ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

H-154

11

4263 2-75

Н.Далхажав, И.Рафиев, Дж.А.Саломов, К.Д.Толстов, Р.А.Хошмухамедов, Г.С.Шабратова

СПЕКТР МЕДЛЕННЫХ ЧАСТИЦ ПРИ ВЗАИМОДЕЙСТВИИ ПРОТОНОВ С ИМПУЛЬСОМ 70 И ДЕЙТОНОВ 9,4 ГЭВ/С С ЯДРАМИ С,N,O И Ag, Br

3/41-25

P1 - 8926

P1 - 8926

Н.Далхажав, И.Рафиев, Дж.А.Саломов, К.Д.Толстов, Р.А.Хошмухамедов, Г.С.Шабратова

СПЕКТР МЕДЛЕННЫХ ЧАСТИЦ ПРИ ВЗАИМОДЕЙСТВИИ ПРОТОНОВ С ИМПУЛЬСОМ 70 И ДЕЙТОНОВ 9,4 ГЭВ/С С ЯДРАМИ С,N,O И Ag, Br

Направлено в ЯФ

Введение

Исследование энергетического и зарядового спектров частиц от распада ядер различного атомного веса при столкновении с быстрыми частицами дает сведения для выяснения механизма их взаимодействия с ядрами. Это взаимодействие начинается столкновением налетающей частицы с нуклонами ядра и в ряде теоретических работ последнего времени /1-4/ подчеркивается интерес к исследованиям столкновений с ядрами для выяснения генерации частиц в адронных столкновениях.

Интересно сопоставление результатов взаимодействия с ядрами одного нуклона и двух слабо связанных, например, дейтона.

Энергетический спектр частиц от распада ядер/вособенности, его мягкая часть/ описывался в более ранних работах на основе каскадно-испарительной модели. Однако при этом обнаружился ряд трудностей: наличие очень медленных /подбарьерных/ частиц и тяжелых фрагментов, растянутый "хвост" частиц с большой энергией. Это обусловило появление работ ^{/5-10}/, в которых рассматриваются неравновесные процессы, т.е. испускание частиц раньше достижения состояния статистического равновесия.

В работе $^{/11/}$ коллективное возбуждение ядерной материи быстрой частицей приводит к распространению ударной волны, на основе чего в $^{/12/}$ объясняется вылет частиц с Z > 3. Дальнейшая разработка модели ударной волны $^{/13-15/}$ позволила авторам $^{/15/}$ описать экспериментальные результаты $^{/16/}$.

В настоящей работе сообщаются данные по энергетическому и зарядовому спектрам медленных частиц при взаимодействии с группами ядер С, N, O и Ag, Br протонов при 70 ГэВ/с и дейтонов при 9,4 ГэВ/с. Проводится сопоставление с другими данными и моделями взаимодействия.

Проведение эксперимента

Для исследования взаимодействия протонов с импульсом 70 и дейтонов 9,4 $\Gamma \ni B/c$ с легкими и тяжелыми ядрами в опытах использовались фотоэмульсии двух типов: 1 - стандартная эмульсия БР-2 и 2 - эмульсия БР-2, пропитанная этиленгликолем (СН₂ OH)_п.

Методика разделения взаимодействий на группах ядер описана в работе^{/17/} и в *Приложении 1*.

На *рис. 1* показаны кривые зависимости пробега протонов от энергии для эмульсий 1 и 2.

Классификация частиц в звездах на s, g и b частицы /релятивистские, серые и черные/ производилось с помощью измерений J/J₀,причем за эталон бралось J₀число сгустков на следах первичных частиц.

В табл. 1 приведена зависимость средних величин, характеризующих генерацию частиц для отдельных групп ядер и их распад для взаимодействия протонов и дейтонов.

Все медленные b - частицы прослеживались до остановки в эмульсии и проводилась дискриминация b - частиц по зарядам Z = 1; 2 и $Z \ge 3$ визуально по следующим критериям: по толщине следа, сужению следа в конце, наличию разрывов в самом конце следа вследствие уменьшения заряда при захвате орбитальных электронов. Частицы с $Z \ge 3$ отличаются более сильным выражением этих признаков, а также специальными признаками, например, ⁸Li и ⁸B дают молоткообразные следы, а распад ⁸Be дает пару *а*-частиц с приблизительно одинаковыми пробегами, летящими почти в одном направлении. Однозарядные частицы считались протонами, а двухзарядные - *а*-частицами.

Таблица

Н

く りょう	2,57 <u>+</u> 0.13 2,69 <u>+</u> 0.21 7,1 <u>+</u> 0.50 7.42 <u>+</u> 0.51
< ⁶ u>	0.90 <u>+</u> 0.05 I.I9 <u>+</u> 0.23 2.98 <u>+</u> 0.I0 2.I2 <u>+</u> 0.27
Частица и ее импульс в < Л ₅ > ГЭВ/с	Протоны 70 7,53 <u>+</u> 0.27 Дейтоны 9,4 2,57 <u>+</u> 0.31 Протоны 70 10,59 <u>+</u> 0.48 Дейтоны 9,4 3,31 <u>+</u> 0.30
Ядра	c,v,0 Ag,Br

Для контроля надежности этой дискриминации из всей совокупности частиц с зарядом z=2 была выделена группа частиц с углом наклона к плоскости эмульсии $a \le 31^\circ$. Число таких частиц составило 234, а сумма статвесов -436. Сумма всех частиц с z = 2 без ограничения по углу наклона равна 560. Отсюда следует, что с увеличением угла наклона к плоскости эмульсии разделение протонов и частиц с z = 2 ухудшается /наблюдается присчет протонов к частицам с z = 2/.

После разделения частиц по зарядам, используя кривую *рис.* 1, произвели пересчет пробегов частиц из эмульсии 2 в эмульсию 1. На *рис.* 2a, б приведено распределение по пробегам в эмульсиях 1 и 2 для протонов и дейтонов, нормированное на одинаковое число частиц. Если взять отношение числа частиц, находящихся в интервале $0-100\mu$ к полному числу частиц, то для протонов 70 ГэВ/с получим: для эмульсии 2 - 0,36±0,02 для 1 - 0,27±0,02, для дейтонов - 0,38 и 0,28, соответственно.

На рис. З для протонов при 7О $\Gamma \mathcal{B} \mathcal{B} / c$ приведено распределение по пробегам частиц в области $P \ge 100 \mu$ на ядрах (, 0; Ag, Br и Ag, Br с $N_{\rm b} \le 6$.

Среднее число частиц с пробегом $R \le 100 \mu$ в звездах на легких и тяжелых ядрах составляет: $n_{C,0} = 1, O \pm O, 1;$ $n_{Ag, Br} = 2, O \pm O, 15$. Если на ядрах Ag, Br отобрать звезды $N_h \le 6$, то получим: $n_{Ag, Br} = 1, O6 \pm O, 15$. Для столкновения дейтонов: $n_{C,0} = 1, O \pm O, 15; n_{Ag, Br} =$

= 1,9<u>+</u>0,2.

/В Приложении 2 приведен другой расчет этих величин, приводящий к тем же результатам/.

Эти данные, а также рис. 2,3 указывают на невозможность разделения взаимодействия на группах тяжелых и легких ядер, по критерию R < R min, что предполагалось на основе оценки кулоновского барьера ядер.

Перейдем к энергетическому спектру частиц.

Энергия частиц с известной массой и зарядом связана с пробегом соотношением $E = aR^m$. Для протонов в стандартной эмульсии a = 0,251, m = 0,581, а в загруженной a = 0,227, m = 0,568. Для взаимодействия протонов на *рис.* 4*a* дан энергетический спектр однозарядных частиц на группе ядер C, N, O, а на *рис.* 46 спектр z = 2 для ядер C, N, O и Ag, Br. Для взаимодействия

6

Рис. 3. Распределение по пробегам частиц в области R ≤ 100 для взаимодействия протонов. — взаимодействия с Ag, Br; - - взаимодействия с C,0; --- взаимодействия с Ag, Br (N ≤ 6).

дейтонов на рис. 5а дан спектр однозарядных частиц, на рис. 56 спектр z = 2.

В табл. 2 приведены средние величины энергий и распределений по зарядам для взаимодействия протонов и дейтонов с группами ядер.

На основании данных таблицы проведем сопоставление расчетов по испарительной модели с опытными результатами по спектру протонов. Энергия возбуждения: $E = \Sigma n_i < E_i > + \Sigma Q_i n_i$, где n_i число частиц с зарядом і /учитывая также нейтроны/, $\langle E_i \rangle$ - средняя кинетическая энергия, Q_i - энергия связи. Кинетическая энергия нейтрона принималась равной $\langle E_n \rangle = \langle E_p \rangle - 3$ МэВ, где 3 МэВ - кулоновский барьер для возбужденных ядер $A \approx 100$, число нейтронов $n_n \sim 1, 3n_p$.

Энергетический спектр одиночных протонов при испарении из ядра с температурой Т дается формулой:

N(E) dE =
$$\frac{E-v}{T^2}e^{-\frac{E-v}{T}}$$
: /1/

где v - кулоновский барьер. Для среднего атомного веса ядер Ag, Br = 94, исходя из определенной энергии возбуждения температура T составляет ≈ 4 *МэВ*.

В случае последовательного испарения частиц Ле-Крутер дает следующую формулу для спектра протонов:

N(E) dE = (E - v)
$$\frac{\ell - 1}{\Gamma(\ell) \tau^{\ell}} e^{-\frac{E - v}{\tau}}$$
, /2/

где $\tau = \frac{11}{12}$ Т; $\ell = \frac{16}{11}$; $\Gamma(\ell)$ - гамма функция. Расчеты спектра протонов на основе формул /1/и/2/ для

T = 4 *МэВ* и v = 3 *МэВ* приведены соответственно для взаимодействия протонов и дейтонов с Ag, Br на рис. ба,б совместно с экспериментальными данными. Как видно из спектра, максимум распределения протонов по энергии находится в области 4 *МэВ*, а кривая вычисленная по испарительной модели сдвинута, т.е. из рис. б видно, что расчетные кривые в целом не описывают экспериментальный спектр.

Энергия	< Equip BO30YELL	MaB	,25 100,2	.68 294.48	45	,8 374							-ederal	< 4/36 24 24 24 24 24 24 24 24 24 24 24 24 24	/11/	1,87 /18/	3,19 /18/	4,02 /19/	3,17 /20/	
	CEPS CENS	MaB MaB	84 48,73 24	55 32,25 26	2 28,5 66	,7 36,27 48								~ Ns ~ Ns ~	I, I5 <u>+</u> 0.06	I,53 <u>4</u> 0,35	1.36 <u>+</u> 0.15	I.29 <u>+</u> 0.08	I.32 <u>+</u> 0.26-	
	v 	среднее число	0.22+0.03 7.6	0.74+0.02 9.4	0.06 8,5	0.35 <u>+</u> 0.1 IO							Pr.	Критерый пробега	1	нет следа с Й ≤ 80 мк	÷	Her cuenda c R≤65 MK	есть след с R≤100 мк	
Заряд	2	среднее число	40°07070	3.19 <u>+</u> 0.16	0,88 <u>+</u> 0.12	2,75 <u>+</u> 0.22							A.	Огтранич. по <i>М</i> К	2≤ ⁴ /m	nt≈1x ng =0)n532	1 1 1 1	c I≤Wh≤7	c 0~~~~0	
	н	среднее число	I,57 <u>+</u> 0.I0	3,17 <u>+</u> 0.16	I,75±0.15	5,27±0.5								о Кратерий просега		Ectrs curen R≤80 MK'	= 	Есть след R≤ 65 мк	Нет следа К≤I00 мик	
Ядра			c ,√,c	AG, Pr	0'N' 0	Aq. Br	10						C.N. 0	Orpanny, no M.	Nh≤4	n I≤√iá≲ 6	د ۲	I≤ √ii≤7	6>4v>0 (
Частица и ее импульс	B TaB/c		Протон 70	liporon 70	Дейтоны 9,4	Дейтоны 9,4							Частвиа и	B TaB/c	Про тоны (9)	Протоны (60 67)	П — Мезонн (I7)	П - мезоны (60)	Дейтоны (9,4	Voor

Заключение

Из таблиц. 1 и 2 следует близость, величин <N h > при взаимолействии с группами ядер протонов 70 ГэВи дейтонов 9.4 ГэВ/с. Далее наблюдается подобие энергетических спектров и распределений по зарядам z = 1 и z = 2, а также одинаковая доля частиц с малой энергией / R < 100 мк/, т.е. вылет подбарьерных частиц для ядер Ади Вг. Все эти факты не могут быть трактованы с помощью модели испарения. Объяснение нужно искать в моделях, когда вылет не только д -частиц, но и более медленных происходит из неравновесного состояния /т.е. нельзя говорить о возбужденном ядре со сниженным кулоновским барьером/. Близость величин <n_b> зарядового и энергетического спектров частиц указывает / в обычном понимании/ на близкую "энергию возбуждения", однако большое различие в величинах < n s > для протонов 70 ГэВ/с и дейтонов 9.4 ГэВ/с указывает на то, что эта энергия не связана однозначно с числом S-частиц. Следовательно, она не обуславливается только передачей энергии ядру за счет S-частиц при их вылете из ядра по схеме обычного каскадного процесса. Возможно, что налетающая быстрая частица /протон или дейтон/, помимо генерации S - частиц, вносит в ядро близкую порцию энергин. Иллюстрацией может служить близость спектров и средних энергий протонов, а также а-частиц как для протон-ядерных, так и для дейтон-ядерных взаимодействий. Интересно отметить близость этих характеристик аналогичным ./16/ в случае полного разрушения ядер Ag, Br под действием протонов 70 $\Gamma \mathfrak{B} / \langle E_p \rangle =$

= 11,3 *МэВ*, $\langle E_a \rangle$ = 31,6 *МэВ*/, когда нет остаточного ядра, что необходимо для испарительной модели.

Таким образом, совокупность данных указывает на неравновесный характер процессов, формирующих спектр медленных частиц.

Приложение 1

Известно, что из-за сложности ядерного состава эмульсии нельзя однозначно разделить взаимодействия на группах ядер. Вследствие этого, для разделения взаимодействий на группах ядер С, N, О и Ag, Br в ряде работ /17-21/ были использованы различные и неоднозначные критерии. Как видно из таблицы нижняя граница по N_h для тяжелых ядер изменялась от 6 до 9 включительно. Для выделения событий на группе ядер C, N, O использовался критерий минимального пробега, из-за большой величины кулоновского барьера у тяжелых ядер при их слабом возбуждении. Однако следует отметить, что при сильном возбуждении ядер происходит значительное снижение кулоновского барьера. Табл. З иллюстрирует эти различия и неоднозначности в ряде работ, где использовались эмульсии только стандартного состава.

В наших опытах, наряду со стандартной эмульсией БР-2, обозначаемой далее как 1, использовалась также эмульсия, обогащенная легкими ядрами /этиленгликолем, обозначаемая как 2/, что позволило уменьшить в единице объема ≈ 2,7 раза содержание ядер Ag, Br . Разделения взаимодействий на группы ядер производились по методике, предложенной в работе /22/, суть которой заключается в следующем. Сначала из общего числа звезд в эмульсиях 1 и 2 по общепринятым критериям исключаются взаимодействия с нуклонами и когерентные взаимодействия. Затем строится распределение числа звезд от $N_h(N = f(N_h))$ для обонх типов эмульсии, соответственно нормированные как на одинаковую длину следов, так и на одинаковый объем. Далее, вычитая из распределений для эмульсии типа 2 распределения для эмульсии 1, можно получить распределение по составу лучей N_h для ядер C, O. Таким же образом, методом вычитания можно получить распределение для ядер Ад, Вг. Этот способ разделения взаимодействия на группах ядер свободен от всех условностей, которые использовались прежде.

Приложение 2

Среднее число частиц на группах ядер C, N, 0 и Ag, Br с пробегом $R \leq 100$ мк можно определить по результатам измерений пробегов частиц в эмульсии l и 2, не проивзодя предварительного разделения звезд по этим группам ядер.

Прежде всего найдем долю числа частиц с R < 100в звездах на ядрах C, O от числа всех черных частиц на этих ядрах. Эту долю обозначим k (C,O)

$$k(C,0) = \frac{\frac{N_{R}^{II} - N_{R}^{I}}{N_{R}^{II} - N_{R}^{I} \leq 100} / k}{N_{R}^{II} - N_{R}^{I} / k}$$

где k - коэффициент увеличения объема эмульсин l после пропитки ее наполнителем. N^{II,I} число частиц в гнстограмме для 2 и l эмульсий, соответственно. N $_{R\leq 100}^{II,I}$ число частиц с $R \leq 100$ для 2 и l эмульсий.

Подставляя данные из гистограмм, получаем $k(C,0) = 0,41\pm0,05$. Тогда среднее число частиц с $R \le 100$ в звездах на ядрах C, O будет равно

$$< n(C,0)_{R \le 100} > = < n(C,0) > \cdot k(C,0) = 1,06 \pm 0,12.$$

Долю числа частиц с $R \le 100 \mu$ в звездах на ядрах Ag, Br от числа всех черных частиц на этой группе ядер найдем следующим образом:

$$k(Ag, Br) = \frac{N_{R}^{I} \leq 100(1 - \frac{\langle n c, o \rangle}{\langle n I \rangle} \cdot \eta \cdot k(C, 0))}{N^{I} (1 - \frac{\langle n c, o \rangle}{\langle n I \rangle} \cdot \eta)},$$

где $< n_{C,0} >$ - среднее число черных частиц в звездах на ядрах C, $0 < n^{I} >$,-среднее число черных частиц в звездах эмульсии 1, η - доля взаимодействий на легких ядрах C, N, O от всех взаимодействий в эмульсии 1.

$$k (Ag, Br) = 0,29 \pm 0,02,$$

следовательно, среднее число частиц с R < 100 в звездах на ядрах Ag, Br равно

$$(Ag, Br)_{\mathbf{R} < 100} > = < n (Ag, Br) > \cdot k (Ag, Br) = 2,06 \pm 0,15.$$

Литература

- 1. P.M.Fishbane, J.S. Trefil. Phys. Rev., D8, 1467/1973/. Nucl. Phys., B58, 261 /1973/.
- 2. K.Gottfried. Phys. Rev. Lett., 32, 957 /1974/.
- 3. A.Dar, J.Vary. Phys. Rev., D6, 2412 /1972/.
- 4. Б.Н.Калинкин, В.Л.Шмонин. ЯФ, 21, 628 /1975/.
- 5. J.J.Griffin. Phys. Rev. Lett., 17, 478 /1966/.
- 6. M.Blann. Phys. Rev. Lett., 21, 1375 /1968/.
- 7. M.Blann, C.K.Cline. Nucl. Phys., A172, 225 /1971/.
- 8. G.M.Braga Marcazzan et al. Phys.Rev., C6, 1398 /1972/.
- 9. G.D.Harp, J.M.Miller, B.J.Berne. Phys.Rev., 165, 1166 / 1968/.
- 10. К.К.Гудима, Г.А.Ососков, В.Д.Тонеев. ЯФ, 21, 260 /1975/.
- 11. A.E.Glassgold, W.Heckrotte, K.Watson. Annals of Phys., 6, 1 /1959/.
- 12. Л.П. Pannonopm, А.Г.Крыловецкий. Изв. АН СССР, сер.физ., 28, 388 /1964/.
- 13. W.Greiner. Phys. Rev. Lett., 32, 741 /1974/.
- 14. W.Greiner. Phys. Rev. Lett., 34, 697 /1975/.
- 15. Б.Н.Калинкин, В.Л.Шмонин. ОИЯИ, Р2-7871, Дубна, 1974.
- 16. К.Д.Толстов, Р.А.Хошмухамедов. Сообщения ОИЯИ, P1-6897, Дубна, 1973.
- 17. E.M. Friedlander. Nuovo Cimento, 14, 796 /1959/.
- 18. Н.В. Масленникова и др. Proc. of the 8th inter. conf. on nucl. photg. and solid state track detectors, p. 132 Bucharest /1972/.
- 19. 3.В.Анзон, И.Я.Часников в кн. "Физика выс. энерг. и косм. луч." стр. 23, "Наука", Алма-Ата /1974/.
- 20. А.О. Вайсенберг и др. ЯФ, 18, 1239 /1973/.
- 21. E.Lohrmann and M.W.Tevcher. Nuovo Cimento, 25, 957/1962/.
- 22. K.M.Abdo et al. JINR, E1-7548, Dubna, 1973.

Рукопись поступила в издательский отдел 8 июля 1975 года.