

СООбЩения Объединенного института ядерных исследований дубна

P1-90-584

ПОЛНАЯ ДЕЗИНТЕГРАЦИЯ ЯДЕР ³Не И ⁴Не ПРИ ВЗАИМОДЕЙСТВИЯХ С ПРОТОНАМИ

Сотрудничество: Варшава - Дубна - Кошице -Москва - Страсбург - Тбилиси

1. ВВЕДЕНИЕ

В процессах взаимодействия легких ядер ³H, ³He, ⁴He с протонами при энергиях несколько ГэВ наиболее часто идут каналы с малой степенью фрагментации. Например, в ⁴ Нер-взаимодействиях наиболее вероятными являются ³ Нерп и ³ Нрр конечные состояния. Это может свидетельствовать о том, что в волновой функции ⁴ Не преобладают ³ Неп- и ³ Нр-состояния. Менее вероятным процессом является полный безмезонный развал ядер ³ Не и ⁴ Не. Однако изучение механизма полного развала помогает выделить вклад многократного рассеяния и ближе подойти к наблюдению экзотических явлений, соответствующих малым расстояниям между нуклонами.

Известны работы¹⁻⁸, где изучались явления полного разрушения ядер ³ H, ³ He, ⁴ He в водородной камере. Настоящая работа является продолжением исследований механизма безмезонного развала ядер ³ He и ⁴ He при взаимодействии их с протонами в 100-см жидководородной пузырьковой камере ОИЯИ^{/6-11/} с привлечением новых данных по ⁴ Hep-взаимодействиям при импульсе 13,6 ГэВ/с.

Исследуются импульсные и угловые распределения, а также корреляции вторичных частиц по относительным азимутальным углам.

2. ЭКСПЕРИМЕНТ

100-см жидководородная пузырьковая камера ОИЯИ экспонировалась в пучках ядер ³ Не при 13,5 ГэВ/с и ⁴ Не при 8,6; 13,6 ГэВ/с на синхрофазотроне ЛВЭ ОИЯИ. При взаимодействии ускоренных ядер с протонами продукты их фрагментации являются быстрыми, что приводит к существенно более высокой, чем в рА-экспериментах, эффективности регистрации этих фрагментов. Преимущество пузырьковой камеры для детектирования частиц в условиях 4*π*-геометрии дает возможность для эксклюзивного анализа явления полного разрушения ядер ³ Не и ⁴ Не.

Обработка снимков велась в лабораториях сотрудничества по стандартной процедуре. Пространственная реконструкция и кинематический анализ событий проводились с использованием адаптированной библиотеки программ CERN-HYDRA. При описании результатов все величины

> высаносниції киститут василих исследования БИБЛИЮТЕНА

приводятся в системе покоя ядер ³ Не и ⁴ Не. Ошибки в определении сечений — статистические.

3. РЕЗУЛЬТАТЫ

а. Оценка поперечных сечений реакций полного развала

Представленные результаты основаны на статистике:

3086 событий канала ⁴ Нер → ppp + (нейтральные) при 8,6 ГэВ/с (1) 2352 события канала ⁴ Нер → ppp + (нейтральные) при 13,6 ГэВ/с (2) 2729 событий канала ³ Нер → pppn – при 13,5 ГэВ/с. (3)

Канал полного разрушения наиболее чисто выделяется в ³ Нер-взаимодействиях, т.к. содержит только одну нейтральную частицу.

В ⁴ Нер-взаимодействиях эта реакция полностью кинематически не восстанавливается, и поэтому может содержать значительную примесь канала ⁴ Нер → pppnnπ⁶. Возможна также примесь каналов с большим числом π[°]-мезонов, однако сечения их при этих энергиях незначительны. На рис.1 представлены распределения при 8;6 ГэВ/с: а) по недостаю-

щей массе в реакции ⁴ Нер → ppp + (нейтральные) — сплошная линия; 3001

Рис.1. Распределение по недостающей массе при импульсе 8,6 ГэВ/с в реакции ⁴ Нер \rightarrow ppp + (нейтральные) — сплошная линия; распределение эффективной массы пр без лидирующего нуклона в канале ⁴ Нер \rightarrow dppn — пунктир; распределение эффективной массы pp π в реакции ⁴ Нер \rightarrow pppp π n — штрихпунктир.

б) по эффективной массе пр-пары без лидирующего нуклона из канала ⁴ Hep → dppn — пунктир, нормированное на первый максимум распределения (a); в) по эффективной массе pp^π-комбинации из реакции ⁴ Hep \rightarrow ppppn π^{-} — штрихпунктир, отнормированное на второй максимум распределения (а). Чтобы избежать в изучаемой реакции примеси канала ⁴ Hep \rightarrow pppnn π° , для дальнейшего анализа мы использовали только события с MM < 2,06 ГэВ/с². (Аналогичный анализ был проведен и для ⁴ Нер-взаимодействий при 13,6 ГэВ/с). При таком обрезании доля оставшихся событий канала ⁴ Нер → рррпп составила 49% и 33% от общего числа событий реакции ⁴ Нер → ppp + (нейтральные) при 8,6 и 13,6 ГэВ/с соответственно. Если предположить, что распределения эффективных масс двух медленных нуклонов из каналов ⁴ Hep \rightarrow dppn и ⁴ Hep \rightarrow pppnn ведут себя одинаковым образом и за пределами MM = 2,06 ГэВ/с², то при расчете поперечных сечений реакций безмезонного развала ядер ⁴ Не надо учесть также события из области перекрытия спектров реакций ⁴ Нер \rightarrow dppn и ⁴ Нер \rightarrow ppppn π^- , которые составили 21% и 22,5% от полного числа событий в канале ⁴ Hep → pppnn при 8,6 и 13,6 ГэВ/с соответственно.

Доля примеси от других конкурирующих каналов в исследуемых реакциях была значительно меньше и оценивалась на основе исследования импульсных и угловых характеристик протонов, дейтронов и π^+ -мезонов в однозначно и неоднозначно идентифицированных событиях. Количество событий, используемых при оценке сечений с учетом поправок на конкурирующие гипотезы, приведено в табл.1.

Таблица 1

Р _{іп} Исследуемая ГэВ/с реакция	и Полное число событий	Вклад конкурирующих гипотез	Число событий в сечении
8,6 ⁴ Hep→pppnn	с MM<2,06 ГэВ/с ² 1159	⁴ Нер→dpp + (нейтр.) 63 ⁴ Нер→ррπ ⁺ + (нейтр.) 14	1082 + +294(21%)= = 1376
13,6 ⁴ Hep→pppnn	с MM<2,06 ГэВ/с ² 533	⁴ Нер→dpp + (нейтр.) 1 ⁴ Нер→ррπ ⁺ + (нейтр.) 26	506 + +139(22,5%) = = 645
13,5 ³ Hep→pppn	DST 2729	³ Hep→dppπ° 158	2571

Поперечные сечения реакций полного безмезонного развала ядер ³ Не и ⁴Не определялись на основе поперечных сечений трехлучевых взаимолействий, полученных ранее в работах^{/9,10/}:

$$\sigma_{\text{tot}}^{3x} = 8,6 \ \Gamma \Rightarrow B/c \quad \sigma_{\text{tot}}^{3x} = (72,3+2,7) \ \text{M6}^{\prime 9 \prime},$$

Ρ

 $P_{4}_{He} = 13,6 \ \Gamma \Im B/c \ \sigma_{tot}^{3x} = (61,1+1,9) \ M6'^{9'},$

 $P_{_{3}He} = 13,5 \ \Gamma \Im B/c \ \sigma_{tot}^{3x} = (62,5+1,0) \ M6^{/10/}.$

Поперечные сечения оказались равными:

 $P_{in} = 8,6 \ \Gamma \Rightarrow B/c \qquad \sigma_{4 \ Hep \Rightarrow pppnn}^{dir} = (4,82 \pm 0,13) \ M6,$ $P_{in} = 13,6 \ \Gamma \Rightarrow B/c \qquad \sigma_{4 \ Hep \Rightarrow pppnn}^{dir} = (2,94 \pm 0,11) \ M6,$ $P_{in} = 13,5 \ \Gamma \Rightarrow B/c \qquad \sigma_{4 \ Hep \Rightarrow pppn}^{tot} = (6,92 \pm 0,13) \ M6.$

Часть событий реакции ³ Нер → pppn, имеющих импульс нейтрона по величине больший, чем импульсы любого из трех протонов, мы отнесли к каналу с перезарядкой $\sigma_{3 \text{ Hep} \rightarrow \text{pppn}}^{\text{ch-ex}} = (0,28 + 0,03)$ мб. Остальные события этой реакции составили прямой канал:

a^{dir} ³ Нер→рррп = (6,64 + 0,13) мб.

На рис.2 приведены импульсные распределения протонов в прямом канале (а), и в канале с перезарядкой (б). Видно отсутствие лидирующих протонов в случае перезарядки.

Рис.2. Импульсные распределения протонов из прямого канала (а) и канала с перезарядкой (б) в реакции ³Нер → рррп при 13,5 ГэВ/с в системе покоя ядра ³Не. Определить сечение с перезарядкой в реакции ⁴ Нер → рррпп таким способом нельзя, т.к. невозможно выделить лидирующий нейтрон. Полученное сечение безмезонного развала ядер ⁴ Не относится к прямому каналу этой реакции (в событиях с перезарядкой значения недостающей массы значительно больше 2,06 ГэВ/с²).

б. Общие характеристики прямого канала реакции ⁴ Hep → pppnn при 8,6 и 13,6 ГэВ/с и реакции ³ Hep → pppn при 13,5 ГэВ/с

Для рассмотрения общих характеристик указанных реакций проводилось упорядочение импульсов вторичных нуклонов, т.е. в каждом событии нуклонам присваивались индексы 1, 2, 3, 4 в порядке убывания их импульсов в реакции (3) и 1, 2, 3 — протонам в реакциях (1), (2). При этом следует заметить, что нет прямого соответствия между протонами с индексом (2,3) в реакции ⁴ Нер \rightarrow pppnn и нуклонами (2,3) из реакции ³ Нер \rightarrow pppn. На рис.3 приводятся импульсные и угловые распределения для нуклонов каждого индекса упорядочения для реакции (3), а на рис.4 — для реакции (1), (2).

Из рис.3 видно, что импульсные распределения нуклонов с индексами 3, 4 имеют максимум при импульсе 100-120 МэВ/с, а в угловом распределении им соответствует изотропная часть. Эти характеристики близки к характеристикам спектаторных нуклонов. Наряду с этим мы наблюдаем лидирующие нуклоны (индекс 1) и нуклоны отдачи (индекс 2). Это позволяет нам изобразить основную часть протекающих процессов в этом канале в виде диаграммы, показанной на рис.5а, т.е. как квазиупругое рассеяние протона на одном из нуклонов ядра ³ Не.

В реакциях (1) и (2) (см. рис.4а и б) эти группы нуклонов обозначены менее четко, т.е. существуют значительно большие области перекрытия в импульсных распределениях протонов с индексами 1, 2, 3.

Наиболее существенные различия наблюдаются (см. табл. 2) в значениях величин наклонов дифференциальных сечений $d\sigma/dt = e^{bt}$ для реакции (1), (2) и реакции (3) (t — квадрат 4-импульса, переданного от падающего к лидирующему протону в реакциях (1), (2), (3)).

Из табл.2 видно, что величина наклона дифференциального сечения реакции ³ Нер \rightarrow pppn близка к величине наклона упругого pp-рассеяния ¹⁵, но значительно отличается от величин наклонов дифференциальных сечений ⁴ Нер \rightarrow pppnn при 8,6 и 13,6 ГэВ/с. Это подтверждает сделанное выше предположение о том, что полное разрушение ядра ³ Не происходит в основном в результате квазиупругого рассеяния протона на одном из нуклонов ядра (рис.5а), тогда как в случае развала ядра ⁴ Не мы наблюдаем двухкратное или многократное рассеяние падающего протона (рис.6а) на одном из нуклонов ядра ⁴ Не.

4

Рис.3. Импульсные и угловые распределения быстрых (1), средних (2) и медленных (3, 4) нуклонов из прямого канала реакции ³ Нер → pppn при 13,5 ГэВ/с в системе покоя ядра ³ Не. ്ച

Следствием такого различия в механизмах может быть неодинаковый характер азимутальных корреляций пар нуклонов, принадлежащих одному из актов взаимодействия в реакциях ³ Нер → pppn и ⁴ Нер → pppnn.

Рис.4. Импульсные и угловые распределения быстрых (1), средних (2) и медленных (3) протонов в прямом канале реакции ⁴ Hep \rightarrow pppnn при 8,6 ГэВ/с (а) и при 13,6 ГэВ/с (б) в системе покоя ядра ⁴ He.

		5. S. S.	N	Таблица 2
⁴ Hep→pppnn ⁴	Hep→pppnn p	ор→упругое′ѕ≀	³ Hep→pppn	рр→упругое′ѕ /
8,6 ГэВ/с	13,6 ГэВ/с	2,8 ГэВ/с	13,5 ГэВ/с	4,8 ГэВ/с
Интер- вал t 0,15-1,85	0,05-1,05		0,07-0,87	
b ГэВ/с ⁻² 1,57+0,07	2,8+0,2	7,6+0,4	5,04+0,12	7,8+0,4
χ^{2}/N_{d} 4/18	6/11	•	15/17	
$P \qquad \qquad N_1 \\ N_2 \\ N_3 \\ N_4 \\ a \\ Pro 5 = M_2$	б	N_1 N_2 = d		e f
Рис.5. Диаграммы ке	вазиупругого р	ор- Рис.6. Диа	граммы,	соответствующие

рассеяния: а — с полным развалом ядра ³ Не; б — с дейтроном в конечном состоянии для реакции ³ Нер \rightarrow pppn при 13,5 ГэВ/с. Рис.6. Диаграммы, соответствующие двухкратному рассеянию быстрого нуклона (а), рассеянию нуклона отдачи (б) для реакции ⁴ Нер→ → pppnn.

Для проверки этого предположения были построены распределения по относительному азимутальному углу пар нуклонов (12,13,14,23, 24, 34) для реакции ³ Нер \rightarrow pppn и протонов (12, 13, 23) для реакции ⁴ Нер \rightarrow pppnn. Величина этого угла может меняться от 0, когда поперечные импульсы обоих нуклонов совпадают по направлению, до π рад, когда поперечные импульсы направлены в противоположные стороны. Величины асимметрий этих распределений, вычисленные как

$$A = \frac{N(\varphi > \pi/2) - N(\varphi < \pi/2)}{N(\varphi > \pi/2) + N(\varphi < \pi/2)}$$

представлены в табл.3, 4.

Видно, что в канале ³ Нер → pppn самая сильная корреляция наблюдается для пары (1, 2). Это не противоречит нашему предположению о квазиупругом рассеянии.

		 Addresse 	and the second second			
Тары			³ Hep →	pppn 13,5	ГэВ/с	
іуклонов	3	вcet		t < 0,17	e de la composition de la comp	t>0,17
.,2		0,94+0,03		0,93+0,03	3	0,96+0,03
,3		0,25+0,02	·,• ·	0,21+0,03	3	0,27+0,03
4		0,08+0,02		0,18+0,03	3	0,09+0,03
2,3		-0,04+0,02		0,05+0,03	3	-0,12+0,03
2,4		-0,003+0,03	20	0,05+0,03	3	-0,05+0,03
3,4		0,12+0,02		0,07+0,03	3	0,17+0,03
	a .	····			••	
	•				1 . A ¹	
					1. 	Таблица 4
Тары іуклонов	оы ⁴ Hep → pppnn клонов 13,6 ГэВ/с		pnn	⁴ Hep → pppnn 8,6 ГэВ/с		
	вcet	t < 0,25	t > 0,25	вcet	t<0,45	t > 0,45
.2	0,58+0,06	0,49+0,08	0,65+0,08	0,64+0,03	0,49+0,04	0,79+0,05
.3	SI 0.25+0.05	0.10+0.07	0.39+0.07	0.20+0.03	0.13+0.04	0.27+0.04
2,3	0,06+0,05	0,25+0,07	-0,10+0,07	0,07+0,02	0,17+0,04	-0,03+0,04

Таблица 3

В случае квазиупругого перерассеяния на ядре ⁴ Не наиболее скоррелированными будут также протоны (1) и (2), получившие наибольший переданный импульс. Но в этом случае асимметрия для других пар, включающих протоны с индексом (1), имеет тенденцию возрастать с увеличением значения переданного импульса (см. табл.4), что не противоречит диаграмме рис.6а (граница разбиения по t выбрана из условия примерного равенства числа событий в каждой из областей прямого канала). В событиях с меньшими переданными импульсами должна возрастать роль вторичных процессов (например, взаимодействие нуклонов отдачи из первого акта с нуклонами ядра и т.д.). Именно такую картину мы наблюдаем в прямом канале ⁴. Нер \rightarrow рррпп при 8,6 и 13,6 ГэВ/с, где отмечается увеличение асимметрии для пар нуклонов (2, 3), что не противоречит диаграмме рис.6б. Такой зависимости асимметрии от переданного импульса мы не видим в реакции ³. Нер \rightarrow рррп (см. табл.3).

8

Приведенные выше данные позволяют нам считать, что существенную роль в механизме разрушения ядер ⁴ не при импульсах 8,6 и 13,6 ГэВ/с играет двухкратное взаимодействие налетающего протона с нуклонами ядра, в то время как безмезонный развал ³ Не происходит в основном в результате квазиупругого рассеяния на одном из нуклонов ядра.

Сказанное, однако, совсем не означает, что в процессе полного безмезонного разрушения легких ядер не могут участвовать и другие механизмы. В частности, в работе /8 / мы отмечали особенность в значениях асимметрий для скоррелированных пар нуклонов в канале с перезарядкой по сравнению с каналом прямого развала ядер ³ Не. А именно: в случае перезарядки азимутальные углы вылета пар нуклонов (23, 24, 34) оказались сильнее скоррелированы по сравнению с прямым каналом: < A >_{dir} (23, 24, 34) = 0,10+0,01, тогда как < A >_{ch-ex} (23, 24, 34) = = 0,22+0,05. Наиболее естественным объяснением такого различия может быть уменьшение числа скоррелированных пр-пар прямого канала в результате перехода их в конкурирующий канал ³ Нер→dpp. Такой механизм образования дейтронов исследовался нами ранее в работе /11 /, где показано, что в реакциях прямого развала ⁴ Hep \rightarrow dppn и dp \rightarrow ppn за счет взаимодействия нейтрона и протона с малыми относительными импульсами в конечном состоянии идет образование дейтронов и переход этих каналов в конкурирующие реакции ⁴ Hep \rightarrow ddp и dp \rightarrow dp соответственно.

Оценка величины асимметрии для скоррелированных пар (23,24,34), полученная с помощью моделирования без учета взаимодействия в конечном состоянии, для канала с перезарядкой оказалась равной: < A >(23, 24, 34) = 0,20+0,01, что хорошо согласуется с полученным нами значением < A > = 0,22+0,05.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Определено поперечное сечение полного безмезонного разрушения ядер ³ Не при 13,5 ГэВ/с: σ ³ Нер→рррп = (6,92+0,13) мб.

Оценены поперечные сечения прямого канала и канала с перезарядкой в ³ Нер-взаимодействиях:

 σ_{dir} ³Hep \rightarrow pppn 13,5 Γ \rightarrow B/c = (6,64+0,13) MG, \odot

 σ_{ch-ex} ³Hep → pppn 13,5 ΓэB/c = (0,28+0,03) мб

и поперечные сечения прямого канала в ⁴ Нер-взаимодействиях:

 $\sigma_{\rm dir}$ ⁴ Hep → pppnn 13,6 ГэВ/с = (2,94+0,11) мб,

σ_{dir} ⁴ Hep → pppnn 8,6 ГэВ/с = (4,82+0,13) мб.

Исследованы общие характеристики реакций ³ Нер → pppn и ⁴ Нер → → pppnn и показано, что полный безмезонный развал ядер ³ Не происходит в основном в результате квазиупругого рассеяния протона на одном из нуклонов ядра, тогда как полный развал ⁴ Не — через двухкратное взаимодействие протона с нуклонами ядра.

ЛИТЕРАТУРА

- 1. Блинов А.В. и др. ЯФ, 1985, 41, с.719.
- 2. Абдуллин С.К. и др. ЯФ, 1988, 47, с.152.
- 3. Зелински П. и др. Сообщение ОИЯИ, 1-83-566, Дубна, 1983.
- 4. Зелински П. и др. Препринт ОИЯИ, P1-83-565, Дубна, 1983; ЯФ, 1984, 40, с.482.
- 5. Banary O. et al. NN- and ND-Interactions. UCRL 20000 NN, 1970.
- 6. Глаголев В.В. и др. Сообщение ОИЯИ, 1-84-202, Дубна, 1984.
- 7. Dubna Kosice Moscow Strasburg Tbilisi Warsaw Collaboration, N.P. 1985, A.455, 572-578.

8. Глаголев В.В. и др. - Сообщение ОИЯИ, Р1-88-592, Дубна, 1988.

- 9. Braun H. et al. Czech. Journal of Physics, 1989, B39, p.1267.
- 10. Глаголев В.В. и др. Сообщение ОИЯИ, Р1-90-561, Дубна, 1990.

Glagolev V.V. et al. — JINR Preprint E1-86-78, Dubna, 1986;
 Глаголев В.В. и др. — Препринт ОИЯИ Р1-87-61, Дубна, 1987.

Рукопись поступила в издательский отдел 27 декабря 1990 года.