

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

C 368

P1-89-452

1989

Л.В.Сильвестров, Г.Г.Тахтамышев

ЧТО ГОВОРЯТ ЭКСПЕРИМЕНТЫ О ВОЗМОЖНОСТИ СУЩЕСТВОВАНИЯ НОВОЙ ЧАСТИЦЫ С МАССОЙ МЕНЬШЕ МАССЫ КАОНА Сильвестров Л.В., Тахтамышев Г.Г.

Что говорят эксперименты о возможности существования новой частицы с массой меньше массы каона

В результате анализа двух экспериментов по распадам K_L -мезонов и пяти экспериментов по прямому рождению e⁺ e⁻ и $\mu^+\mu^-$ пар ($\ell^+\ell^-$ пары) получено указание на существование аномальных $\ell^+\ell^-$ пар, не относящихся к известным источникам дилептонов. Массы аномальных пар ограничены величиной M($\ell\ell$) \leq 0,38 - 0,42 ГэВ/с . Предложена модель образования таких пар через промежуточную нейтральную частицу к° с массой порядка 0,4 ГэВ/с² и распадом к° + $\ell^+\ell^-$ в°, где в° – легкая нейтральная нерегистрируемая частица. Распад K_L-мезонов с образованием аномальных пар может быть записан как K_L + к° в°, его относительная вероятность, взятая как среднее для двух экспериментов, равняется (3,8 ± 1,1), 10 -⁸. Образование аномальных $\ell^+\ell^-$ пар в адронных взаимодействиях возможно через инклюзивный процесс h + h + к° + ... Сечение этого процесса составляет = 10 мкб. Отношение этой величины к сечениям инклюзивного рождения ближайших по массе мезонов K, η, ρ, ω составляет в среднем (4,1 ± ± 1,4) + 10⁻⁸.

Работа выполнена в Лаборатории высоких знергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1989

Перевод авторов

Sil'vestrov L.V., Takhtamyshev G.G. What Experiments Say about Possibility of the New Particle Existance with Mass Less than the Kaon Mass

Analysis of data obtained in two K_L -decays experiments and five e^+e^- and $\mu^+\mu^ (\ell^+\ell^-$ pairs) prompt production experiments indicates an anomalous $\ell^+\ell^-$ pairs production which could not be explained by the known dilepton sources. The anomalous pairs masses are limited by the value $M(\ell\ell) \leq 0.38 - 0.42$ GeV/c. The model of these pairs formation is proposed over the intermediate neutral particle κ° with the mass about 0.4 GeV/c⁸ and the $\kappa^\circ + \ell^+\ell^- n^\circ$ decay where n° is the light unregistered neutral particle. The K_L -meson decays with the formation of the anomalous pairs can be written down as $K_L + \kappa^\circ n^\circ$. The fraction of the decay mode as the average for two experiments is equal to $(3.8 \pm 1.1) \cdot 10^{-8}$. The anomalous $\ell^+\ell^-$ pairs formation in hadronic collisions is possible over the inclusive $h + h + \kappa^\circ + \dots$ process. The cross section of this process is equal to $= 10 \ \mu b$ The ratio of this value to the average inclusive production cross section of the nearest mass mesons K, η, ρ, ω is equal to $(4.1 \pm \pm 1.4) \cdot 10^{-8}$.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1989

P1-89-452

P1-89-452

Как было показано ранее /1-4/ при реанализе информации, записанной на установке БИС в экспериментах по изучению полулептонных распадов K_L -мезонов /5/, получено указание на аномальное образование вне мишени e^+e^- и $\mu^+\mu^-$ пар ($\ell^+\ell^-$ пары), не объясняющееся известными фоновыми процессами. Ниже кратко излагаются основные этапы этого анализа и приводятся данные других экспериментов, подтверждающие факт аномального образования $\ell^+\ell^-$ пар.

1. АНАЛИЗ ОБРАЗОВАНИЯ l^+l^- ПАР НА УСТАНОВКЕ БИС

Установка, включающая магнитный спектрометр и детекторы электронов и мюонов, помещалась на пучке нейтральных частиц серпуховского ускорителя. Первоначальной целью эксперимента являлось изучение регенерации $K_L - K_S$ -мезонов на дейтерии. Регистрировались пары заряженных частиц с вершиной в распадном объеме. Описание установки и процедуры идентификации лептонов содержится в работах / θ - θ /. Анализ образования $\ell^+\ell^-$ пар включал следующие этапы.

1.1. Сравнивались распределения инвариантных масс $e^+e^-u \mu^+\mu^-$ пар, идентифицированных установкой, с аналогичными распределениями meи $\pi\mu$ пар от распадов $K_{e3} \rightarrow \pi^\pm e^\mp \nu_e$ и $K_{\mu3} \rightarrow \pi^\pm \mu^\mp \nu_{\mu}$ ($K_{\ell3}$ распады) в предположении, что пионы имеют массу покоя соответствующего лептона. Эти распады являются основным источником фона, когда $\ell^+\ell^-$ пары имитируются за счет неправильной идентификации пионов как лептонов.

Если все идентифицированные установкой $\ell^+\ell^-$ пары относятся к фону от $\pi\ell$ пар, распределения $M(\ell\ell)$ и $M(\pi\ell)$ должны совпадать при одинаковой нормировке (о проверке этого утверждения см. п.1.3). Эти распределения приведены на рис. 1а,в. Видно, что в данном эксперименте они не совпадают: наблюдается избыток $\ell^+\ell^-$ пар (гистограммы) относительно фона (точки) в левой части распределений и недостаток в правой. Наиболее естественно такую картину можно объяснить тем, что имеется источник $\ell^+\ell^-$ пар, не относящийся к указанному фону и создающий избыток пар в левой части массового спектра.

FRIDEN PROJEKTER

Рис. 1. а — распределение инвариантных масс е е пар, идентифицированных в экспериментах БИС (гистограмма). Точки — распределение фоновых событий, нормированное на полное число е⁺е⁻ пар. Кривая — то же при нормировке на правую часть гистограммы. б — распределение разности между гистограммой и кривой, в,г — то же для µ⁺µ⁻ пар.

Для того, чтобы выделить такие пары, применялась общепринятая в таких случаях процедура: фоновое распределение совмещалось с экспериментальным в тех бинах, где не наблюдается избытка $\ell^+\ell^-$ пар (кривые на рис. 1а,в), а затем строилось распределение разности между гистограммой и кривой (рис. 16,г). Практически эта процедура соответствует нормировке фона по правой части экспериментальной гистограммы. Массовые спектры избыточных пар, как следует из рисунка, ограничены величиной $M(\Delta ee) \leq 0,34$ ГэВ/с² и $M(\Delta \mu \mu) \leq 0,38$ ГэВ/с².

Таблица 1

	N(K _{e3})	N(eo)	N (4 e e)	N(K _{M3})	N(µµ)	м (арул)	N(200) N(K ₀₃)	N(Дри) N(Краз)
БИС	275II	45I	56±14	78000	1362	109 <u>+</u> 28	2,0 <u>+</u> 0,5	I,4 <u>±</u> 0,3
БЕРКЛИ	16730	75	36±8	12845	597	40 <u>+</u> 40	2,2 <u>+</u> 0,5	3,I <u>±</u> +3,I

Левая граница приведенных спектров определяется аксептансом установки. Число избыточных пар $N(\Delta \ell \ell)$ и другие данные, относящиеся к эксперименту, приведены в первой строке табл. 1.

1.2. Использовалась информация о $e^{\pm}\mu^{\mp}$ парах, идентифицированных установкой. Эти пары возникают в результате фоновых процессов, когда в K_{e3} распадах пион неправильно идентифицируется как мюон, а в $K_{\mu3}$ распадах пион неправильно идентифицируется как электрон. Если предположить, что все идентифицированные установкой e^+e^- , $\mu^+\mu^-$ и $e^{\pm}\mu^{\mp}$ пары обусловлены неправильной идентификацией пионов из $\pi\ell$ пар, тогда число $e^{\pm}\mu^{\mp}$ пар можно рассчитать из соотношения:

$$N(e\mu)_{1} = N(\pi\mu) \frac{N(ee)}{N(\pi e)} + N(\pi e) \frac{N(\mu\mu)}{N(\pi\mu)}.$$
 (1)

Здесь N обозначает число событий.

Если же часть $\ell^+\ell^-$ пар N($\Delta e e$) и N($\Delta \mu\mu$) не относится к указанному фону, тогда соотношение (1) запишется в виде:

$$N(e\mu)_{2} = N(\pi\mu) \frac{N(ee) - N(\Delta ee)}{N(\pi e)} + N(\pi e) \frac{N(\mu\mu) - N(\Delta \mu\mu)}{N(\pi\mu)} .$$
(2)

Для проверки этих соотношений отбирались события, в которых каждая частица пары попадала в апертуру и детектора электронов и детектора мюонов, при этом импульсы частиц ограничивались величиной 9-16 ГэВ/с, где идентификация электронов производится наиболее уверенно. Для этих событий определялось число избыточных пар N(Δee) и N($\Delta \mu\mu$) методом, изложенным в п.1.1. Затем рассчитывались значения N($e\mu$) и N($e\mu$) и сравнивались с экспериментальным числом N($e\mu$)

700. Для соотношения (1) разность между расчетным и экспериментальным числом $e^{\pm}\mu^{\mp}$ пар составила 177 ± 41, для соотношения (2) — 34 ± 41. Видно, что для случая нулевой гипотезы (отсутствие избыточных $\ell^+\ell^-$ пар) эта разность выходит за четырехкратную ошибку, что соответствует уровню достоверности порядка 10⁻⁴.

Таким образом, данный метод дает независимую проверку существования избыточных $\ell^+ \ell^-$ пар в дополнение к методу, основанному на анализе массовых спектров $\pi \ell$ и $\ell^+ \ell$ пар.

На рис. 2а приведено распределение инвариантных масс $e^{\pm}\mu^{+}$ пар, идентифицированных установкой (гистограмма). Точками обозначено распределение M($e\mu$), рассчитанное исходя из соотношения (1) и массо-

Рис. 2. а – распределение инвариантных масс $e^{\pm}\mu^{\mp}$ пар, идентифицированных в эксперименте БИС, и расчетные распределения этих величин. Пояснения даны в тексте. б – разность между гистограммой и кривой.

вых спектров те и пµ пар. Кривая получена из соотношения (2). Видно, что между гистограммой и кривой не имеется значимого различия. В качестве иллюстрации на рис. 26 показано распределение разности между ними.

Это свидетельствует о том, что в данном эксперименте не наблюдается $e^{\pm}\mu^{\mp}$ пар, превышающих уровень фона.

1.3. Проводилось моделирование $\ell^+\ell^-$ пар с целью проверки того, не обусловлены ли наблюдаемые в эксперименте избыточные пары либо методическими эффектами, либо другими известными фоновыми процессами, кроме $K_{\ell 3}$ распадов. Моделирование $\ell^+\ell^-$ пар, сделанное в предположении, что все они являются результатом неправильной идентификации пионов в $K_{\ell 3}$ распадах, не показало какого-либо избытка дилептонных пар по отношению к фону. На этом этапе использовались магнитные ленты с записью моделированных $K_{\ell 3}$ распадов для работ ^{/5/}. Моделировались также другие известные источники фона: распады K_L мезонов, кроме рассмотренных выше, $K_{\rm S}$ -мезонов, возникающих при регенерации $K_L - K_{\rm S}$, а также $\ell^+\ell^-$ пары, образующиеся при взаимодействии нейтронов пучка с ядрами гелия в распадном объеме. Было найдено, что вклад этих источников в число избыточных $\ell^+\ell^-$ пар не превышает 15% для e^+e^- пар и 8% для $\mu^+\mu^-$ пар.

Сравнение распределений Z-координат вершин $\ell^+\ell^-$ пар (Z-координата соответствует продольной оси установки) для экспериментальных и моделированных событий позволяет заключить, что наиболее вероятным источником избыточных пар являются распады K_L -мезонов (либо распады другой долгоживущей нейтральной частицы с близкой массой).

2. ИЗУЧЕНИЕ ℓ⁺ℓ⁻ ПАР В ЭКСПЕРИМЕНТАХ С НЕЙТРАЛЬНЫМИ КАОНАМИ ГРУППЫ БЕРКЛИ

На бэватроне (Беркли) с помощью магнитного спектрометра регистрировались распады K_L -мезонов с импульсами 0,8-3,2 ГэВ/с^{/10/}. Пары $\ell^+\ell^-$ изучались с целью поиска предполагаемого в модели ^{/11/} χ° - мезона. Электроны идентифицировались по черенковскому излучению в газовых счетчиках, мюоны — по длине пробега в калориметре, содержащем тормозной блок из углерода и расположенные за ним слои железа и сцинтиллятора. В работе даны графики распределений инвариантных масс $\ell^+\ell^-$ пар, идентифицированных установкой, а также аналогичные графики для πe и $\pi \mu$ пар от K_{e3} и $K_{\mu3}$ распадов в предположении, что все пионы в этих распадах неправильно идентифицируются как соответствующие лептоны.

Так же, как в экспериментах БИС, большая часть $\ell^+\ell^-$ пар объясняется неправильной идентификацией пионов в $\pi\ell$ парах. На рис. За приведены распределения M(ee) (гистограмма) и M(π e) (точки), пересчитанные с графиков, приведенных в цитируемой статье. Нами были укрупнены бины, и число π е пар нормировано на полное число e⁺e⁻ пар. Видно, что картина повторяет ту, что приведена на рис. 1а: наблюдается недостаток e⁺e⁻ пар относительно фонового распределения в его правой части и избыток в левой. Для выделения избыточных e⁺e⁻ пар применялась про-

цедура, описанная в п.1.1: фоновое распределение нормировалось по правой части гистограммы (на рисунке показано кривой), а за- N

Рис. 3. Распределение инвариантных масс $e^+e^$ и $\mu^+\mu^-$ пар, идентифицированных в эксперименте Беркли. Обозначения те же, что на рис. 1. Кривая на рис. 3в получена нами методом моделирования К μ з распадов в этом эксперименте.

тем строилось распределение разности между ними (рис. 36). Как видно из рисунка, массовый спектр избыточных e^+e^- пар ограничен величиной $M(\Delta ee) \leq 0,36$ ГэВ/с².

Коэффициент неправильной идентификации мюонов в экспериментах Беркли был значительно больше, чем в экспериментах БИС, что связано с более низкой энергией пучка К1-мезонов на бэватроне. Для расчета этого коэффициента нами было проведено моделирование Киз распадов на основе тех данных об установке и пучке К_гмезонов, которые содержатся в статье. В качестве реперного было принято распределение инвариантных масс тµ пар, приведенное авторами. Параметры моделирующей программы корректировались так, чтобы распределение М(пµ) для моделированных и экспериментальных событий согласовывалось. Затем были получены импульсные распределения пионов и мюонов, и на их основе рассчитаны длины пробегов в калориметре и доля распадов $\pi \to \mu \nu$ в пределах установки. Распределение инвариантных масс $\mu^+\mu^-$ пар от неправильной идентификации $\pi\mu$ пар, полученное при моделировании, обозначено кривой на рис. Зв. Гистограмма на этом рисунке дает массовый спектр $\mu^+\mu^-$ пар, идентифицированных установкой.

На рис. Зг дано распределение разности между гистограммой и кривой, которое соответствует массовому спектру избыточных $\mu^+\mu^-$ пар. Этот спектр ограничен величиной $M(\Delta \mu \mu) \leq 0,40 \ \Gamma$ эB/c².

Описанная процедура моделирования является первым приближением, к тому же подробности идентификации мюонов в статье не приводятся, поэтому при определении количества избыточных $\mu^+\mu^-$ пар систематическая ошибка имеет тот же порядок, что и сам эффект. Число избыточных пар $N(\Delta \ell \ell)$ в экспериментах БИС и Беркли, а также число всех идентифицированных $\ell^+\ell^-$ пар, К_{ра} распадов и отношение

 $R = \frac{N(\Delta \ell \ell)}{N(K_{\ell_3})}$ приведены во второй строке табл. 1.

Отношение R согласуется для обоих экспериментов. Вместе с тем фактом, что границы массовых спектров избыточных $\ell^+\ell^-$ пар в обоих случаях совпадают в пределах 20 МэВ/с², это свидетельствует о неслучайном характере наблюдаемого эффекта.

ОБСУЖДЕНИЕ ВОЗМОЖНЫХ МОДЕЛЕЙ ОБРАЗОВАНИЯ АНОМАЛЬНЫХ ℓ⁺ℓ[−] ПАР

3.1. Моделирование возможных источников $\ell^+\ell^-$ пар в экспериментах БИС подробно описано в $^{/2,3/}$. Поскольку распадный объем заполнялся гелием, были рассмотрены все процессы возникновения

 l^+l^- пар при неупругих взаимодействиях нейтронов пучка с ядрами гелия, и найдено, что их вклад не превышает 5% от наблюдаемого числа избыточных (аномальных) l^+l^- пар. В экспериментах Беркли 87% статистики набиралось тогда, когда в распадном объеме был вакуум. Отсюда следует, что наиболее вероятным источником аномальных дилептонных пар в обоих экспериментах являются распады К_L-мезонов.

Для моделирования возможных источников $\ell^+\ell^-$ пар в эксперименте Беркли нами применялась программа, описанная в предыдущем разделе.

Вид массовых спектров аномальных $\ell^+\ell^-$ пар — приблизительно "колоколообразная" форма с верхней границей масс около 0,38-0,40 ГэВ/с² — указывает на то, что в распаде должны присутствовать одна или несколько нейтральных частиц, уносящих недостающую энергию ~0,10-0,12 ГэВ/с². Простейшая схема такого распада:

 $K_{L} \rightarrow \ell^{+} \ell^{-} X^{\circ},$

 $K_{L} \rightarrow X^{\circ} + n^{\circ} .$

(3)

(5)

7

где Х° обозначает нейтральную нерегистрируемую частицу с массой порядка недостающей энергии.

Более сложные схемы включают промежуточные заряженные или нейтральные частицы X⁺, X⁻, X^o:

$$K_{L} \rightarrow \chi^{+} + \chi^{-}, \qquad (4)$$

Обозначение n° относится к нейтральной безмассовой (или почти безмассовой) частице.

При моделировании распадов (3)-(5) в экспериментах БИС и Беркли требовалось, чтобы распределения инвариантных масс $\ell^+\ell^-$ пар согласовывались с аналогичным распределением для аномальных пар. Подгоночным параметром являлась масса Х-частиц М(Х). Она приведена в табл. 2 вместе с относительной вероятностью распадов по каналам с образованием e^+e^- и $\mu^+\mu^-$ пар и их сумме, которые рассчитывались из соотношения:

, Таблица 2

$$B_{\ell\ell} = \frac{N(\Delta\ell\ell) \eta(K_{\ell3})}{N(K_{\ell3}) \epsilon(\ell\ell)}$$

Здесь N — число событий, $\eta(K_{\ell 3})$ — относительная вероятность K_{e3} и $K_{\mu 3}$ распадов, $\epsilon(\ell \ell)$ — эффективность регистрации $\ell^+\ell^-$ пар, полученная при моделировании. Значения В $\ell \ell$ не противоречат имеющейся неопределенности в измерении парциальных ширин известных мод распада K_1 -мезонов /12/.

	БИС					БЕРКЛИ			
МО-	M(X)	B _{ee}	B _{MM}	^В ее	M(X)	B _{ee}	B _{MM}	^B ll	
ДЕЛЬ	FəB/c ²	xI0 ⁻³	x10 ⁻³	x10 ⁻³	FaB/c ²	xI0 ⁻³	xI0 ⁻³	x10 ⁻³	
(3)	0,I3	2,5 <u>+</u> 0,6	0,90 <u>+</u> 0,24	3,4 <u>+</u> 0,6	0,II	I,6±0,3	I,3 <u>+</u> I,3	2,9±I,3	
(4)	0,20	2,2 <u>+</u> 0,5	0,75 <u>+</u> 0,20	2,9 <u>+</u> 0,5	0,20	3,0±0,6	I,5 <u>+</u> I,5	4,5±I,6	
(5)	0,40	4,4 <u>+</u> I,0	0,87 <u>+</u> 0,23	5,3 <u>+</u> I,0	0,42	I,2±0,26	I,2 <u>+</u> I,2	2,4±I,2	

На рис. 4 приведены распределения инвариантных масс аномальных $\ell^+\ell^-$ пар в экспериментах БИС и Беркли (гистограммы). Кривые 1,2,3 показывают аналогичные распределения моделированных $\ell^+\ell^-$ пар в распадах (3)-(5) при значениях масс M(X), указанных в табл. 2. Результаты моделирования практически не меняются, если n° приписать масс су от нуля до нескольких MэB/c². Разумно считать, что эта масса должна быть меньше двух электронных. Как видно из рисунка, распределения M($\ell\ell$) для всех трех моделей согласуются в пределах ошибок. Чтобы выбрать одну из них, нужно привлечь данные других экспериментов.

3.2. В схеме (3) наиболее простой была бы интерпретация X° как π° -мезона. Однако прямые измерения таких распадов дают их относительную вероятность B(K_L $\rightarrow e^+e^-\pi^\circ$) < 2,3 $\cdot 10^{-6}$ и B(K_L $\rightarrow \mu^+\mu^-\pi^\circ$) < 1,2 $\cdot 10^{-6/12}$. Эти цифры противоречат величине B_{ff} для схемы (3).

Поиск проникающих частиц с ненулевой массой типа X° в схеме (3) проводился в распадах заряженных каонов. В работе ^{/13/} изучались распады K⁺→ π^+ X°. Каоны останавливались в тонких слоях сцинтиллятора, искались дискретные линии в энергетических спектрах π^+ мезонов. Таких событий не было обнаружено, в частности, в области масс M(X°) $\stackrel{\sim}{=}$ 100 – 150 МэВ/с до уровня относительной вероятности 10⁻⁵.

К этому же типу экспериментов относятся поиски тяжелого нейтрино $\nu_{\rm H}$ в распадах ${\rm K}^+ \rightarrow {\rm e}^+ \nu_{\rm H}$ и ${\rm K}^+ \rightarrow \mu^+ \nu_{\rm H}^{-/14/}$. Для относительной вероятности распада в области масс ${\rm M}(\nu_{\rm H}) \simeq 100 - 150 {\rm ~M}{
m yB/c}^2$ получен предел 1,4 \cdot 10⁻⁷.

Таким образом, имеющиеся экспериментальные данные не подтверждают существования моды распада (3) на уровне относительной вероятности, указанной в табл. 2.

8

Рассмотрим распад (4). Из того факта, что в экспериментах БИС не наблюдалось $e^{\pm}\mu^{\mp}$ пар, кроме фоновых от $K_{\ell 3}$ распадов, следует, что промежуточные X^+X^- частицы в данном распаде должны иметь одинаковое лептонное число и рождаться парами. Это исключает их рождение в распадах заряженных каонов $K^{\pm} \rightarrow \pi^{\pm}X^+X^-$, так как суммарная масса $M(X^+) + M(X^-) = 0,4 \ \Gamma \ni B/c^2$ превышает разность масс $M(K^-) - M(\pi)$. Действительно, не было обнаружено распадов заряженных каонов, содержащих в конечном состоянии пион, дилептонную пару и одну или больше нейтральных частиц (здесь и далее мы не будем рассматривать случаи, когда $\ell^+\ell^-$ пары рождаются за счет внутренней конверсии фотонов).

Поиски короткоживущих заряженных частиц типа X^{\pm} , распадающихся на заряженный лептон и одну или две нейтральные частицы, проводились в нескольких экспериментах на ускорителях с встречными e^+e^- пучками. В наиболее простом случае, когда пара заряженных частиц рождается через аннигиляцию виртуального фотона, сечение их рождения связано с сечением рождения $\mu^+\mu^-$ пар $\sigma(\mu\mu)$:

$$\sigma(e^+e^- \rightarrow (\gamma) \rightarrow X^+X^-) = \sigma(\mu\mu)\beta^3/4$$
 для скаляров (6)

$$\sigma(e^+e^- \rightarrow (\gamma) \rightarrow X^+X^-) = \sigma(\mu\mu)\beta(3-\beta^2)/2$$
для фермионов (7

Здесь β относится к Х-частицам.

При массе $M(X^{\pm}) \approx 0,2 \ \Gamma \ni B/c^2$ и энергии встречных пучков порядка 30 ГэВ, достигнутой на современных ускорителях, величина β практически равна единице, и рождение X^+X^- пар могло бы быть обнаружено по увеличению выхода $\ell^+\ell^-$ пар, соизмеримому с величиной $\sigma(\mu\mu)$, либо по измерению некомпланарности таких пар. Имеющиеся экспериментальные результаты не дают доказательств существования искомых частиц до границы масс $M(X^{\pm}) \leq 20 - 25 \ \Gamma \ni B/c^2$ на 95% у.д. ^{/15/}, то есть не согласуются с возможностью существования схемы распада (4).

Модель распада (5) предполагает существование короткоживущей нейтральной частицы с массой 0,40-0,42 ГэВ/с² (обозначим ее символом "каппа" κ°), распадающейся по схеме $\kappa^{\circ} \rightarrow \ell^+ \ell^- n^{\circ}$. Так же, как и в предыдущем случае, запрещен распад заряженных каонов по схеме $K^{\pm} \rightarrow \pi^{\pm} \kappa^{\circ}$, поскольку масса κ° превышает разность масс М(К) – М(π). Что касается распадов более тяжелых частиц, то известны эксперименты на встречных e^+e^- пучках по поиску $\ell^+\ell^-$ пар при распаде адронов, содержащих с-и b-кварки. Не было обнаружено таких пар, превышающих величину расчетного фона $^{/16/}$. На встречных e⁺e⁻ пучках также проводились поиски прямого рождения нейтральных частиц, распадающихся на пару заряженных лептонов и одну или несколько нейтральных частиц. Распады такого типа рассматриваются, например, в модели нестандартных хиггсовских бозонов (или их суперпартнеров хиггсино), где предполагается существование двух нейтральных бозонов — скаляра и псевдоскаляра $h_1^{\circ}h_{2'}^{\circ}$ один из которых может быть легким и стабильным. Они могут рождаться через виртуальный Z°-бозон:

 $e^+e^- \rightarrow (Z^\circ) \rightarrow h_1^\circ h_2^\circ$ с распадом $h_2^\circ \rightarrow \ell^+ \ell^- h_1^\circ$. (8)

Сечение рождения $\sigma(h_1^{\circ}h_2^{\circ})$ записывается по аналогии с выражением (6), где вместо $\sigma(\mu\mu)$ подставляется сечение рождения пары нейтрино-антинейтрино $\sigma(\nu\nu)$. Событий типа (8) не было найдено, однако топология распадов в данном случае такова, что массы h_2° меньше 1 ГэВ/с² не регистрируются существующими детекторами при энергиях встречных пучков $\tilde{-30}$ -40 ГэВ /15/.

Таким образом, известные экспериментальные данные не опровергают возможности существования κ° и схемы распада (5).

4. АНАЛИЗ ПРЯМОГО РОЖДЕНИЯ $\ell^+ \ell^-$ ПАР В АДРОННЫХ ВЗАИМОДЕЙСТВИЯХ

Эксперименты такого типа известны с 1970 года. Было найдено, что сечение рождения прямых e^+e^- и $\mu^+\mu^-$ пар приблизительно одинаково и слабо зависит от типа взаимодействующих адронов. Массовый спектр прямых $\ell^+\ell^-$ пар имеет вид спадающей кривой, и для области масс больше массы ρ , ω мезонов удовлетворительно описывается моделью Дрела — Яна, рассматривающей аннигиляцию партонов и антипартонов в виртуальные фотоны с их последующей конверсией в $\ell^+\ell^-$ пары. Однако для малых поперечных импульсов $P_T < 1 \ \Gamma$ эВ/с и масс меньше 0,6 Γ эВ/с² наблюдается аномальное рождение $\ell^+\ell^-$ пар, превышающее вклад от известных процессов: модели Дрела — Яна и трехчастичных распадов η , ω мезонов.

4.1. Наиболее информативный эксперимент по изучению прямого рождения $\mu^+\mu^-$ пар выполнен на пучке 15,5 ГэВ/с π^\pm -мезонов ускорителя SLAC ^{/18/}. Использовалась двухметровая стримерная камера с жидководородной мишенью в чувствительном объеме. Мюоны идентифицировались с помощью внешнего детектора, состоящего из слоев свинца и расположенных между ними сцинтилляционных годоскопов и проволочных камер.

Рис. 5. а — распределение инвариантных масс прямых $\mu^+\mu^-$ пар в эксперименте ^{/18/} (светлая гистограмма). Другие пояснения даны в тексте. б распределение $M(\mu\mu)$ после вычитания кривых 1 и 2. Кривая 3 — результат моделирования процесса (9).

Распределение инвариантных масс всех $\mu^+\mu^-$ пар приведено на рис. 5а (гистограмма). В интервале масс 0,7-0,8 ГэВ/с² виден четкий пик от распадов $\rho, \omega \rightarrow \mu^+\mu^-$. Для сравнения в эксперименте измерялись также инвариантные массы $\pi^+\pi^$ пар в предположении,

что пионы имеют массу покоя мюонов (кривая 1 на рисунке). Кривая 2 показывает вклад $\mu^+\mu^-$ пар от далитц-распадов $\eta \to \mu^+\mu^-\gamma$ и $\omega \to \mu^+\mu^-\pi^\circ$, рассчитанный авторами эксперимента.

Сравнивая массовые распределения мюонных и пионных пар, можно видеть, что распределение $M(\mu\mu)$ в общих чертах повторяет распределение $M(\pi\pi)$ за исключением двух областей: области масс ρ, ω и области масс $\leq 0.42 \ \Gamma$ эВ/с². Это хорошо видно на рис. 5б, где приведено распределение $M(\mu\mu)$ после вычитания распределения $M(\pi\pi)$ и далитцраспадов η, ω . Таким образом, массовое распределение прямых $\mu^+\mu^$ пар является суперпозицией трех распределений, каждое из которых имеет свой механизм образования:

а) $\mu^+\mu^-$ пары от двух- и трехчастичных распадов известных мезонных резонансов;

б) пары нерезонансного происхождения (континуум), повторяющие форму континуума $\pi^+\pi^-$ пар;

в) $\mu^+\mu^-$ пары в области масс $2M_{\mu} \leq M(\mu\mu) \leq 0.42$ ГэВ/с², происхождение которых не объясняется двумя первыми механизмами. Далее будем называть их "Аномальные дилептоны малой массы" (АДММ).

В эксперименте измерялись все вторичные заряженные частицы, сопровождающие рождение $\mu^+\mu^-$ пар. Кинематическая реконструкция событий позволяет определить, родились ли во взаимодействии одна или больше нейтральных частиц. На рис. 5а заштрихованная гистограмма относится к такой выборке событий с $\mu^+\mu^-$ парами, когда во взаимодействии либо не имеется нейтральных частиц, либо есть одна такая частица. В этом случае не наблюдается избытка $\mu^+\mu^-$ пар в области масс $\leq 0,42 \ \Gamma \Rightarrow B/c^2$. Иными словами, эффект АДММ появляется только в том случае, когда при этом рождаются по крайней мере две нейтральные частицы.

Как было показано в предыдущих разделах, подобные же характеристики имеет модель распада K_L -мезонов (5): массы аномальных $\ell^+ \ell^-$ пар ограничены величиной $\leq 0,40$ ГэВ/с, и в конечном состоянии имеются две нейтральные частицы. Для конкретного сопоставления этих экспериментов нами проведено моделирование образования АДММ для цитируемой работы, на основе сведений об установке и кинематических распределениях $\mu^+\mu^-$ пар, которые приводятся авторами. На первом этапе разыгрывалось инклюзивное рождение η и ω мезонов с последующим распадом $\eta \to \mu^+\mu^- \gamma$ и $\omega \to \mu^+\mu^- \pi^\circ$, и параметры моделирующей программы корректировались так, чтобы суммарное распределение $M(\mu\mu)$ согласовывалось с кривой 2 (светлые точки на рис. 5а). Затем в этой же модели разыгрывался инклюзивный процесс

 $\pi^{\pm} \mathbf{p} \rightarrow \kappa^{\circ} (0, 4) + \dots$ $\lim_{h \to \infty} \mu^{+} \mu^{-} \mathbf{n}^{\circ} .$

(9)

В скобках указано округленное значение массы к°.

Полученное в этой модели распределение $M(\mu\mu)$ показано на рис.56 (кривая 3). В пределах ошибок кривая согласуется с массовым распределением АДММ. Сечение рождения АДММ, $\sigma(\Delta\mu\mu)$, рассчитанное по данным авторов, приведено в первой строке табл. 3 вместе с числом АДММ $N(\Delta\mu\mu)$ и основными характеристиками эксперимента.

Поскольку рождение АДММ сопровождается образованием по крайней мере двух нейтральных частиц, был смоделирован процесс инклюзивного рождения к[°] в паре с еще одной легкой нейтральной частицей:

Не было замечено влияния второй нейтральной частицы на массовый спектр $\mu^+\mu^-$ пар и на эффективность их регистрации установкой.

Рис. 6. Распределение инвариантных масс прямых $\mu^+\mu^-$ пар в эксперименте ^{/ 19/}. Пояснения даны в тексте.

Рис. 7. а — распределение инвариантных масс прямых $\mu^+\mu^-$ пар, исправленное на аксептанс установки, в эксперименте ^{/20/} (гистограмма). Кривая показывает вклад от двух- и трехчастичных распадов η , ρ , ω мезонов. б — распределение разности между гистограммой и кривой.

Рассмотрим еще два эксперимента по прямому рождению $\mu^+\mu^-$ пар. На ускорителе SLAC пучок K_L -мезонов с импульсами 4-20 ГэВ/с взаимодействовал с медной мишенью. Установка содержала магнитный спектрометр на проволочных искровых камерах и два поглотителя в начале и конце спектрометра^{/19/}. Распределение $M(\mu\mu)$ после вычитания неправильно идентифицированных мюонных пар приведено на рис. 6 (гистограмма). Заштрихованная область показывает рассчитанный авторами минимальный вклад $\mu^+\mu^-$ пар от распадов каонов, конверсии фотонов в веществе до магнита и от далитц-распадов η и ω мезонов. Кривая — результат расчета вклада от распадов ρ, ω, ϕ мезонов на два мюона. Пунктирная линия проведена нами и дает предполагаемый вклад $\mu^+\mu^-$ пар нерезонансного происхождения.

На брукхейвенском ускорителе протоны с импульсом 28 ГэВ/с взаимодействовали с активной мишенью-сцинтиллятором. Мюоны идентифицировались с помощью калориметра, содержащего слои железа, сцинтиллятора и пропорциональные камеры $^{/20/}$. На рис. 7 показано распределение инвариантных масс $\mu^+\mu^-$ пар (гистограмма), вклад от распадов известных мезонов (кривая) и распределение разности между ними.

Как видно из этих рисунков, в обоих экспериментах также можно выделить три механизма образования димюонов: распады известных мезонов (обозначены кривыми), нерезонансные $\mu^+\mu^-$ пары или континуум (область масс больше 0,4 ГэВ/с²) и аномальные димюоны малой массы с $M(\mu\mu) \leq 0,4$ ГэВ/с, число которых в два-три раза превышает уровень континуума.

Хотя в данном случае не проводилось моделирования процесса (9), массовые спектры АДММ не противоречат предположению о том, что они обязаны этому процессу. Число пар, превышающее континуум, и сечение их рождения на нуклон приведены в табл. 3.

Имеется несколько экспериментов по изучению прямых $\mu^+\mu^-$ пар при бо́льших энергиях. Ближайший по энергии эксперимент сделан при взаимодействии π^+ -мезонов 150 ГэВ/с с протонами /21/. С ростом энергии механизм Дрела — Яна начинает работать в области меньших масс дилептонов, кроме того, становится существенным вклад $\ell^+\ell^-$ пар от полулептонных распадов очарованных частиц, поэтому область АДММ при этих энергиях не удается выделить.

4.2. Информация о рождении прямых e^+e^- пар значительно беднее, чем о $\mu^+\mu^-$ парах. Кроме нескольких экспериментов в пузырьковых камерах с малым числом событий, есть две работы с достаточно большой статистикой, выполненные на магнитных спектрометрах.

На многочастичном спектрометре брукхейвенской лаборатории регистрировались е⁺е⁻ пары, рожденные во взаимодействии *п*⁻-мезонов 17 ГэВ/с с протонами / 22/. Пары электронов идентифицировались с помощью детекторов переходного излучения и двух ливневых спектрометров — переднего (А-пары) и бокового (В-пары). На рис. 8а показано распределение инвариантных масс А-пар (гистограмма). Так же, как в экспериментах с прямыми $\mu^+\mu^-$ парами, в массовом спектре е⁺е пар наблюдается два "горба": в области малых масс и в области 0.5-0.8 ГэВ/с². Заштрихованная область относится к распадам $\rho, \omega \rightarrow e^+e^$ с учетом их ширины, аппаратурного разрешения по массе и потери энергии электронами в жидководородной мишени. Пунктирная линия дает вклад нерезонансных е⁺е⁻ пар ("линейный фон" по терминологии авторов). Кривая 1 — вклад от далитц-распадов $\eta \to e^+e^-\gamma$ и $\omega \to e^+e^-\pi^\circ$. На рис. 86 гистограмма показывает распределение разности M(ee) после Вычитания вклада от двух- и трехчастичных распадов η, ρ, ω мезонов и нерезонансного фона.

Рис. 8. а – распределение инвариантных масс прямых e^+e^- пар в эксперименте ^{/22/}. б – распределение M(ee) после вычитания пар от распадов известных мезонов и нерезонансного фона. Стрелка показывает границу обрезания масс для исключения распадов $\pi^{\circ} \rightarrow e^+e^-y$. Кривая 2 – результат моделирования процесса (10) для данного эксперимента. Пояснения в тексте.

Нами проводилось моделирование данного эксперимента на основе тех сведений, которые содержатся в статье. На первом этапе разыгрывалось инклюзивное рождение η , ω мезонов и были получены распределения M(ее) от их далитц-распадов. Параметры моде-

лирующей программы корректировались так, чтобы сумма этих распределений согласовывалась с кривой 1 (светлые кружки на рис. 8а). Затем при этих параметрах разыгрывался инклюзивный процесс:

Полученный массовый спектр M(ee) показан кривой 2 на рис. 86. Видно, что в пределах ошибок он согласуется с массовым спектром аномальных e^+e^- пар.

Второй эксперимент был выполнен на ускорителе SLAC ^{/23'}. π^- -мезоны с импульсом 16 ГэВ/с взаимодействовали с протонами. Прямые e⁺e⁻ пары регистрировались широкоапертурным спектрометром LASS. Электроны идентифицировались с помощью двух газовых черенковских счетчиков и ливневого детектора. Распределение их инвариантных масс показано на рис. 9а. Массы меньше 0,2 ГэВ/с² обрезались с целью исключения e⁺e⁻ пар от конверсии фотонов в мишени и от далитц-распадов π° -мезонов. Заштрихованная область относится к распадам $\rho, \omega \to e^+e^-$, кривая дает вклад далитц-распадов η, ω мезонов. На рис. 9б показана зависимость сечения рождения e⁺e⁻ пар от их массы для тех событий, которые остались после вычитания вклада двух- и трехчастичных распадов η, ρ, ω мезонов. Рис. 9. а — распределение инвариантных масс прямых e^+e^- пар в эксперименте $^{/23'}$. б — распределение $d\sigma(ee)/dM$, полученное после вычитания вклада от двух- и трехчастичных распадов η, ρ, ω мезонов. Значком \mapsto указано разрешение по массе.

Так же, как в случае с $\mu^+\mu^-$ парами, на рис. 8 и 9 можно выделить три области с различными механизмами образования e^+e^- пар: распады известных мезонов (заштрихованная область и кривые), нерезонансные e^+e^- пары или континуум (пунктир на рис. 8а и плато на рис. 9б) и аномальные диэлектроны с M(ee) $\leq 0,35$ ГэВ/с².

Хотя для эксперимента $^{/23/}$ моделирование процесса (10) не производилось, из рис. 96 видно, что массовый спектр АДММ не противоречит этому процессу. Число аномальных e^+e^- пар N(Δee) и

сечение их рождения на нуклон $\sigma(\Delta ee)$ даны в табл. 3 для обоих экспериментов.

4.3. Приведенные в табл. 3 сечения рождения АДММ относятся к разным интервалам ΔX_F . Кроме того, в работе $^{/22/}$ получено значение $\sigma(\Delta ee)$ для четырех интервалов ΔX_F . Это позволяет сравнить экспериментальную зависимость $d\sigma/dX_F$ для аномальных пар с данными различных моделей. На рис. 10а показаны значения $\sigma(\Delta ee)$, отнесенные к интервалу 0,1X_F для экспериментов $^{/22,23/}$. Кривая 1 дает максимальный вклад моделей типа модели Дрела — Яна. Кривая 2 — результат моделирования распределения $d\sigma(ee)/dX_F$ для процесса (10) и условий эксперимента $^{/22/}$, при этом за исходное принималось распределение $d\sigma/dX_F$ в области $-1 < X_F < 1$, полученное в экспериментах по инклюзивному рождению K_g -мезонов в πp -взаимодействиях $^{/24, 25/}$. Из этих же экспериментов взято распределение $d\sigma/dP_T^2 = \exp(-5,60 \pm 0,08) P_T^2 \Gamma$ эВ/с², которое хорошо согласуется с аналогичным распределение, полученным для аномальных e^+e^- пар $B^{/22/}$ (показатель эксперименты приблизительно -6,0).

Рис. 10. a - pacnpedenenue $d\sigma/dx_{\rm F} dля аномальных e⁺e⁻ nap (a) и аномальных <math>\mu^{+}\mu^{-}$ пар (б). Обозначения соответствуют экспериментам: $\phi/22/, \phi/23/, \phi/20/, \phi/18/$ Значения кривых пояснены в тексте.

Как видно из рисунка, распределение $d\sigma/dX_F$ для аномальных e⁺e⁻ пар в эксперименте /22/

не согласуется с моделью Дрела — Яна, но хорошо согласуется с моделью (10). Последней модели также не противоречит результат эксперимента^{/23/}.

На рис. 10б приведены сечения рождения аномальных $\mu^+\mu^-$ пар, отнесенные к интервалу 0,1 Х_F, для двух экспериментов. Кривая 3 результат моделирования распределения $d\sigma(\mu\mu)/dX_F$ для процесса (9) и условий эксперимента ^{/18/}. Исходное распределение $d^2\sigma/dXdP_T^2$ было взято таким же, что и для кривой 2. Видно, что данные обоих экспериментов согласуются с моделью инклюзивного рождения κ° .

В табл. З в скобках приведена эффективность регистрации $\ell^+\ell^$ пар (ϵ) для кривых 2 и 3 и соответствующие сечения инклюзивного рождения, рассчитанные из соотношения $\sigma(\kappa^\circ) = \sigma(\Delta \ell \ell)/\epsilon$ (строго говоря, $\sigma(\kappa^\circ)$ в данном случае следует рассматривать как произведение сечения на относительную вероятность распадов κ° по каналам с $\ell^+\ell^-$ парами). Суммарная величина сечения по каналам распада с e^+e^- и $\mu^+\mu^-$ парами составляет $\sigma(\kappa^\circ) = 10,0 \pm 2,3$ мкб.

Канал распада с образованием $\mu^+\mu^-$ пар подавлен по отношению к каналу с образованием e^+e^- пар: $\sigma(\kappa^\circ \to \mu^+\mu^-n^\circ) / \sigma(\kappa^\circ \to e^+e^-n^\circ)$ = 0,1 ± 0,03. Аналогичная величина для распадов K_L-мезонов в эксперименте БИС составляет 0,2 ± 0,07 (табл. 2), то есть оба соотношения согласуются в пределах ошибки. Это подавление можно объяснить разностью фазовых объемов в таких каналах. Моделирование, проведенное в предположении, что матричный элемент распада является константой, дает отношение $B(\kappa^\circ \to \mu^+\mu^-n^\circ) / B(\kappa^\circ \to e^+e^-n^\circ) = 0,3$. Согласие с экспериментом можно считать удовлетворительным, учитывая, что истинный вид матричного элемента нам неизвестен.

Представляет интерес сравнить величину $\sigma(\kappa^{\circ})$ с величиной сечения инклюзивного рождения $\sigma(M)$ ближайших по массе мезонов

К, η , ρ , ω . Отношение этих величин приведено в табл. 4. Здесь σ (М) взято из имеющихся данных для *п*р-взаимодействий при энергии 16 ГэВ^{/26/} Средняя величина $\sigma(\kappa^{\circ})/\sigma(M) = (4,1 \pm 1,4) \cdot 10^{-3}$ согласуется с величиной относительной вероятности распада В(K_L - κ° n°) = (3,8 ± ±1,1) $\cdot 10^{-3}$, взятой как среднее для двух экспериментов.

Таблица З

Сснл- ки	Леп- тоны	Тип вз.	Р _{лаб} ГэВ/с	Х _F	N(All)	с (all) [<u>но</u> нукл]	(€_) % G (ð¢) [mko]
I8	ма	п±р	15,5	0,4< X< 0,9	80 <u>+</u> 23	44 <u>+</u> II	(7,5)
20	мал	рN	28,5	0,28 <x~0,42.< td=""><td>7±4</td><td>26<u>+</u>I3</td><td>0,93<u>+</u>0,22</td></x~0,42.<>	7±4	26 <u>+</u> I3	0,93 <u>+</u> 0,22
19	MAN	K⊾C4	4-20	X> 0,25	68 <u>±</u> 26	< 20	
22	88	пър	17	0,4-X-0,8	46 <u>±</u> I5	640 <u>+</u> 200	(9,2)
23	88	птр	16	0,I <x<0,45< td=""><td>17<u>±</u>6</td><td>200<u>±</u>70</td><td>\$9,1<u>+</u>2,3</td></x<0,45<>	17 <u>±</u> 6	200 <u>±</u> 70	\$9,1 <u>+</u> 2,3
T-5 4							

Таблица 4

	K	h	9	ω	Среднее
с'(M),мо	2,0 <u>+</u> 0,5	I,5 <u>+</u> 0,3	4,8 <u>+</u> 0,4	4,0 <u>+</u> 0,7	
$\frac{G(\mathcal{X})}{G(\mathcal{X})} \cdot 10^{-3}$	5,0±I,7	6,7 <u>+</u> 2,0	2,I <u>+</u> 0,5	2,5 <u>+</u> 0,7	4,I <u>+</u> I,4

4.4. Рассмотрим возможность других мод распада κ° . Были моделированы процессы типа (5), (9) и (10) в предположении, что в распаде присутствуют две нейтральные безмассовые частицы: $\kappa^{\circ}(0,45) \rightarrow \ell^{\ell}\ell$ n °n°. Здесь, как и раньше, в скобках указана масса, полученная как подгоночный параметр при согласовании моделированных и экспериментальных спектров $M(\ell\ell)$. Найдено, что согласие с экспериментальными данными в этом случае хуже, однако нельзя полностью исключить данную моду.

Не запрещается распад к^о с двумя заряженными или нейтральными пионами в конечном состоянии. В этой связи мы хотим обратить внимание на работу ^{/27/}, в которой изучались взаимодействия нейтронов с импульсом 5,1 ГэВ/с в водородной пузырьковой камере. В реакции пр \rightarrow pp $\pi^+\pi^-\pi^-$ был обнаружен резонанс в системе $\pi^-\pi^-$ мезонов с массой $\approx 0,39$ ГэВ/с и сечением рождения ≈ 13 мкб. Этими же авторами

получено указание на существование резонанса в $\pi^+\pi^-$ системе с близкой массой. Весьма желательно дальнейшее изучение пионных резонансов с массой около 0,4 ГэВ/с².

Относительно теоретических предсказаний новых частиц со схемой распада типа κ° укажем на уже упоминавшиеся нестандартные хиггсовские бозоны (8). Такие же схемы распада могут иметь техницветные частицы (технипионы, дилатоны) и суперсимметричные частицы (нейтралино). В некоторых моделях для образования масс фермионов и бозонов используется несколько скалярных частиц, в частности, в работах /28/ предлагаются нейтральный и дважды заряженный скалярные мезоны.

Наконец, сошлемся на работу 1964 года ^{/29/} и более позднюю ^{/30/}, где высказывается гипотеза о существовании легкого векторного бозона, связанного с гиперзарядовым током (гиперфотон).

ЗАКЛЮЧЕНИЕ

В результате анализа двух экспериментов по распадам K_L -мезонов получено указание на образование аномальных $\ell^+\ell^-$ пар, не объясняющихся известными фоновыми процессами и ограниченных массой 0,38-0,40 ГэВ/с². В то же время анализ пяти экспериментов по прямому рождению $\ell^+\ell^-$ пар в адронных взаимодействиях при энергиях до 30 ГэВ указывает на существование аномальных $\ell^+\ell^-$ пар, не относящихся к известным источникам дилептонов и также ограниченных величиной массы $\approx 0,4$ ГэВ/с² (АДММ).

Это позволяет объяснить образование аномальных пар в перечисленных экспериментах через образование промежуточной нейтральной частицы с массой порядка 0,40-0,42 ГэВ/с² и распадом $\kappa^{\circ} \rightarrow \ell^{+}\ell^{-}n^{\circ}$, где n° — легкая нейтральная частица (не исключен также распад с двумя нейтральными частицами).

Отметим те общие характеристики, которые следуют из применения этой модели к двум указанным выше типам экспериментов.

1. Массовые спектры $\ell^+ \ell^-$ пар, полученные в модели, согласуются с аналогичными спектрами аномальных пар в двух экспериментах с К_L-мезонами и двух экспериментах с прямым рождением $\ell^+ \ell^-$ пар и не противоречат другим трем экспериментам этого типа.

2. Относительная вероятность распада K_L -мезонов через κ° , как среднее для двух экспериментов, равняется $B(K \rightarrow \kappa^{\circ}n^{\circ}) = (3.8 \pm 1.1) \cdot 10^{-3}$. Сечение инклюзивного рождения κ° в πp -взаимодействиях составляет 10,0±2,3 мкб. Отношение этой величины к величине сечений инклюзивного рождения ближайших по массе мезонов K, η, ρ, ω равняется в среднем $(4.1 \pm 1.4) \cdot 10^{-3}$. 3. Отношение вероятности распадов $K \to \kappa^{\circ}n^{\circ}$ по каналам $\kappa^{\circ} \to \mu^{+}\mu^{-}n^{\circ}$ и $\kappa^{\circ} \to e^{+}e^{-}n^{\circ}$ для эксперимента БИС составляет 0,2 ± 0,07. Отношение этих же каналов распада при инклюзивном рождении κ° составляет 0,1 ± 0,03. Моделирование этого отношения с учетом фазового объема дает = 0,3.

4. Отсутствуют е ${}^{\pm}\mu^{\mp}$ пары, превышающие уровень фона, как в распадах К_L-мезонов, так и в прямом рождении $\ell^+\ell^-$ пар, что согласуется с моделью κ° .

5. В распаде $K_L \to \kappa^{\circ}n^{\circ} \to (\ell^+\ell^-n^{\circ})n^{\circ}$ присутствуют две нейтральные частицы в конечном состоянии. В эксперименте по прямому рождению $\mu^+\mu^-$ пар в стримерной камере наблюдается образование АДММ только в том случае, если во взаимодействии имеются две или больше нейтральные частицы.

Кроме того, распределение $d\sigma/dX_F$ для e^+e^- и $\mu^+\mu^-$ пар, полученное при моделировании инклюзивного рождения κ° , согласуется с аналогичным распределением для двух экспериментов с аномальными e^+e^- парами и для двух экспериментов с аномальными $\mu^+\mu^-$ парами.

Авторы благодарят за полезные обсуждения А.М.Балдина и Я.Бэма, а также коллектив сотрудничества БИС за предоставление первичной информации.

ЛИТЕРАТУРА

1. Сильвестров Л.В. – В сб.: Краткие сообщения ОИЯИ №14-86, Дубна, 1986, с.9.

2. Сильвестров Л.В., Тахтамышев Г.Г. – ОИЯИ, РІ-86-87, Дубна, 1986.

3. Сильвестров Л.В. – ОИЯИ, РІ-87-3, Дубна, 1987.

4. Сильвестров Л.В., Тахтамышев Г.Г. – Письма в ЖЭТФ, 1987, 45, с.261.

5. Birulev V.K. et al. - Nucl. Phys., 1981, B182, p.1.

- 6. Бирулев В.К. и др. ОИЯИ, 1-7307, Дубна, 1973. Басиладзе С.Г. и др. ОИЯИ, P1-5361, Дубна, 1970.
- 7. Альбрехт К.Ф. и др. ОИЯИ, 1-7305, Дубна, 1973.
- 8. Вестергомби Д. и др. ОИЯИ, Р10-7284, Дубна, 1973.
- 9. Вовенко А.С. и др. ОИЯИ, 10-9909, Дубна, 1976.
- 10. Clark A.R. et al. Lett. Nuovo Cim., 1972, 5, p.665.
- 11. Alles W., Pati J. CERN Preprint TH-1429, Geneva, 1977.
- 12. Rev. of Particle Properties, Phys. Lett., 1988, 204B.
- 13. Jamazaki T. et al. Phys. Rev. Lett., 1984, 52, p.1089.
- 14. Hayano R.S. et al. Phys. Rev. Lett., 1982, 49, p.1305.

15. Hagiwara K., Komamiya S. – KEK Preprint 86-95, Ibaraki, 1987.

- 16. Althoff M. et al. Z. Phys. C, 1984, 22, p.219.
- 17. Avery P. et al. Phys. Rev. Lett., 1984, 53, p.1309.

- 18. Haber B. et al. Phys. Rev., 1980, D22, p.2107.
- 19. Faessler M. et al. Phys. Rev., 1978, D17, p.689.
- 20. Grannam D.M. et al. Phys. Rev., 1978, D18, p.3150.
- 21. Anderson K.J. et al. Phys. Rev. Lett., 1976, 37, p.1117.
- 22. Adams M.R. et al. Phys. Rev., 1983, D27, p.1977.
- 23. Blockus D. et al. Nucl. Phys., 1982, B201, p.205.
- 24. Barreiro F. et al. Phys. Rev., 1978, D17, p.669.
- 25. Bosetti P. et al. Nucl. Phys., 1975, B94, p.21.
- 26. Лиходед А.К., Шляпников П.В. УФН, 1978, 124, с.3; Bartke J. et al. Nucl. Phys., 1977, B118, p.360.
- 27. Бешлиу К. и др. ОИЯИ, Д1-83-815, Дубна, 1983.
- 28. Lee B. Phys. Rev., 1972, D6, p.1188; Prentki J., Zumino B. Nucl. Phys., 1972, B47, p.99.
- 29. Bernstein J., Cabbibo N., Lee T.D. Phys. Lett., 1964, 12, p.146.
- 30. Bouchiat C., Illiopolos J. Phys. Lett., 1986, 169B, p.447.

Рукопись поступила в издательский отдел 19 июня 1989 года.