89-621

P1-89-621

Л.Г.Афанасьев, О.Е.Горчаков^{*}, В.В.Карпухин, В.И.Комаров, А.В.Коломыйченко, В.В.Круглов, А.В.Куликов^{*}, А.В.Купцов, Л.Л.Неменов, М.В.Никитин, Ж.П.Пустыльник, С.В.Трусов^{*}, М.Н.Шумаков, С.М.Фроликов, А.С.Чвыров

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕЙ КОНВЕРСИИ ГАММА-КВАНТА В АТОМ ПОЗИТРОНИЯ А $_{2e}$ И ВЕРОЯТНОСТИ РАСПАДА $\pi^{\circ} \rightarrow \gamma + A_{2e}$

Направлено в журнал "Ядерная физика"

^{*}Научно-исследовательский институт ядерной физики МГУ, Москва

1. Введение

Времениподобный фотон может превращаться в пару фермион-антифермион с положительной энергией или в связанное состояние этих же частиц (A₂₀).

Рассмотрим электромагнитный распад частицы а:

$$a \longrightarrow b + r (r^*), \qquad (1)$$

где $r(r^*)$ — соответственно реальный или виртуальный времениподобный фотон с четырехимпульсом q; b — произвольная частица.

Если квадрат матричного элемента [M]² процесса (1) и энергия реального фотона Е, удовлетворяют соотношениям

$$|M(q^2=0)|^2 = |M(q^2=4m^2)|^2, E_{\gamma} \gg m$$
, (2)

где m — масса фермиона, то относительная вероятность распада с испусканием A_{2ф} (атомный распад)

$$a \longrightarrow b + A_{2\check{0}}$$
 (3)

практически не зависит от масс частиц а и ь и равняется /1/:

$$P_{A}^{th} = \frac{W(a \longrightarrow b + A_{2}\phi)}{W(a \longrightarrow b + \gamma)} = 0,30 \alpha^{4} = 0.84 \cdot 10^{-9}.$$
(4)

Условия (2) выполняются только при конверсии гамма-кванта в позитроний (A_{2e}). Уже при конверсии фотона в связанное состояние $\mu^+ \mu^-$ соотношения (2) не выполняются и ρ_A^{th} в распаде $\eta^0 \longrightarrow r + A_{2\mu}$ превосходит значение (4) на 15 $\chi'^{1/}$.

Частный и доступный для наблюдения случай превращения времениподобного фотона в атом позитрония реализуется в распадах $n^0 - u n^0$ - мезонов:

$$n^0 \longrightarrow r + A_{2\alpha}, \qquad n^0 \longrightarrow r + A_{2\alpha}.$$
 (5)

Так как в распадах (5) испускаются два фотона, то

$$\rho_{\pi}^{\text{th}} = \frac{\Psi (\pi^{o} \longrightarrow \gamma + A_{2e})}{\Psi (\pi^{o} \longrightarrow \gamma + \gamma)} = 2\rho_{A}^{\text{th}} = 1,69 \cdot 10^{-9}, \quad \rho_{\eta}^{\text{th}} = \rho_{\pi}^{\text{th}}.$$
 (6)

Позитроний, генерированный в процессе (3), имеет нулевой орбитальный момент и спин, равный единице; вероятность образования атома с главным квантовым числом n убывает /1/ как n⁻³. Значение ρ_{π}^{th} при генерации позитрония с n = 1 равно

$$\rho_{\pi}^{\text{th}}(15) = \frac{\rho_{\pi}^{\text{th}}}{\sum_{n=1}^{\infty} n^{-3}} = 2\rho_{A}^{\text{th}}(15) = 1.40 \cdot 10^{-9}.$$
(7)

В работе ^{/2/} было показано, что при выполнении условий (2) отношение вероятности испускания A_{2e} к вероятности испускания гамма-кванта в инклюзивных реакциях

$$a + b \longrightarrow A_{2e} + X, \quad a + b \longrightarrow r + X$$
 (8)

также равно ρ_A^{th} . Таким образом, ρ_A может быть определено как коэффициент внутренней конверсии гамма-кванта в позитроний для всех радиационных распадов элементарных частиц и всех реакций, сопровождаемых испусканием жестких гамма-квантов^{*)}.

К величине e_A^{th} вычислены радиационные поправки⁴⁴, с учетом которых

$$\rho_{\rm A}^{\rm rad} = \rho_{\rm A}^{\rm th} \ (1 - \frac{26\alpha}{9\pi}) \ . \tag{9}$$

Различие в значениях матричного элемента при $q^2 = 0$ и $q^2 = 4m_e^{2/1,4,5/}$ и пренебрежение импульсами e^+,e^- в атоме по сравнению с их массами дают к величине ρ_A поправки порядка α^2 . Поэтому теоретическое значение ρ_A^{rad} имеет погрешность менее 0,1%.

 A strain of the second sec second sec

^{*)} Вычисление вероятности испускания A_{2e} при ядерных переходах^{/1/} выполнено в работе^{/3/}.

Теоретически исследована зависимость ρ_n от частоты и напряженности поля плоской электромагнитной Болны и от напряженности постоянного однородного скрещенного поля⁶⁶. Так как в веществе вероятность распада π^0 -мезона в области сильных полей пренебрежимо мала, то в настоящей работе влияние атомных полей на величину ρ_n не учитывалось.

Возможность наблюдения ультрарелятивистских A_{2e} и выполнения с ними количественных измерений была показана в работах^{7,87}. В этих работах и в настоящем эксперименте регистрировались позитронии, генерированные в реакции р+С \rightarrow A_{2e}^{+} ... при энергии протонов 70 ГэВ. Расчеты, проведенные для условий данного эксперимента с использованием лундовской модели, показывают, что 91% атомов образуется в распадах n^0 , 6% - в распадах n^0 , остальные 3% возникают в распадах других частиц. Генерация A_{2e} при конверсии тормозных *г*-квантов, испускаемых адронами, не рассматривалась. Так как спектра A_{2e} вклад этого механизма незначителен.

В радиационных процессах с $E_{\gamma} \gg m_{e}$ спектры фотонов и позитрониев практически совпадают между собой. Поэтому измерение отношения числа A_{2e} к числу фотонов в том же импульсном интервале и телесном угле позволяет определить величину ρ_{A} и, следовательно, относительную вероятность (6).

В распадах (5) испускается ультрарелятивистская система в связанном состоянии: в системе покоя π° -мезона позитроний имеет $r \stackrel{\sim}{\sim} 68$. Измерения вероятности подобного класса процессов не выполнялись. В единственном изученном ранее атомном распаде^{/9,10/}

 $K_{L}^{o} \rightarrow \nu + A_{\pi\mu}$ генерируется связанное состояние $\pi - \mu \mu$ -мезонов с $r \gtrsim 1.3$ в системе покоя K_{L}^{o} -мезона.

В настоящей работе измерено отношение числа атомов A_{2e} к числу фотонов в интервале импульсов 800÷2000 МэВ/с и определено значение ρ_{A} .

2. Схема эксперимента

Измерения проводились на канале релятивистских позитрониев $^{11,12/}$ ускорителя ИФВЭ. Использовалась схема генерации и детектирования позитрониев (рис.1), описанная в $^{8/}$. Мишень из углеродной пленки толщиной 0,4 мкм вводилась во внутренний пучок протонов. Ультрарелятивистские позитронии попадали в канал, расположенный под углом 8,4° к протонному пучку.

Канал длиной 40 м присоединен к вакуумной камере ускорителя без перегородок для того, чтобы исключить развал атомов позитрония в веществе. Мищень и начальная часть канала экранированы от рассеянных магнитных полей ускорителя: напряженность остаточного магнитного поля менее 1 Э. Для вывода из канала заряженных частиц на длине 23 м приложено перпендикулярное его оси однородное горизонтальное магнитное поле напряженностью 56 Э (очищающее поле). Атомы позитрония с импульсами до 2,5 ГэВ/с, находящиеся в основном состоянии, проходят область очищающего поля без диссоциации на e^+ и e^- . Атомы в возбужденных состояниях разваливаются в этом поле и не регистрируются. Канал заканчивается вакуумной камерой, помещенной в зазор спектрометрического магнита СМ (H=4600 Э).

Магнит СМ краевым полем разваливает атом позитрония,

Рис.1. Схема экспериментальной установки: а – схема канала: Р – протонный пучок, Т – пленочная мишень, С – конвертор; δ – схема установки: SM – спектрометрический магнит, VC – вакуумная камера, DC – дрейфовые камеры, s_1, s_2 – сцинтилляционные счетчики, c_1, c_2 – газовые черенковские счетчики, РМ – r-монитор.

возникшие при этом свободные электрон и позитрон регистрируются детекторами установки. Электрон и позитрон от диссоциации A_{2e} имеют малую эффективную массу и практически равные импульсы. Для подавления фона использовался многоуровневый аппаратно-программный процессор^{/8/}, который отбирал e⁺e⁻-пары путем введения ограничений на разность координат входа e⁺ и e⁻ в магнит, на отклонения треков в вертикальной плоскости от направления на мишень и на разность импульсов частиц.

На время измерения потока *г*-квантов перед магнитом СМ вводился конвертор из плексигласа толщиной 0,6 мм (1,7·10⁻³ радиационной длины). Введенный конвертор перекрывал сечение канала и являлся источником е⁺ е⁻ -пар, генерированных *г*-квантами пучка.

(Пространственные распределения r-квантов и A_{2e} на входе в магнит совпадают.) По числу зарегистрированных конверсионных $e^+ e^-$ -пар определялась величина потока r-квантов в канале. Измерение отношения числа атомов A_{2e} к этому потоку, нормированному на показания r-монитора (ГМ), позволяет получить относительную вероятность распада (1). В качестве ГМ использовался телескоп сцинтилляционных счетчиков, расположенных на оси канала. Интенсивность потока r-квантов с энергией 800÷2000 МэВ составляла $2 \cdot 10^7 e^{-1}$.

Конверсионные e⁺e⁻-пары использовались также для определения положения пучка на входе в магнит, для измерения точностных характеристик установки и эффективности детекторов.

3. Идентификация пар от развала А_{2е}

Особенностью эксперимента является отсутствие трековых детекторов перед спектрометрическим магнитом. Поэтому при геометрической реконструкции событий и определении импульсов частиц предполагалось, что все зарегистрированные частицы исходят из мишени, расположенной на оси канала.

При обработке информации требовалось, чтобы геометрические характеристики событий соответствовали ожидаемым для пар от диссоциации А_{2e}. Для этого вводилось ограничение на величину

$$r = \left[\sum_{i=1}^{4} \left(\frac{\xi_i}{\sigma_i}\right)^2\right]^{1/2}$$

где $\xi_1 = \Delta X = X_1 - X_2$ – разность X-координат позитрона и электрона на входе в магнит; $\xi_2 = \Delta Y = Y_1 - Y_2$ – разность Y-координат частиц на выходной мембране вакуумной камеры; $\xi_3 = \Delta \Theta_1 (\xi_4 = \Delta \Theta_2)$ – отклонение трека позитрона (электрона) в вертикальной плоскости от направления на мишень; σ_1 – параметр распределения по величине ξ_1 , равный половине интервала, в котором содержится 68% событий.

6

Значения ξ_i для пар от развала A_{2e} отличаются от нуля из-за многократного рассеяния e^+ и e^- в элементах установки, неточности измерения координат дрейфовыми камерами и погрешности в измерении и учете топографии магнитного поля. Разность Y-координат определялась на выходе из магнита для того, чтобы исключить влияние многократного рассеяния частиц в выходной мембране на точность определения ΔY . Значения σ_i , характеризующие разрешающую способность установки, определены с помощью моделирования соответствующих распределений по $\xi_i^{/8/}$. Требовалось также, чтобы точка испускания e^+ e^- - пары принадлежала области пучка на входе в магнит СМ.

Для окончательной идентификации позитрониев использовалось равенство импульсов электрона и позитрона, возникших при диссоциации A_{2e}. На рис.2 приведены распределения событий по величине $\varepsilon = 2(p_1 - p_2)/(p_1 + p_2)$, где p_1 и p_2 - импульсы e^+ и e^- в л.с. соответственно, при разных критериях отбора по r. Пары от диссоциации позитрония в поле СМ должны формировать узкий пик вблизи с=0 со среднеквадратичным отклонением с=0,014 (по данным моделирования). Для определения числа атомов позитрония (N_A) был выделен интервал по « шириной 0,06, в котором содержится избыток событий над фоном. Величина N_A находилась как разность числа событий в этом интервале и числа фоновых событий N_ф в этом же интервале. Значение N_ф вычислялось с помощью аппроксимации распределения по 🖌 полиномом второй степени в соседних с пиком интервалах шириной 0,10 каждый. Количество атомов, определенное таким образом, устойчиво к выбору шага гистограммирования по с, степени полинома, описывающего фон, и величине интервалов, использующихся при аппроксимации фона.

Зависимость $N_A(r)$ приведена на рис.3. Для последующих расчетов использовалось значение $N_A=277\pm40$ ($\sigma_e=0.015\pm0.003$),

Рис.2. Распределение событий при различных ограничениях на г. Стрелками отмечены область пика и интервалы, использовавшиеся для определения фона. Сплошная линия — аппроксимация фона. а - r \leq 4,5, N_A = 281 ± 48; δ - r \leq 3,9, N_A = 277 ± 40; θ - r \leq 2,0, N_A = 124 ± 16.

Рис.3. Зависимость числа зарегистрированных атомов позитрония и *r*-квантов от ограничения на r; + - число атомов; • - число *r*-квантов; сплошная линия - число *r*-квантов после вычитания фона. Для удобства сравнения данные для *r*-квантов нормированы на число атомов N_A = 277.

полученное при r<3,9. Потери позитрониев при этом составляют по расчетам не более 1%.

Было проверено, что плотность распределения числа атомов по сечению пучка постоянна и что импульсные спектры атомов и r-квантов совпадают в пределах точности измерения. Процедура определения количества атомов не находит превышения числа событий над фоном в тех случаях, когда его и не должно быть: например, в распределении по ε для $e^+ e^-$ -пар от конверсии r-квантов при введенном конверторе, а также в распределении событий, использующихся для поиска атомов, если хотя бы одно из значений ξ_1 превышает $3\sigma_1$.

4. Определение потока г-квантов

Для определения потока γ -квантов был выполнен набор информации с введенным конвертором. При выделении конверсионных пар, как и в случае с A_{2e} , использована процедура отбора по величине r. Соответствующие значения σ_i для пар конверсии определены путем моделирования и совпали с полученными экспериментальными значениями^{/8/}.

В отличие от пар, образовавшихся в результате диссоциации A_{2e} , конверсионные пары имеют широкое распределение по величине ε и, следовательно, вероятность попадания e^+ и e^- в чувствительную область детекторов для них другая. Поэтому отбирались пары конверсии, для которых $|\varepsilon|<0,1$. При этом условии вероятности попадания в детекторы e^+e^- – пар, генерированных на конверторе и возникших от диссоциации A_{2e} , практически совпадают.

Была построена зависимость числа зарегистрированных конверсионных e^+e^- пар (N_o), удовлетворяющих условию |e|<0,1, от значения r (см.рис.3). В области r>4 число событий от конверсии r-квантов, согласно результатам моделирования, должно быть

постоянным. Наблюдающийся слабый рост этого числа обусловлен вкладом пар от конверсии вторичных *r*-квантов, родившихся на стенках канала. Для исключения этого вклада зависимость N_o(r) аппроксимировалась прямой линией в области r>5, а затем соответственно уменьшались значения N_o(r) во всем диапазоне r. Величина поправки при r=3,9 составила 11%. Значение N_o при r=3,9 использовалось для определения потока *r*-квантов.

Число пар N от конверсии *г*-квантов связано с числом прошедших через конвертор фотонов I_г следующим выражением: N = I_г(1-e^{- μ d}), где μ - коэффициент ослабления потока *г* -квантов, d - толщина конвертора.

Для определения μ было вычислено σ_{cal} -сечение рождения е⁺e⁻-пары r-квантами на плексигласе с учетом его атомного состава. Когерентная и некогерентная части сечения вычислены в высокоэнергетическом приближении согласно^{/13/} при различных значениях энергии r-кванта и ограничении на ϵ . Использовались формфакторы и некогерентные функции рассеяния Хартри-Фока^{/14/}.

Поправка к величине σ_{cal} , обусловленная взаимодействием между е⁺ и е⁻ в конечном состоянии^{/15/} и не рассмотренная в работе^{/13/}, не превышает 0,1%.

Было выполнено сравнение результатов расчетов и экспериментальных данных для сечения конверсии r-кванта на атоме углерода при $E_r = 1$ ГэВ. Экспериментальное эначение^{16/} $\sigma_{exp} =$ (0,3321 ± 0,0031) б в пределах точности измерения совпадает с результатом нашего расчета $\sigma_{cal} = 0,3316$ б. Несмотря на слабую зависимость сечения от энергии (в диапазоне 800-2000 МэВ оно изменяется на 2%), было выполнено усреднение сечения по энергетическому спектру r-квантов. Окончательная точность вычисления сечения генерации пар на плексигласе полагалась равной 1%. Вероятность конверсии r-кванта при условии |e|<0,1 найдена равной (5,73±0.17) 10^{-5} .

5. Результаты

Для определения отношения числа атомов позитрония к числу *r*-квантов были взяты значения N_A и N_o при r=3,9 (см.табл.), в которые при вычислении относительной вероятности ρ_n (1S) необходимо внести ряд поправок.

		Таолица
ЭЗУЛЬТАТЫ ИЗМЕРЕНИЯ ЧИСЛА АТОМОВ		А _{2е} и г-квантов
Тип события	Число событий	Мониторный счет
A _{2e}	277±40	(6,76±0,21)·10 ⁹
<u>г-квант</u>	1366±42	3,85 10 ⁵

Часть атомов, родившихся в мишени, разваливается из-за взаимодействия с веществом⁸. Сечения взаимодействия позитрониев с веществом вычислены в работе¹⁷. Расчет на основе работы¹⁸, учитывающей время формирования позитрония, дает значение доли атомов, вышедших из мишени, равное (99,2±0,4)%. Пренебрежение временем формирования уменьщило бы эту величину на 17%.

Характерная распадная длина позитрония в триплетном состоянии с импульсом 1000 МэВ/с равна 42 км. что много меньше длины канала. Однако при прохождении через очищающее магнитное поле пучка А2 в триплетном состоянии волновая Функция 50% атомов становится суперпозицией волновых функций А2 в триплетном и синглетном состояний, описываемых такими Время жизни COCTORHNAX. **ФУНКЦИЙ.** уменьшается с DOCTOM суперпозициями волновых гамма-фактора атома и соответствующая распадная длина становится сопоставимой с длиной канала. После прохождения очищающего поля пучок состоит из А2 в триплетном и синглетном состояниях,

соотношение между которыми осциллирует в зависимости от гамма-фактора атома^{/11/}. Таким образом, при движении в канале часть атомов распадается и не будет регистрироваться установкой. Расчеты показали, что в данном эксперименте до спектрометрического магнита доходит ($89,3\pm0,8$) х от исходного числа атомов.

Для дополнительного подавления фона при обработке информации вводился критерий на величину интенсивности пучка, при этом для дальнейшего анализа оставалось (96±3)% атомов.

Отношение вероятностей попадания конверсионных пар и пар от развала A_{2e} в чувствительную область детекторов равно (0,98±0,02). Эффективность детекторов при регистрации e⁺e⁻- пар исключается из отношения N_A/I_x.

С учетом перечисленных выше поправок, измеренное отношение числа атомов позитрония к числу *г*-квантов, нормированное на мониторный счет, позволяет получить коэффициент внутренней конверсии фотона в атом позитрония, находящийся в основном состоянии:

$$P_{A}(1S) = (0,76\pm0,12) \cdot 10^{-9}.$$
 (10)

Полученный результат совпадает с теоретическим значением $\rho_A(1S) = 0,70\cdot 10^{-9}$ и с экспериментальной оценкой $\rho_A(1S) = (0,5\div 1,0)\cdot 10^{-9}$, полученной ранее^{/7/}.

Из (6),(7) и (10) для коэффициента внутренней конверсии фотона в атом позитрония получаем

$$P_{A} = (0, 92 \pm 0, 14) \cdot 10^{-9},$$

и для относительной вероятности атомного распада п⁰ -мезона соответственно имеем

$$\rho_n = (1.84 \pm 0.29) \cdot 10^{-9}$$

Авторы выражают благодарность персоналу отдела пучков и ускорителя ИФВЭ, сотрудникам СНЭО ОИЯИ и ВЦ ЛЯП ОИЯИ за помощь в выполнении эксперимента, Герасимову С.Б. и Ахундову А.А. за консультации.

ЛИТЕРАТУРА

- 1. Неменов Л.Л. ЯФ, 1972, т.15,с.1047.
- 2. Ахундов А.А., Бардин Д.Ю., Неменов Л.Л. Препринт ОИЯИ, P2-9565, Дубна, 1976.
- 3. Lewis J. Phys.Rev., 1977, v.A15, p.956.
- 4. Высоцкий М.И. ЯФ, 1979, т 29, с.845.
- 5. Козлов Г.А. ЯФ, 1988, т.48, с.265.
- 6. Лицкевич И.К., Старостин В.С. ЯФ, 1987, т.45, с.1698.
- 7. Алексеев Г.Д. и др. ЯФ,1984,т.40,с.139.
- 8. Афанасьев Л.Г. и др. ЯФ,1988,т.50,с.7.
- 9. Coombes R. et al. Phys.Rev.Lett., 1976, v.37, p.249.
- 10. Aronson S.H. et. al. Phys.Rev., 1986, v.D 33, p.3180,
- 11. Неменов Л.Л. ЯФ, 1976, т.24, с.319.
- 12. Губриенко К.И. и др. ПТЭ, 1987, т.1. с.26.
- 13. Sorenssen A. Nuovo Cim, 1965, v.38, p.745.
- 14. J.H.Hubbell et. al. J.Phys.Chem. Ref.Data, 1975, v.4, p.471.
- 15. Сахаров А.Д. ЖЭТФ, 1948, т.18, с.631-635.
- 16. Malamud E. Phys.Rev., 1959, v.115, p.687.
- 17. Купцов А.В., Пак А.С., Саакян С.Б. Препринт ОИЯИ, Р2-88-874, Дубна, 1988.
- 18. Неменов Л.Л. Препринт ОИЯИ, Р1-89-14, Дубна, 1989.

Рукопись поступила в издательский отдел 25 августа 1989 года. Афанасьев Л.Г. и др. P1-89-621 Измерение коэффициента внутренней конверсии Гамма-кванта в атом позитрония A_{2e} и вероятности распада $\pi^0 \rightarrow \gamma + A_{2e}$

В рС-взаимодействиях при $E_p = 70$ ГэВ под углом 8,4° в лабораторной системе измерено отношение числа ультрарелятивистских позитрониев (A_{2e}) к числу гамма-квантов в интервале импульсов 800-2000 МэВ/с. Определена относительная вероятность $\rho_{\pi} = (1,84\pm0,29)\cdot10^{-9}$ распада $\pi^{o} \rightarrow \gamma + A_{2e}$. Значение ρ_{π} определяется коэффициентом внутренней конверсии фотона в атом позитрония ρ_{Λ} . Для всех радиационных процессов с энергией гамма-квантов много больше массы A_{2e} величина ρ_{Λ} постоянна. Определено значение $\rho_{\Lambda} = (0,92\pm\pm0,14)\cdot10^{-9}$.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1989

Перевод авторов

Afaras'ev L.G. et al. Measurement of the Photon Internal Conversion Coefficient into Positronium Atom A_{2e} and of the Branching Ratio for $\pi^{0} \rightarrow \gamma + A_{2e}$ Lecay

The ratio of the positronium ultrarelativistic atoms (A₂e) number to the photon number in the momentum interval 800-2000 MeV/c has been measured in pC-interactions at E_p= 70 GeV and at the angle of 8.4° in the lab frame. The branching ratio ρ_{π} = (1.84 +0.29)·10⁻⁹ for the decay $\pi^{\circ} \rightarrow \gamma + A_{2e}$ has been obtained. The value of ρ_{π} is determined by the photon internal conversion coefficient into a positronium ρ_{A} . If a photon energy is much greater than the positronium mass, ρ_{A} has a constant value for all radiative processes. The value $\rho_{A} = (0.92\pm0.14)\cdot10^{-9}$ has been found.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

14 .