

ОбЪЕДИНЕННЫЙ Институт ядерных Исследований дубна

P1-89-53

1989

Ю.А.Горнушкин

ОБ ЭКСТРАПОЛЯЦИИ КОНСТАНТЫ СВЯЗИ ВЕРШИНЫ γ → 3π В НИЗКОЭНЕРГЕТИЧЕСКИЙ ПРЕДЕЛ

Направлено в журнал "Письма в Яф"

При исследовании вершины ү—>Зл в реакции рождения пионных пар пионами в кулоновском поле ядер [1]:

$$\pi^{-}+(A,Z) \longrightarrow \pi^{-} + \pi^{0} + (A,Z)$$
 (1)

было измерено сечение этого процесса и среднее значение константы связи $F^{3\pi}$ вершины γ —>3 π в области малых значений переменных (инвариантная масса пары пионов $s = (p_{\pi} + p_{\pi 0})^2 < IOm_{\pi}^2$, передача импульса ядру $q^2 < 2 \cdot IO^{-3}$ (ГэВ/с)²):

$$\sigma/Z^2 = I.63 \pm 0.23_{\text{CTAT}} \pm 0.13_{\text{CNCT}}$$
 (Hd), (2)

$$F^{3\pi} = 12.9 \pm 0.9_{CTAT} \pm 0.5_{CNCT} (\Gamma_{9B}^{-3})$$
 (3)

Эффективный киральный лагранжиан Весса-Зумино-Виттена [2] и низкоэнергетическая теорема [3] дают значение константы связи F^{3π} в киральном пределе при нулевых значениях переменных :

$$F^{3\pi}(0) = e N_c / I2\pi^2 / f_{\pi}^3 \simeq I0.5 \Gamma_{9B}^{-3}$$
 (4)

 $(N_{\rm C}$ – число цветов кварков, f_{π} – константа распада заряженного пиона $f_{\pi} \approx 90$ МэВ. (В выборе значения f_{π} существует некоторая неопределенность (см., например, [4]), которая приводит к $\approx 15\%$ погрешности теоретического значения (4), что соответствует обычной точности низкоэнергетических расчетов).

Поскольку процесс (I) изучалоя в физической области, для определения из экспериментальных данных $F^{3\pi}(0)$ необходимо использовать экстраполяционную формулу, определяющую поведение $F^{3\pi}$ при этом переходе. В рамках некоторых моделей, описывающих вершину $\gamma \longrightarrow 3\pi$, такие экстраполяции имеются.

В данной работе рассмотрены результаты использования различных экстраполяций для определения F^{3π}(0) из экспериментальных данных работы [1].

Obacini de la conserva de

Первыми указали на необходимость экстраполяции при сравнении теоретического значения F^{3π}(0) с результатами эксперимента и предложили соответствующее выражение Терентьев [3-4] и Zee [5]. Их формула учитывает вклад резонансных графиков с векторными мезонами при переходе в физическую область:

$$\mathbf{F}^{3\pi}(\mathbf{s},\mathbf{t};q^{2})=\mathbf{F}^{3\pi}(0)[1+C_{\rho}(\frac{\mathbf{s}}{m_{\rho}^{2}-\mathbf{s}}+\frac{\mathbf{u}}{m_{\rho}^{2}-\mathbf{u}}+\frac{\mathbf{t}}{m_{\rho}^{2}-\mathbf{t}})+C_{\omega}\frac{q^{2}}{m_{\omega}^{2}-q^{2}}],(5)$$

где $C_{\rho} = 2 g_{\rho\pi\pi} g_{\rho\pi\gamma} e^{16/m} \rho^{3}/F^{3\pi}(0)$, $g_{\rho\pi\pi}$ и $g_{\rho\pi\gamma}$ - константы связи, определяемые через парциальные ширины ρ -мезона, (численно ([I]) $|g_{\rho\pi\pi}| \simeq 6.1$ и $|g_{\rho\pi\gamma}| \simeq 0.17$). Последний член в квадратных скобках в (5) пренебрежимо мал при наших значениях q^2 ($|C_0| \approx 3$).

Рудаз [6] на основе модели векторной доминантности предлагает для константы F^{3π} выражение, из которого после нормировки следует:

$$\mathbf{F}^{3\pi}(\mathbf{s},\mathbf{t};q^2) = \mathbf{F}^{3\pi}(0) \left[1 + \frac{1}{3} \left(\frac{\mathbf{s}}{m_{\rho}^2 - \mathbf{s}} + \frac{\mathbf{u}}{m_{\rho}^2 - \mathbf{u}} + \frac{\mathbf{t}}{m_{\rho}^2 - \mathbf{t}}\right) \left[\frac{m_{\omega}^2}{m_{\omega}^2 - q^2}\right] \cdot (6)$$

Быковский (7) рассматривал вершину ү —>Эл в рамках модели составных мезонов . Из [7] следует

 $\mathbf{F}^{3\pi}(s,t;q^{2}) = \mathbf{F}^{3\pi}(0) + \frac{3e}{\pi m_{\rho}^{2} \mathbf{f}_{\pi}} \left(\frac{s}{m_{\rho}^{2} - s} + \frac{\cdot u}{m_{\rho}^{2} - u} + \frac{t}{m_{\rho}^{2} - t} \right) \cdot (7)$

После публикации результатов эксперимента по исследованию вершины ү—>Зт [I] Крамер и др.[8] предложили проанализировать наши данные с помощью выражения

$$F^{3\pi}(s,t;q^2) = F^{3\pi}(0)[1+\alpha (\frac{s}{m_{\rho}^2 - s} + \frac{u}{m_{\rho}^2 - u} + \frac{t}{m_{\rho}^2 - t})] - \frac{m_{\omega}^2}{m_{\omega}^2 - q^2}, (8)$$

гдө $a = (g_{\rho\pi\pi} i_{\pi} / m_{\rho})^2 = 0.55 e^{1\delta}$.

Заметим, что в выражениях (5) и (8) содержится неизвестная феза 6. Формула (5) использовалась в [I] для оценки возможного отличия полученного экспериментального значения $F^{3\pi}$ от $F^{3\pi}(0)$. Было найдено, что оно составляет \approx I ГэВ⁻³.

Для сечения реакции (I) имеем

$$\sigma/Z^{2} = \int_{4m_{\pi}^{2}}^{10m_{\pi}^{2}} \frac{q_{max}^{2}}{q_{min}^{2}} \frac{t_{max}}{dq^{2}} \int_{t_{min}}^{d\sigma} \frac{d\sigma (F^{3\pi}(s,t;q^{2}))}{ds dt dq^{2}} , \qquad (9)$$

Используя выражение для дифференциального сечения и пределы интегрирования из работы [I], а вместо $F^{3\pi}(s,t)$ подставляя в (9) выражения (5)-(8), интегрируя правую часть и сравнивая результат с экспериментальным значением (2), получаем для каждой модели уравнение относительно $F^{3\pi}(0)$. (В работе [I] $F^{3\pi}$ полагалась постоянной в области малых значений переменных. В таком предположении было получено значение (3).) Формулы (6)-(7) позволяют при этом получить значения $F^{3\pi}(0)$, а пользуясь выражениями (5) и (8), из-за наличия в них неизвестной фазы δ , можно получить интервал значений $F^{3\pi}(0)$, соответствующий всему диапазону возможных значений фазы δ (см. табл.).

Таблица	
---------	--

Экспериментальное значение F ^{3π} /I/, ГэВ ⁻³	F ^{3π} (0), полученное с помощью различных экстраноляций, гэв ⁻³	Теоретическое значение $F^{3\pi}(0)$ (точность ~ 15%), $\Gamma_{\Im}B^{-3}$
12.9 ± 0.9 ± 0.5	III.9 (δ=0) /4/ I3.9 (δ=π) /4/ II.8 /6/ I2.0 /7/ II.2 (δ=0) /8/	10.5

Полученные из экспериментальных данных значения параметра F^{3π}(O) имеют те же погрешности измерения, что и F^{3π} в первом столбце таблицы

2

- 3

Из табл. видно, что: I) значения F^{3π}(O), полученные в результате использования различных экстраполяционных формул, хорошо согласуются между собой;

Автор выражает благодарность Г.В.Мицельмахеру за полезные обсуждения.

Литература

- 1. Antipov Yu.M. et al. Phys.Rev., 1987, D36, p.21.
- Wess J., Zumino B. Phys.Lett. 1971,378,p.95.
 Witten E. Nucl.Phys.1983,B223,p.422.
- 3. Terent'ev M.V.Phys.Lett., 1972, 38B, p.419.
- 4. Терентьев М.В.УФН, 1974, 112, с. 41.
- 5. Zee A.Phys.Rev., 1972, D6, p. 900.
- 6. Rudaz S.Phys.Rev.1974,D10,p.3857.
- 7. Быковский Б.В. препринт ОИЯИ, Р2-84-5, Дубна, 1984.

8. Kramer G., Palmer W.F., Phys. Rev., 1987, D36, p.154.

Рукопись поступила в издательский отдел 27 января 1989 года.