90-26

Объединенный институт ядерных исследований

дубна

6 12

P1-90-26

1990

Ц.Баатар^{*}, Ц.Батсайхан^{*}, И.А.Ивановская, Б.Хурэлбаатар^{*}, М.И.Соловьев, Р.Тогоо, Д.Тувдендорж^{*}, Г.Шархуу^{*}

ИНКЛЮЗИВНЫЕ СПЕКТРЫ П⁻-МЕЗОНОВ С КУМУЛЯТИВНЫМ ЧИСЛОМ n_k > 0,35, ОБРАЗОВАННЫХ В dC-, HeC- И CC-ВЗАИМОДЕЙСТВИЯХ ПРИ 4,2 ГэВ/с на нуклон

Направлено в журнал "Ядерная физика"

*Институт физики и техники АН МНР, Улан-Батор

1. ВВЕДЕНИЕ

В последние годы в литературе широко обсуждается проблема фазового перехода между адронным и кварк-глюонным состояниями ядерной материи $^{/1-6/}$. Согласно теоретическим расчетам, проведенным в рамках SU(2) и SU(3) калибровочных теорий, при некотором критическом значении эффективной температуры T_c ядерного вещества происходит фазовый переход между адронным и кварк-глюонным состояниями, причем численное значение параметра T_c близко к величине 200 МэВ/4-6/.

Ожидается, что образование кварк~глюонной плазмы в лабораторных условиях может быть реализовано в столкновениях релятивистских ядер.

С целью экспериментального обнаружения кварк-глюонной плазмы в ядерных столкновениях при высоких энергиях нами был проведен анализ инклюзивных спектров π^- -мезонов с кумулятивным числом $n_k > 0.5$, образованных в π^- С-взаимодействиях при 40 ГэВ/с /7/ В этой работе впервые было показано, что значение эффективной температуры $T_0 = /0.290 \pm 0.012/$ ГэВ, полученное для кумулятивных π^- -мезонов из π^- С-взаимодействий, превышает теоретическую оценку T_c , т.е. $T_0 > T_c$.

Настоящая работа является продолжением работы $^{7/}$. В ней исследуется зависимость от кинетической и поперечной энергий инвариантных дифференциальных сечений рождения вторичных π^{-} -мезонов с кумулятивным числом $n_k > 0,35$ в dC--, HeC--и CC-взаимодействиях при первичном импульсе на нуклон 4,2 ГэВ/с. Полученные результаты интерпретируются с точки зрения реше-точной версии квантовой хромодинамики $^{/4-6/}$.

2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Экспериментальные данные были получены с помощью двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ. Камера находилась в магнитном поле напряженностью 1,5 Тл и облучалась пучками легких релятивистских ядер /d, ⁴He, ¹²C / с первичным импульсом на нуклон 4,2 ГЭВ/с на синхрофазотроне ОИЯИ. Средняя точность в определении импульсов частиц составляла 12%, а углов вылета их - 0°,6. Все вторичные отрицательные частицы считались π[°]-мезонами. Другие методические особенности экспе-

Таблица l

/1/

Тип собы- тия	N соб.	$\frac{N_{co6.}}{(c \pi_{n_k}^{-1} > 0.35})}$	$N_{\pi} = (n_k > 0.35)$	^N соб. (с <i>π</i> ⁻ назад)	^N " [—] (назад)
dC	4797	313	320	352	364
HeC	2055	233	247	234	245
CC	3642	337	358	377	402

Число зарегистрированных событий и π -мезонов в них

римента и методика выделения взаимодействий на углеродной мишени из взаимодействий в пропане (С₃Н₈) подробно описаны в работах ^{/8,9/}

В настоящей работе исследуются реакции следующего типа:

$$(d, He, C) + C \rightarrow \pi_{n_1}^{-1} > 0.35^{+} \cdots$$

Число таких событий и π^{-} -мезонов в них приводится в табл.1. Там же приводится число всех зарегистрированных событий и число событий с π^{-} -мезонами, вылетающими в заднюю полусферу.

ИМПУЛЬСНЫЕ И УГЛОВЫЕ ХАРАКТЕРИСТИКИ π⁻⁻-МЕЗОНОВ С п_µ > 0,35

В работе $^{/10/}$ бы проведен анализ средних значений импульсных и угловых характеристик π^- мезонов, образованных в dC-, HeC-и CC-взаимодействиях при 4,2 ГэВ/с на нуклон, в зависимости от кумулятивного числа $\mathbf{n}_k = (\mathbf{E} - \mathbf{p}~)/\mathbf{m}_p$, где E и p - энергия и продольный импульс вторичной частицы, \mathbf{m}_p - масса протона. Было показано, что при значении переменной \mathbf{n}_k = = 0,2 \div 0,4 характер зависимости средних значений импульсных и угловых характеристик π^- мезонов от \mathbf{n}_k меняется; приведены характеристики π^- мезонов с $\mathbf{n}_k > 0,25$.

Увеличение статистики позволило в настоящей работе повысить порог по степени кумулятивности исследуемых π -мезонов с $n_k = 0,25$ до $n_k = 0,35$ и, таким образом, уменьшить примесь некумулятивных частиц.

В табл. 2 приводятся средние значения импульсных и угловых характеристик для двух групп π^- мезонов: 1/ с $n_k < 0,35$ и 2/ $n_k > 0,35$. Из таблице видно, что средние характеристики π^- мезонов группы 2, как и в работе $^{/10/}$, существенно отличаются от соответствующих характеристик π^- мезонов группы 1.

Таблица 2

÷

Средние	характеристики	π	- мезонов

Тип взаимодействия		,ГэВ/с	< 0>, град	<p_;>,ГэВ/с</p_;>	< <u>y</u> >
	группа 1 /n _k < 0,35/	0,62±0,01	39,0±0,5	0,249±0,003	1,11±0,01
$dC \rightarrow \pi^- + \dots$	группа 2 / n_k > 0, 35/	0,54±0,02	98,5±1,8	0,455±0,017	-0,10±0,03
HeC $\rightarrow \pi^{-} + \dots$	группа 1 группа 2	0,67±0,02 0,55±0,03	37,2±0,6 95,9±1,9	0,255±0,004 0,473±0,021	1,16±0,02 -0,07±0,03
$CC \rightarrow \pi^- + \dots$	группа 1 группа 2	0,66±0,01 0,60±0,03	34,7±0,4 95,2±1,8	0,242±0,002 0,501±0,021	1,22±0,01 -0,04±0,03

e de la companya de l

.

Рис. 1. Импульсные распределения π^- мезонов с $n_k > 0,35$ в a/dC - , 6/ НеС-, в/ СС-взаимодействиях.

Рис. 2. Распределения по поперечному импульсу π^- -мезонов с $n_k > 0,35$ в a/dC-, б/ HeC-, в/ СС-взаимодействиях.

При этом импульсные и угловые характеристики обеих групп практически не зависят от типа ядра~снаряда.

На рис.1-4 приведены распределения π^- -мезонов группы 2 по полному и поперечному импульсу, р и p_t , по косинусу угла вылета $\cos\theta$ и по быстроте у. Следует отметить, что средние значения быстрот у π^- -мезонов группы 2 $\langle y \rangle \approx 0$. Это означает, что они образуют в области фрагментации ядра-мишени. Средние значения поперечных импульсов у π^- -мезонов группы 2 почти в 2 раза больше, чем у π^- -мезонов группы 1, а распределения по косинусу угла вылета π^- -мезонов с $n_k > 0,35$ в области значений перемнной $-1 < \cos\theta < 0,6$ имеют практически изотропный характер.

Таким образом, из рис.2-4 и табл.2 мы видим, что π^- -мезоны с $n_k > 0,35$, образованные в реакциях /1/, независимо от типа

4

Рис. 3. Распределения по косинусу угла вылета π^- мезонов с $n_k > 0,35$ в a/dC-, б/ HeC-, в/ СС-взаимодействиях.

Рис.4. Распределения по быстроте π^- -мезонов с $n_k > 0,35$ в a/dC-, 5/HeC-, B/CC-взаимодействиях.

взаимодействия имеют следующие особенности:

- образуются в области фрагментации ядра~мишени, < y > ≈ 0,
- имеют практически изотропное распределение по Созheta ,
- имеют сравнительно большие значения поперечных импульсов /0,45÷0,50/ ГэВ/с.

РАСПРЕДЕЛЕНИЯ *π*⁻⁻МЕЗОНОВ С л_k >0,35 ПО КИНЕТИЧЕСКОЙ ЭНЕРГИИ

На рис. 5 /а,б,в/ представлены распределения π -мезонов с кумулятивным числом $n_k > 0,35$ из dC-, HeC- и CC-взаимодействий по кинетической энергии Т. Эти распределения в области T > 0,1 ГэВ имеют экспоненциальный вид и, следовательно, могут быть аппроксимированы формулой:

Рис. 5. Распределение по кинетической энергии π —мезонов с $n_k > 0,35$ в a/dC –, б/ НеС-, в/ СС-взаимодействиях.

Таблица З

Значения параметров	в	формулах	/2/	, /4/.	, /5/,	/8/
---------------------	---	----------	-----	--------	--------	-----

Тип взаимо- действия	dC	HeC	CC
Т ₀₀ /ГэВ/	0,346±0,026	0,303±0,029	0,372±0,027
χ^2/n	0,33	0,77	0,67
Т ₀ /ГэВ/	0,233±0,011	0,234±0,013	0,245±0,011
χ^2/n	0,59	0,94	1,24
Т _{Ot} /ГэВ/	0,237±0,010	0,210±0,012	0,246±0,010
χ^2/n	0,25	0,54	0,01
Т ₀₁ /ГэВ/	0,080±0,004	0,096±0,005	0,075±0,003
$\frac{1}{\chi^2/n}$	0,87	0,32	1,93

$$\frac{1}{N} \frac{\Delta N}{\Delta T} = A \exp\left(-\frac{T}{T_{OO}}\right) .$$

Значения параметра наклона T_{00} и χ^2 на одну степень свободы приведены в табл.3. Из нее видно, что численные значения параметра T_{00} для всех трех типов взаимодействия близки между собой и находятся в интервале /0,30÷0,37/ ГэВ.

5. ЗАВИСИМОСТЬ ИНВАРИАНТНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЙ ОТ КИНЕТИЧЕСКОЙ ЭНЕРГИИ

Инвариантное дифференциальное сечение рождения вторичных частиц в зависимости от их кинетической энергии T и угла вылета θ записывается в следующем виде:

Рис.6. Инвариантные спектры π^- мезонов с $n_k > 0,35$ и π^- мезонов, вылетающих в заднюю полусферу в л.к.с., в a/dC -, б/ HeC-, в/ CC-взаимодействиях.

/2/

где P - импульс вторичной частицы. Проинтегрированные по угловой переменной инвариантные спектры π^- -мезонов с $n_k > 0,35$ из dC-, HeC- и CC-взаимодействий представлены на рис. 6. Видно, что эти распределения имеют экспоненциальный характер и поэтому они были описаны следующей формулой:

$$\frac{1}{pN} \frac{\Delta N}{\Delta T} = A_0 \exp\left(-\frac{T}{T_0}\right) .$$
 (4/

Значения параметра наклона T_0 /эффективной температуры/ и соответствующие значения χ^2 на одну спетень свободы приводятся в табл.3. Из нее видно, что значения эффективной температуры для всех типов взаимодействий в пределах экспериментальных ошибок совпадают и составляют /0,23÷0,24/ ГэВ.

Для сравнения на рис.6 представлены также инвариантные спектры *т*-мезонов, вылетающих в заднюю полусферу в лабораторной системе координат /черные кружки/. Эти распределения аппроксимировались функцией:

$$f(T) = A_1 \exp(-\frac{T}{T_{01}})$$
. (5/

Значения параметра T_{01} и χ^2 на одну степень свободы приведены в табл. 3. Отметим, что значения параметра T_{01} , полученные для назад летящих π^- -мезонов, находятся в согласии с соответствующими данными, полученными в других экспериментах / $T \sim 60 \div 70$ МэВ/ /11-19/.

6. ЗАВИСИМОСТЬ ИНВАРИАНТНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЙ ОТ ПОПЕРЕЧНОЙ ЭНЕРГИИ

При исследовании процесса множественного рождения частиц удобно пользоваться инвариантными переменными. Переменная $E_t = \sqrt{p_t^2 + m^2}$, т.н. поперечная энергия, в отличие от кинетической энергиии Тявляется инвариантом.

Если в качестве независимых переменных взять быстроту (у) и квадрат поперечного импульса (p_t^2) вторичных частиц, то инвариантное дифференциальное сечение их рождения записывается в следующем виде:

 $E \frac{d\sigma}{d\vec{p}} = \frac{d\sigma}{dydp_t^2}.$ /6/

Проинтегрировав по быстроте формулу /6/, можно получить зависимость инвариантного дифференциального сечения от поперечного импульса p, или поперечной энергии E,:

8

Рис.7. Инвариантные распределения на поперечной энергии π^- -мезонов с $n_k > 0,35$ в a/ dC-, б/ HeC-, в/ CC-взаимодействиях.

$$f(E_t) = a \frac{d\sigma}{p_t dp_t} = a \frac{d\sigma}{E_t dE_t}.$$
 (77)

На рис.7 представлены инвариантные сечения рождения π -мезонов с $n_k > 0,35$ в зависимости от поперечной энергии E_t в dC-, HeC- и CC-взаимодействиях. Видно, что эти распределения, так же как в случае зависимости от кинетической энергии, можно аппроксимировать экспоненциальной функцией

$$\frac{1}{NE_{t}} \frac{\Delta N}{\Delta E_{t}} = a_{0} \exp\left(-\frac{E_{t}}{T_{0t}}\right) .$$
 (8/

Значения параметра T_{0t} и χ^2 на одну степень свободы приводятся в табл. 3. Из нее видно, что значения T_{0t} в пределах экспериментальных ошибок не зависят от типа взаимодействия и совпадают со значениями T_0 , т.е. величина эффективной температуры получается одинаковой как из распределения по кинетической энергии, так и из распределения по поперечной энергии.

7. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как уже отмечалось во введении, согласно некоторым теоретическим расчетам $^{\prime 4\prime}$ переход из адронного в кварк-глюонное состояние ядерного вещества может происходить при критической температуре T_c , близкой к 200 МэВ. Полученное нами значение эффективной температуры для кумулятивных π^- -мезонов из dC-, HeC- и CC-взаимодействий при 4,2 ГэВ/с находится выше этой теоретической оценки для критической температуры / $T_0 \approx T_{0t} > T_c/.$ Поэтому можно предположить, что в локальной области образования кумулятивных частиц существует кварк-глюонная плазма.

Плотность энергии кварк-глюонной плазмы можно определить по формуле Стефана-Больцмана для идеального газа ^{/4/}:

$$\epsilon_{\rm q} = \kappa \,{\rm T}^4$$
, /9/
 $\kappa = \frac{\pi^2}{30} \left(16 + \frac{21}{2} \,{\rm N_f}\right)$, /10/

где к – постоянная Стефана-Больцмана, Т – температура, N_f – число кварковых ароматов. При учете только двух легких кварков, и и d, к = 12,2. Если в качестве Т представить полученные нами значения эффективной температуры T₀, то для плотности энергии получаются значения $\epsilon_{\alpha} = /4,5 \div 5,5/$ ГэВ/фм³.

Таким образом, численные значения параметров T_0 и T_{0t} , почти изотропное распределение по $\cos\theta$ и сравнительно большие средние значения поперечных импульсов, полученные для π -мезонов с $n_k > 0,35$, образованных в dC -, HeC - и CC-взаимодействиях при 4,2 ГэВ/с на нуклон, возможно, являются указанием на проявление температурного фазового перехода в рассматриваемых нами реакциях.

Авторы выражают глубокую благодарность коллективу, проводящему исследования на двухметровой пропановой камере, за предоставление экспериментального материала и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Wilson K.G. Phys.Rev.D, 1974, 10, p.2445.
- 2. Polyakov A.M. Phys.Lett. B, 1975, 59, p.82.
- 3. Polyakov A.M. Phys.Lett.B, 1978, 72, p.477.
- Горенштейн И.М., Зиновьев Г.М., Шелест В.П. Адронная материя в экстремальных условиях. Киев: Наукова думка, 1986, с.5.

- 5. Могилевский О.А. В сб.: Труды VIII Международного семинара по проблемам физики высоких энергий, ОИЯИ, Д1,2-86-668, Дубна, 1986, т.1, с.227.
- 6. Gavai R.V., Sats H. Phys.Lett.B, 1984, 145, p.248.
- 7. Баатар Ц. и др. ОИЯИ, Р1-89-424, Дубна, 1989.
- 8. Агакишиев Г.Н. и др. ОИЯИ 1-83-662, Дубна, 1983.
- 9. Баатар Ц. и др. В сб.: Труды Института физики и техники АН МНР, Улан-Батор, 1988. № 27. с. 30.
- 10. Армутлийски Д. и др. ЯФ, 1985, т.41, вып.5, с.1235.
- 11. Ставинский В.С. и др. ЭЧАЯ, 1979, т.10, с.949.
- 12. Балдин А.М. и др. ЯФ, 1974, т.20, с.1201.
- 13. Балдин А.М. и др. ЯФ, 1975, т.21, с. 1008.
- 14. Schreoder L.S. et al. Phys.Lett., 1979, 43, p.1787.
- 15. Никифоров Н.А. и др. ИТЭФ-37, М., 1980; Phys.Rev.C, 1980, 22, p.700.
- 16. Балдин А.М. и др. ОИЯИ, 1-82-28, Дубна, 1982.
- 17. Баатар Ц. и др. ЯФ, 1982, т.36, с.431.
- 18. Baldin A.M. et al. JINR, E1-82-472, Dubna, 1982.
- 19. Агакишиев Г.Н. и др. ОИЯИ, Р1-85-944, Дубна, 1985; ЯФ, 1987, 45, c.423.