90-201

Объединенный институт ядерных исследований

дубна

+

512

P1-90-201

Ц.Баатар, В.Г.Гришин, Г.Шархуу

ИЗУЧЕНИЕ ФЛУКТУАЦИЙ ВО МНОЖЕСТВЕННОМ РОЖДЕНИИ ПИОНОВ В п⁻р-И п⁻С-ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с

Направлено в журнал "Ядерная физика"

1. ВВЕДЕНИЕ

Одной из первоначальных информаций, получаемых при исследовании процесса множественного рождения частиц с помощью детекторов с 4 *п*-геометрией, является множественность вторичных частиц.

Большие флуктуации плотности в распределении по быстроте (или псевдобыстроте) наблюдались в различных экспериментах при высоких энергиях, в частности, в столкновениях космических лучей с ядрами фотоэмульсий ^{/1/}, в адрон-адронных ^{/2,3/} и ядро-ядерных взаимодействиях ^{/4/}.

Эти флуктуации интерпретируются с точки зрения различных возможных механизмов рождения адронов, таких как фазовые переходы ^{/5/}, черенковское излучение адронов ^{/6/}, ветвящиеся процессы ^{/7/}, струйные модели адронов ^{/8/} и т.д.

Авторами работ ^{/7/} был предложен новый метод исследования этих флуктуаций по множественности адронов в зависимости от быстротных интервалов. Предлагается исследовать зависимость факториальных моментов порядка 1, определяемых следующей формулой:

$$\langle F_{i} \rangle = \frac{1}{\langle \overline{n}_{m} \rangle^{i}} \langle \frac{1}{M} \sum_{m=1}^{M} n_{m}(n_{m}-1) \dots (n_{m}-i+1) \rangle,$$
 (1)

где

$$\langle \overline{n}_{m} \rangle = \langle \frac{1}{M} \sum_{m=1}^{M} n_{m} \rangle.$$

Выбранный полный быстротный интервал Δy разделяется на число интервалов M, с размером $\delta y = \Delta y / M$. Через n_m обозначается множественность частиц в m-м интервале (m = 1, 2, ...M). Усреднение проводится по всем событиям. Основные результаты этих работ можно сформулировать следующим образом:

— если флуктуация имеет чисто статистический характер, тогда с уменьшением величины быстротных интервалов (δу) ожидается насыщение функции <F. >:

возсланенный киститут ! CHEUNIER ELCSCHOBAUGO SHE MUNTELLA

— если существует флуктуация динамического характера, тогда между величинами <F_i> и бу существует степенная зависимость следующего вида:

$$\langle \mathbf{F}_{i} \rangle \sim \left(\frac{\Delta \mathbf{y}}{\delta \mathbf{y}}\right)^{\mathbf{f}_{i}}$$
, $\mathbf{f}_{i} > 0$. (2)

Этот эффект может быть связан со стохастическим (перемежаемым) характером процесса. Этот динамический эффект в литературе обычно называют интермитенсом (intermittency).

В настоящее время анализ, проведенный с помощью метода факториальных моментов экспериментальных данных по множественному образованию вторичных частиц в $\pi^+ p$ – и K⁺ p – взаимодействиях при 250 ГэВ/с^{/9/}, в РЕт.взаимодействиях при 200 и 800 ГэВ, в ¹⁶О Ет.взаимодействиях при 60 и 200 ГэВ/нуклон ^{/10/}, в ¹⁶O + (C, Au) -реакциях при 200 ГэВ/нуклон ^{/11/} и в e⁺e⁻-аннигиляции в адроны при \sqrt{s} =35 ГэВ ^{/12/}, свидетельствует о существовании степенной зависимости (2) между величинами <F_i > и δy . Таким образом, получены первые указания о стохастическом характере процессов множественного рождения адронов.

В данной работе приводятся аналогичные экспериментальные результаты, полученные для *п* р – и *п* С-взаимодействий при первичном импульсе 40 ГэВ/с.

2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Экспериментальный материал получен с помощью 2-метровой пропановой пузырьковой камеры ЛВЭ ОИЯИ.

Камера была помещена в магнитное поле напряженностью 1,5 Тл и облучалась *п*⁻-мезонами с импульсом 40 ГэВ/с на серпуховском ускорителе. Средняя точность в определении импульсов вторичных частиц составляет ~12%, а средняя ошибка в измерении углов вылета — 0,6°.

Все вторичные отрицательные частицы считались π^- -мезонами. Средний граничный импульс, начиная с которого π^- -мезоны уверенно идентифицировались в пропановой камере, составляет 70 МэВ/с. Отметим, что среди вторичных положительных частиц производилась визуальная (по ионизации) идентификация протонов и π^+ -мезонов до импульса $\simeq 0.8$ ГэВ/с. Остальные положительные частицы не идентифицировались и считались π^+ -мезонами. Другие методические особенности эксперимента подробно описаны в работах /13,14/.

Анализировались реакции следующего типа:

 $\pi^- + \mathbf{D} \rightarrow \pi^{\pm} + \mathbf{X}$.

 $\pi^- + C \rightarrow \pi^{\pm} + X$

Статистика событий, использованных в этой работе, составляет 16686 *п*⁻р-взаимодействий и 14645 *п*⁻С-взаимодействий. Сюда также включены взаимодействия, образованные на квазисвободном нейтроне ядра углерода.

Быстрота вторичных частиц вычислялась по стандартной формуле $y = \frac{1}{2} \ln \frac{E + p_{||}}{E - p_{||}}$, где Е и $p_{||}$ — энергия и продольный импульс вторичных

пионов. Быстротное разрешение составляет $\approx 0,04$. Был выбран полный быстротный интервал $0,2 \le \Delta y \le 4,2$, в лабораторной системе координат. При таком выборе быстротного интервала основная масса вторичных протонов обрезается ($y_p \le 0,2$), и именно по этой причине все вторичные протоны исключены из рассмотрения. В выбранном нами быстротном интервале средние значения множественности вторичных пионов $<n>\pi^{\pm}$ для $\pi^- p - u \pi^- C$ -взаимодействий составляют $4,52 \pm 0,02$ и $5,40 \pm 0,03$ соответственно.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ ПО *т*-С-ВЗАИМОДЕЙСТВИЯМ

На рис. 1 и 2 приводятся значения логарифма факториальных моментов $\langle F_2 \rangle$, $\langle F_3 \rangle$, $\langle F_4 \rangle$ и $\langle F_5 \rangle$, вычисленных по формуле (1), в зависимости от $-\ln \delta y$ в рассматриваемом нами быстротном интервале $\Delta y = 4$ для $\pi^- C - u \pi^- p$ -взаимодействий при первичном импульсе 40 ГэВ/с. Видно, что с уменьшением величины быстротных щелей (δy) функция $\ln \langle F_i \rangle$ увеличивается и данный эффект усиливается с увеличением порядка (i) факториальных моментов. Кроме того, видно, что в области $\delta y > 1$ имеется более сильная зависимость между величинами $\ln \langle F_i \rangle$ и δy , однако в области $0,2 \leq \delta y \leq 1$ наблюдается сравнительно слабая зависимость между этими величинами, т.е. в полном интервале Δy наблюдается зависимость с двумя различными наклонами. Более сильная корреляция между величинами $\ln \langle F_i \rangle$ и δy для $M \leq 4$, соответствующая быстротным интервалам ($\Delta y / M$) ≥ 1 , является известным результатом ближних корреляций, связанных с резонансными распадами вторичных частиц и др.

С целью сравнения с другими данными и определения величин наклонов в формуле (2) экспериментальная зависимость в области 4 < M < < 20 была аппроксимирована линейной зависимостью

$$\langle F_{i} \rangle = A_{i} - f_{i} \ln M$$
.

-

2

(3)

ln

(3)

(4)

4

Рис. 2. Зависимость логарифма факториальных моментов (ln <F_i>) от-ln будля π р-взаимодействий.

Рис. 1. Зависимость логарифма факториальных моментов $(\ln < F_i >)$ от – $\ln \delta y$

Рис. З. Зависимость параметров накло-

на f, от порядка моментов i для

π⁻С₋(а) и *π*⁻р-взаимодействий (б).

На рис. За представлена зависимость наклонов f, от порядка моментов і для п С-взаимодействий. Видно, что с увеличением порядка моментов і увеличиваются и значения наклонов f, в формуле (3). Численные значения параметров наклона f_i и A_i, полученные при аппроксимации данных по формуле (3) и χ^2 на одну степень свободы, приводятся в табл. 1. С целью сравнения в этой таблице приводятся также данные, полученные из РЕт-взаимодействий при 200 ГэВ /10/. Отметим, что приведенные в табл. 1 численные значения параметров наклона f. в этих двух различных экспериментах в пределах экспериментальных ошибок хорошо согласуются.

4. л р-ВЗАИМОДЕЙСТВИЯ

На рис. 2 представлена аналогичная зависимость факториальных моментов $\ln \langle F_2 \rangle$, $\ln \langle F_3 \rangle$ и $\ln \langle F_4 \rangle$ от быстротных щелей $-\ln \delta y$ для *п* р-взаимодействий. Характер зависимости примерно такой же, как в случае " С-взаимодействий. Следует отметить, что при аппроксимации данных, представленных на рис. 2 для моментов ln <F₂>и ln <F₃>, были использованы все точки на рисунках. Однако в случае момента < F₄ > peзультат аппроксимации несколько зависит от числа выбранных точек. Поэтому приведенное в табл. 2 значение параметра наклона f₄ получено с использованием первых 6 точек (4 < M < 10). При аппроксимации всех 10 точек получается несколько заниженное значение параметра $f_{A} = 0,052 \pm 0,043$. Такой характер для момента <F₄>, по-видимому, связан с небольшой множественностью вторичных частиц в "р-взаимодействиях по сравнению с л Свзаимодействиями.

На рис. Зб приводится зависимость параметров 1, от порядка моментов і для пр-взаимодействий. Видно, что как и в случае пС-

25

Таблица 2. л р-взаимодействия						
	f ₂	f ₃	f ₄	f ₅		
π ⁻ р→π [∓] 40 ГэВ/с	0,019±0,007	0,044±0,019	0,149± 0,069			
χ^2/n	0,51	0,83	0,76	<u> </u>		
A,	$0,266 \pm 0,016$	0,746±0,039	$1,247 \pm 0,125$	—		
$\pi^+ p + K^+ p$	•					
250 ГэВ/с	0,0127±0,0008	$0,0499 \pm 0,0022$	$0,148 \pm 0,007$	0,329 ±0,019		
	0,71	0,82	1,1	2,69		

взаимодействий с увеличением порядка факториальных моментов (i) значение параметров наклона (f,) увеличивается.

Численные значения параметров A_i и f_i для $\pi^- p$ -взаимодействий приводятся в табл. 2. Для сравнения в этой таблице также приводятся данные для $\pi^+ p$ - и $K^+ p$ -взаимодействий при 250 ГэВ/с ^{/9/}. Численные значения параметров f_i в этих двух различных экспериментах в пределах ошибок согласуются.

Таким образом, проведенный в этой работе анализ $\pi^- C u \pi^- p$ -взаимодействий с помощью метода факториальных моментов показывает, что для этих взаимодействий между величинами $\langle F_i \rangle u \delta y$ существует степенная зависимость, определяемая формулой (2), что свидетельствует о существовании флуктуаций динамического характера в этих взаимодействиях.

Авторы выражают благодарность коллективу двухметровой пропановой коллаборации за предоставление экспериментального материала и за многочисленные полезные обсуждения.

ЛИТЕРАТУРА

1. Burnett T.H. et al. - Phys. Rev. Lett., 1983, 50, p.2062.

2. Alner G.J. et al. - Phys. Rep., 1987, 154, p.247.

3. Adamus M. et al. - Phys. Lett., 1987, B185, p.200.

4. Adamovich M.I. et al. - Phys. Lett., 1988, B201, p.397.

- 5. Van Hove L. Z. Phys., 1984, C21, p.93;
 Gyulassy M. et al. Nucl. Phys., 1984, B237, p.477;
 Hwa R.C. Phys. Lett., 1988, B201, p.165.
- 6. Dremin I.M. JETP Lett., 1980, 30, p.152; Sov. J. Part. Nucl., 1987, 18, p.31.

7. Bialas A., Peschanski R. - Nucl. Phys., 1986, B273, p.703; 1988, B308, p.857.
 8. Ochc W., Wosiek J. - Phys. Lett., 1988, B214, p.617.
 9. Ajinenko I.V. et al. - Phys. Lett., 1989, B222, p.306; Phys. Lett., 1990, B235, p.373.
 10. Holynski R. et al. - Phys. Rev. Lett., 1989, 62, p.733.
 11. Albrecht R. et al. - Phys. Lett., 1989, B221, p.427.
 12. Braunschweig W. et al. - Phys. Lett., 1989, B231, p.549.
 13. Balea O. et al. - Phys. Lett., 1972, 39B, p.571.

Star Bergel 1

14. Абдурахимов А.У. и др. — ОИЯИ, 1-6937, Дубна, 1973.

Рукопись поступила в издательский отдел 20 марта 1990 года.

Таблица 2. п - р-взаимодействия					
	f ₂	f ₃	f ₄	f ₅	
π [¯] р→π [∓] 40 ГэВ/с	0,019±0,007	0,044±0,019	0,149±0,069		
χ^2/n	0,51	0,83	0,76		
A_i $\pi^+ p + K^+ p$	0,266±0,016	0,746±0,039	1,247 ±0,125	· ·	
250 ГэВ/с	0,0127±0,0008	0,0499±0,0022	$0,148 \pm 0,007$	0,329 ±0,019	
99 a. 1	0,71	0,82	1,1	2,69	

взаимодействий с увеличением порядка факториальных моментов (i) значение параметров наклона (f,) увеличивается.

Численные значения параметров A_i и f_i для $\pi^- p$ -взаимодействий приводятся в табл. 2. Для сравнения в этой таблице также приводятся данные для $\pi^+ p$ - и K⁺ p-взаимодействий при 250 ГэВ/с^{/9/}. Численные значения параметров f_i в этих двух различных экспериментах в пределах ошибок согласуются.

Таким образом, проведенный в этой работе анализ $\pi^- C$ и $\pi^- p$ -взаимодействий с помощью метода факториальных моментов показывает, что для этих взаимодействий между величинами $\langle F_i \rangle$ и бу существует степенная зависимость, определяемая формулой (2), что свидетельствует о существовании флуктуаций динамического характера в этих взаимодействиях.

Авторы выражают благодарность коллективу двухметровой пропановой коллаборации за предоставление экспериментального материала и за многочисленные полезные обсуждения.

ЛИТЕРАТУРА

1. Burnett T.H. et al. - Phys. Rev. Lett., 1983, 50, p.2062.

- 2. Alner G.J. et al. Phys. Rep., 1987, 154, p.247.
- 3. Adamus M. et al. Phys. Lett., 1987, B185, p.200.
- 4. Adamovich M.I. et al. Phys. Lett., 1988, B201, p.397.
- 5. Van Hove L. Z. Phys., 1984, C21, p.93;

Gyulassy M. et al. – Nucl. Phys., 1984, B237, p.477; Hwa R.C. – Phys. Lett., 1988, B201, p.165.

6. Dremin I.M. - JETP Lett., 1980, 30, p.152; Sov. J. Part. Nucl., 1987, 18, p.31.

7. Bialas A., Peschanski R. — Nucl. Phys., 1986, B273, p.703; 1988, B308, p.857.
 8. Ochc W., Wosiek J. — Phys. Lett., 1988, B214, p.617.
 9. Ajinenko I.V. et al. — Phys. Lett., 1989, B222, p.306; Phys. Lett., 1990, B235, p.373.
 10. Holynski R. et al. — Phys. Rev. Lett., 1989, 62, p.733.
 11. Albrecht R. et al. — Phys. Lett., 1989, B221, p.427.
 12. Braunschweig W. et al. — Phys. Lett., 1989, B231, p.549.
 13. Balea O. et al. — Phys. Lett., 1972, 39B, p.571.
 14. Абдурахимов А.У. и др. — ОИЯИ, 1-6937, Дубна, 1973.

Рукопись поступила в издательский отдел 20 марта 1990 года.

6