + b\{(yy) - \frac{(y)^2}{N}\} = \frac{1}{2}\{(xxy) + (yyy) - (y)\frac{(xx) + (yy)}{N}\}$$
(10)

где $(x) \equiv \sum_{i=1}^{N} x_i$, $(xx) \equiv \sum_{i=1}^{N} x_i x_i$ и аналогично для других переменных. Если перенести систему координат так, что (x) = (y) = 0, а затем сделать поворот, чтобы (xy) = 0, то уравнения существенно упрощаются. Однако анализ этого метода показал, что он становится неустойчивым при больших *R*. Такие случаи часто возникают на начальном этапе при поиске кандидатов на трек.

4. Метод конформных преобразований

В отличие от метода Крауфорда метод конформных преобразований [8] не приводит к возникновению неустойчивостей при восстановлении трека. В этом методе окружность

$$(x-a)^2 + (y-b)^2 = R$$

трансформируется в прямую путем замены переменных:

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}.$$
 (11)

Если мы поместим центр системы координат на окружность, то получим уравнение прямой:

$$v = \frac{1}{2b} - \frac{a}{b}u.$$
 (12)

Так как заранее мы можем только приблизительно знать, где проходит окружность, то приходится вводить параметр

$$\delta = R^2 - a^2 - b^2, \tag{13}$$

$$(x^{2} + y^{2}) - 2ax - 2by = \delta.$$
(14)

Для $\delta \ll R$ вместо прямой получаем параболу с малой кривизной:

$$v = \frac{1}{2b} - \frac{a}{b}u - \delta \frac{R^2}{2b^3}u^2.$$
 (15)

Восстановление параболы является простой задачей.

Этот метод легко обобщается на случай логарифмической спирали с малым показателем экспоненты (| k | << 1). Такое приближение позволяет в принципе лучше учесть потери энергии в веществе.

$$(x-a)^2 + (y-b)^2 = R^2 e^{2k|\varphi-\varphi_0|} \simeq R^2 + 2kRl \simeq R^2 + 2kR\sqrt{x^2 + y^2},$$
(16)

где

 φ - угол, под которым видна точка (x,y) из центра окружности,

 φ_0 - соответствует точке (0,0),

l - длина трека от точки с координатой (0,0) до точки с координатой (x,y),

k - показатель экспоненты, учитывает также энак частицы и направление полета.

После несложных преобразований получаем аналог уравнения (14):

$$\sqrt{x^2 + y^2} - kR]^2 - 2ax - 2by = \delta, \tag{17}$$

но с заменой переменных:

$$u = \frac{x}{[\sqrt{x^2 + y^2} - kR]^2}, \quad v = \frac{y}{[\sqrt{x^2 + y^2} - kR]^2}, \tag{18}$$

что снова приводит к задаче восстановления параболы (15).

За все время эксплуатации метода конформных преобразований не наблюдалось случаев его неустойчивости.

5. Реализация метода конформных преобразований

Метод конформных преобразований - быстрая и устойчивая процедура, обеспечивающая не только определение параметров треков, но и решающая вадачу их поиска.

В спектрометре APEC три многопроволочные цилиндрические пропорциональные камеры (1, 4 и 9) использовались как опорные, что делает формулу (12) очень удобной для поиска кандидатов на треки (в точку на первой камере помещается центр системы координат, а камеры 4 и 9 используются для определения параметров aи b).

При восстановлении трека проводилась процедура отбрасывания "плохих" точек. Такие точки возникают, например, из-за неэффективности камеры, приводящей к разрыву кластера или учету точек, не принадлежащих данному треку. Процедура заключалась в следующем:

 Сначала из всех N точек (8 ≤ N ≤ 10), по которым строился трек, выбирались 5 точек с наименьшим отклонением от восстановленного трека.

.

7

- 2. По этим точкам вычислялись новые параметры трека.
- Из оставшихся (N − 5) точек выбиралась точка с наименьшим отклонением от трека (уже с новыми параметрами).
- 4. По 6 точкам вычислялись новые параметры трека

и т.д. В результате получаем (N-4) наборов параметров трека для точек от 5 до N. Критерием выбора было взято отношение $\chi^2/\chi^2_{90\%}$. Кроме того:

- 1) не допускалось отбрасывание точек из опорных камер 1, 4 и
 - 9, что гарантирует хорошее восстановление *z*-координаты;
- 2) не допускалось отбрасывание точек в соседних камерах, т.е. возникновения "разрывных" треков.

Эта процедура обеспечивает достаточное количество точек для восстановления трека с учетом потери энергии в веществе сцинтилляционных счетчиков и сплошных элементах камер. Из табл. 3 видно, что потери информации при этом практически не происходит.

Таблица 3. Количество точек на треке после процедуры выбрасывания "плохих" точек

Количество точек	1-5	6	7	8	9	10
Число треков	0	176	1652	6235	11142	7421

Рис. 2. Отклонение восстановленных треков от идеальных окружностей.

Хотя спектрометр АРЕС имеет сложную конструкцию (3 сцинтилляционных годоскопа, 12 цилиндрических многопроволочных пропорциональных камер), он достаточно проэрачен для частиц, детектируемых в условиях данного эксперимента. Приближение треков спиралью (рис. 2) не дало существенного понижения минимума функции S_2 по сравнению с окружностью. В 85% случаев уменьшение минимального значения функции S_2 не превысило 2%. Отклонение восстановленных треков от идеальных окружностей определяется пространственным разрешением камер, рассеянием частиц в веществе сцинтилляционных счетчиков и камер и неконтролируемыми потерями энергии в дискретных элементах камер (проволочках и стрипах).

8

Рис. 3. Среднее расстояние от экспериментальных точек до восстановленного трека. Рис. 4. Распределение радиуса треков для трехтрековых событий.

На рис. З приведены результаты тестирования программы восстановления треков по однотрековым событиям. ΔR - это среднее расстояние с вероятностью 90% от экспериментальных точек до восстановленного трека. Видно, что треки восстанавливаются с высокой точностью.

На рис. 4 показано распределение радиуса треков для событий, полученных в эксперименте по поиску распада $\mu \rightarrow 3e$. В области радиусов меньше 13 см обрезание вызвано конструкцией детектирующей части, правая часть характеризует распределение частиц по энергии.

Рис. 5. Распределение минимального расстояния от трека до центра мишени L_{min} .

На рис. 5 для тех же событий показано распределение наименьшего расстояния от трека до центра мишени L_{min} . Пики на краях распределения можно объяснить тем, что пучок был достаточно широкий и захватывал опорный цилиндр первой камеры.

Программа написана на языке Turbo Pascal ver.6.0 и поставлена на компьютере типа IBM PC/AT-386. Объем программы — около 60Kb.

Литература

 [1] Коренченко С.М., Мицельмахер Г.В., Некрасов К.Г. Сообщение ОИЯИ Р13-9542, Дубна, 1976; Коренченко С.М. Авторское свид. N² 502350, бюлл. ОИПОТЗ N² 5, 1976.

[2] Баранов В.А. и др. Сообщение ОИЯИ 13-81-381, Дубна, 1981.

- [3] Baranov V.A. e.a. Nucl Instr. and Meth., 1986, v.B17, p.438.
- [4] Filippov A.I. e.a. Nucl. Instr. and Meth., 1986, v.B17, p.441.

10

- [5] Баранов В.А. и др. ПТЭ, 1987, т.6, с.40.
- [6] Баранов В.А. и др. Сообщение ОИЯИ Р1-90-464, Дубна, 1990.
- [7] Crawford J.F. Nucl. Instr. and Meth., 1983, v.211, p.223.
- [8] Hansroul M. e.a. Nucl. Instr. and Meth., 1988, v.A270, p.498.
- [9] Bellgardt U. e.a. Nucl. Phys, 1988, v.B299, p.1; Bertl W. e.a. Nucl.
 Phys, 1985, v.B260, p.1.

Рукопись поступила в издательский отдел

27 февраля 1991 года.

Кисель И.В. и др. Восстановление детектируемых в установке АРЕС треков (X-Y плоскость)

В работе проведено сравнение метода Крауфорда и метода конформных преобразований при восстановлении треков в Х-Ү плоскости. Описана реализация метода конформных преобразований применительно к магнитному спектрометру APEC. Для апробации этого метода использовались данные, полученные в эксперименте по поиску распада µ →Зе.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод авторов

Kisel I.V. et al. Reconstruction of Tracks Detected in Setup ARES (X-Y Plane)

Crawford and conformal mapping methods for the track reconstruction in X-Y plane are compared. The realization of the conformal mapping method for the ARES magnetic spectrometer is described. The experimental data obtained in the experiment on the search for the decay $\mu \rightarrow 3e$ are used to test this method.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1991

P1-91-110

P1-91-110