90-306

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

P1-90-306

1990

В.Вислицкий ¹, А.Ш.Гайтинов², В.В.Глаголев³, К.Г.Гуламов⁴, <u>У.Г.Гулямов</u>⁵, А.К.Качарава⁷, А.П.Коленько², Ю.П.Кратенко⁶, Р.М.Лебедев², В.Д.Липин⁴, Ш.З.Насыров⁵, М.С.Ниорадзе⁷, К.Олимов⁴, Г.Д.Пестова³, Т.Л.Рогава⁷, З.Р.Салуквадзе⁷, Т.Семярчук¹, Й.Урбан⁸, А.М.Худайберганов⁶, И.Я.Часников², С.С.Шиманский², И.Э.Шокиров⁵, С.Н.Шпилев⁴, А.А.Юлдашев⁴

ЗАРЯДОВЫЕ РАСПРЕДЕЛЕНИЯ ФРАГМЕНТОВ В ¹⁶ Ор-ВЗАИМОДЕЙСТВИЯХ

ПРИ ИМПУЛЬСЕ 3,1 А ГэВ/с

Институт ядерных проблем, Варшава, ПР

- ² Институт физики высоких энергий АН КазССР, Алма-Ата
- ³ Объединенный институт ядерных исследований, Дубна
- ⁴ Физико-технический институт АН УзССР, Ташкент
- ⁵ Институт ядерной физики АН УзССР, Ташкент
- ⁶ Ташкентский государственный университет
- ⁷ Институт физики высоких энергий ТГУ, Тбилиси
- ⁸ Университет им. П.Й.Шафарика, Кошице, ЧССР

Экспериментальные данные были получены с помощью 100 см водородной пузырьковой камеры, экспонированной на синхрофазотроне ЛВЭ ОИЯИ (Дубна) в пучке релятивистских ядер кислорода при импульсе $3,1 \cdot A \ \Gamma$ эВ/с. Результаты исследования основаны на статистике 20115 событий, зарегистрированных в рабочем объеме камеры. В нашем эксперименте легко отличить по ионизационным потерям релятивистские однозарядные (Z = 1) частицы от фрагментов ядра кислорода с Z > 1. Заряды фрагментов оценивались визуально. При этом принималось, что сумма зарядов вторичных частиц в ¹⁶ Ор-взаимодействии равна девяти.

Полученное экспериментальное распределение по зарядам фрагментов представлено на рис. 1. Следует отметить, что в первичном пучке за счет взаимодействий ядер кислорода до рабочей зоны камеры, т.е. вне поля зрения фотокамер, а также в силу ряда технических причин, таких как загрязнение газа в ионном источнике, взаимодействия на остаточном газе в камере ускорителя и в канале транспортировки частиц, могут присутствовать ядра более легкие, чем ¹⁶ О. Эти причины порождают примесь релятивистских ядер с отношением m/z = 2, из которых

для нас наибольшую опасность представляет ¹⁴N, т.к. отбор первичных треков чисто визуальный. Такая примесь вносит систематическую ошибку в зарядовые распределения фрагментов. Для оценки примеси ядер в пучке был проведен специальный методический просмотр. При просмотре отбирались события, в кототреки только с рых имелись Z = 1.2, хорошо идентифицируемые визуально. Подсчитывался суммарный заряд вторичных тре-

Рис. 1. Распределение релятивистских фрагментов по зарядам в ¹⁶ Ор-взаимодействиях.

. 	•	~			
	· a	n	TT T T T T	r 0	
਼ਾ	а	v.	IFIL	La.	÷.
			-	• • • •	

	÷				 ÷.	 ÷	2.		<u> </u>		_	6.	_			 	· ·	-				_	_				 <u> </u>	<u> </u>								_	<u> </u>	<u> </u>	 <u> </u>
			2	Z				·		2 	1		8												j j	7	,		1						6	1.00			Þ
	1	Vo	:0	б							2	9	38	B						3	言語に			Ę	51	1								2	9	3			
e.									1.1.	1	_	-	1.0		٠.,				÷., ;					- <u>(</u>							1	-	1					1.7	

ков, тем самым определялся заряд Z пучкового трека. Результаты методического просмотра приведены в табл. 1, показывающей распределение пучковых частиц, дающих взаимодействия, по зарядам.

При просмотре и отборе частиц в эффективной области камеры ядра ¹² С визуально идентифицируются, и поэтому основную примесь в пучке составляют ядра азота.

Предположения, которые использовались при введении поправок:

 при визуальном отборе мы кроме ядер кислорода брали только ядра азота;

— для учета различного вклада взаимодействий ¹⁶ O, ¹⁴ N + p в имеющееся количество событий с данной топологической характеристикой использовался геометрический фактор $K = (A_{16O}/A_{14N})^{2/3} = 1,093$. По данным методического просмотра примесь событий ¹⁴ N + p в общем числе событий составила -15%.

При введении систематических поправок рассмотрим сначала два класса событий:

1) события с одним фрагментом;

2) события с двумя фрагментами.

На рис. 2 представлено распределение по заряду фрагментов для событий класса 1).

Считая, что в ¹⁴ N + p и ¹⁶ O + p взаимодействиях топологические сечения реакций с выходом одного фрагмента ведут себя подобным образом, можно восстановить форму зарядового распределения фрагментов с Z > 2 в однофрагментных ¹⁶ O + p взаимодействиях, добавляя поправку, равную $\Delta_{fr} = 0,15$ · N_{fr}·(K - 1) = 0,014·N_{fr}, т.е. менее 1,5%.

Экспериментальное число фрагментов для каждого Z и соответствующие поправки приведены в табл. 2.

Таблица 2

- <u>2017년</u> 1월 28일 - 1월 21일 - 1일 21일 21일 1일 - 1일 1일 - 1일 1일 - 1일 -	<u> Y.S.</u>
Z _{fr.} 2 3 4 5 6 7 8	
N _{fr} 1218 474 483 903 2634 3376 4674 137	<u>-</u> 62
$\Delta_{\rm fr}$ – 7 7 13 37 47 65 176	;
]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

6

Рис. 4. Распределения фрагментов по зарядам для событий с тремя (а) и четырьмя (б) фрагментами.

Рис. 2. Распределение фрагментов по зарядам для событий с единственным фрагментом.

Систематические погрешности, связанные с техническими ошибками, составляют не более 0,3%. Распределение по зарядам фрагментов из событий с двумя фрагментами представлено на рис. 3.

В табл. З приведены числа событий, соответствующие определенной комбинации зарядов двух фрагментов. На основании данных табл. З, с учетом корреляции зарядов фрагментов, вводилась поправка Δ_{fr} для каждого Z (естественно, кроме двухзарядных фрагментов). При этом возникающая погрешность целиком относилась к зарядам >2, или равновероятно распределялась между зарядами, когда оба заряда не равны 2. Например, для

3

	Таблица 3
Z	1,2 2 3 4 5 6 7 8
2	1794 697 379 335 351 12 1
3	280 152 66 17
4	41

 $Z_{fr} = 4$: $\Delta_{fr} = 0,15 \cdot (N'_{fr} - N_{fr}) = 0,15 \cdot (379 \cdot K + 41 \cdot (1 + K) + 152(1 + K)/2 - N_{fr}) = 7 \cdot (1,14\%)$. (N' — число фрагментов для пучка, состоящего только из ядер ¹⁴ N). В результате получены поправки: для $Z_{fr} = 3 \Delta_{fr} = 0,9\%$, для $Z_{fr} = 4 \Delta_{fr} = 1,14\%$ для $Z_{fr} = 5 \Delta_{fr} = 1,25\%$, для $Z_{fr} = 6 \Delta_{fr} = 0,5\%$.

Для событий с тремя (рис. 4а) и четырьмя (рис. 4б) фрагментами доля двухзарядных фрагментов равна соответственно 93,2 и 99,7%. В этом случае оказалось возможным пренебречь систематическими ошибками в зарядовых распределениях.

Проведенное рассмотрение показало, что максимальная поправка для числа фрагментов любого заряда составляла не более 1,5%. Итоговое распределение с учетом поправок, нормированное на экспериментальные данные, показано на рис. 1.

На всех рисунках статистические и систематические ошибки умещаются в контур сплошного кружка, пунктирные линии проведены для наглядности.

> Рукопись поступила в издательский отдел 28 апреля 1990 года.

Вислицкий В. и др. P1-90-306 Зарядовые распределения фрагментов в ¹⁶ Ор-взаимодействиях при импульсе 3,1-А ГэВ/с

Представлены экспериментальные данные о зарядовых распределениях фрагментов в ¹⁶ Ор-соударениях при импульсе 3,1 ГэВ/с на нуклон.

Работа выполнена сотрудничеством Алма-Ата — Варшава — Дубна — Кошице — Ташкент — Тбилиси.

Сообщение Объединенного института ядерных исследований. Дубна 1990

Перевод авторов

Wislicki W. et al. Charge Distributions of Fragments in ¹⁶ Op-Investigations at 3.1 A GeV/c per Nucleon

Experimental data on charge distributions of fragments in ¹⁶ Op-collisions at 3.1 GeV/c per nucleon are represented.

The investigation has been performed by collaboration Alma-Ata – Warsaw – Dubna – Kosice – Tashkent – Tbilisi.

Communication of the Joint Institute for Nuclear Research. Dubna 1990

P1-90-306