

Объединенный институт ядерных исследований дубна

A 721

P1-89-367

AHTUNOG 10, M.

ИССЛЕДОВАНИЕ РАДИАЦИОННОГО РАССЕЯНИЯ $\pi^{-} + p \rightarrow \pi^{-} + p + \gamma$ ПРИ ЭНЕРГИИ 43 ГэВ

Сотрудничество СИГМА-АЯКС

Направлено в журнал "Ядерная физика"

1989

Ю.М.Антипов, В.А.Батарин, В.А.Беззубов, Н.П.Буданов,
Ю.П.Горин, Д.С.Денисов, О.В.Ерошин, В.Г.Карташева,
И.В.Котов, Ю.М.Мельник, А.И.Петрухин, С.А.Половников,
Д.А.Стоянова
Институт физики высоких энергий, Серпухов
М.С.Биленький, А.В.Вишневский, Ю.А.Горнушкин, П.А.Кулинич,
Р.Лейтнер, Г.В.Мицельмахер, А.А.Ноздрин, А.Г.Ольшевский,
Я.Седлак
Объединенный институт ядерных исследований, Дубна
Р.В.Пирцхалава, В.Н.Ройнишвили
Институт физики АН ГССР, Тбилиси
Ф.Паломбо, П.Л.Фрабетти
ИНФН, Италия

I. BBEJTEHINE

Процесс радиационного рассеяния:

 $\pi^- p \longrightarrow \pi^- p \gamma$ (I) можно описать 5 диаграммами, показанными на рис. I. Первые четыре описывают излучение γ -квантов заряженными частицами в начальном и конечном состоянии. Их вклад в матричный элемент (M3) $M = e_{\mu} M^{\mu}$ $(e_{\mu}^-$ вектор поляризации γ -кванта) можно вычислить на основе квантовой электродинамики:

$$\mathbf{M}_{\text{ext}}^{\mu} = eZ_{\pi} \left(-\frac{p_{1}^{\mu}}{p_{1}k^{T}}(\mathbf{s}_{1}, \mathbf{t}_{p}) + \frac{p_{3}^{\mu}}{p_{3}k^{T}}(\mathbf{s}_{1}, \mathbf{t}_{p}) \right) + eZ_{p} \left(-\frac{p_{2}^{\mu}}{p_{2}k^{T}}(\mathbf{s}_{1}, \mathbf{t}_{\pi}) + \frac{p_{4}^{\mu}}{p_{4}k^{T}}(\mathbf{s}_{1}, \mathbf{t}_{\pi}) \right)$$

где е- электромагнитный заряд электрона ($e^2=4\pi\alpha$, $\alpha\approx 1/137$ -постоянная тонкой структуры); $Z_{\pi,p}$ - электромагнитный заряд " π -мезона", "p-протона" в единицах элементарного заряда; $s_1 = (p_1 + p_2)^2$; $s_1 = (p_3 + p_4)^2$; $t_p = (p_4 - p_2)^2$; $t_{\pi} = (p_3 - p_1)^2$; T(s,t) - MЭ упругого процесса $1+2-\cdots>3+4$ (обозначения см. на рис.1). В случае излучения мягких ү-квантов вклад этих диаграмм является основным и приводит к характерной $1/\omega$ -зависимости МЭ от энергии (ω) ү-кванта. Лоу в работе / показал, что вклад $\approx \omega^0$ пятой диаграмми (M_{1nt}^{1}) в разложении

 $M = a\omega^{-I} + b\omega^{0} + c\omega^{I} + \dots$

(2)MЭ по энергиям ү-кванта можно определить из требования калибровочной инвариантности $k_{ji}(M_{ext}^{\mu}+M_{int}^{\mu}) = 0$ полного мЭ. Низкоэнергетическая теорема Лоу $^{/1/}$ утверждает, что в случае ω ->0 первые два члена разложения (2) (только они существенны для ω->0) МЭ процесса (I) полностью определены МЭ (и его производной по s) нерадиационного (упругого) процесса. Теоретически эта теорема была обобщена и для рассеяния неполяризованных частиц со спином^{72,37}. Несмотря на то, что низкоэнергетическая теорема Лоу является предельной, расчеты, выполненные B рамках этого подхода, использовались и для описания экспериментальных данных С излучением фотонов конечных энергий^{/4/.} Для этого проводилось разложение МЭ нерадиационного процесса в некоторой промежуточной между значениями s_1 и s_1 точке, в частности в точке $\overline{s} = (s_1 + s_2)$ $s_1^{-1}/2$: $T(s,t) = T(\overline{s},t) + \frac{\partial T}{\partial s}(\overline{s},t)$ (s- \overline{s}). Полученное таким образом выражение для МЭ (т.н. <u>SPA</u> - Soft Photon Approximation приолижение) приведено в Приложении (П.2).

Рис. I Диаграммы, описывающие процесс радиационного рассеяния.

Все существовавшие до настоящего эксперимента данные о радиационном рассеянии π^-p —> $\pi^-p\gamma$ были получены только в области Δ -резонанса:

Р _{лаб} ,ГэВ/с	Т _{кин} ,ГэВ	√ ड,ГэВ	литература
0,336	0,224	I,258	Deahl /5/
0,848	0,720	1,585	Van de Walle /6/
0,459	0,340	I,342	Блохинцева /7/
0,448 0,415 0,384	0,330 0,298 0,269	I,335 I,312 I,291	Nefkens /4/
0,300	0,192	I,234	Playfer /8/
43	43	9,0	настоящий эксперимент

Наиболее детально процесс (I) изучался (вместе с процессом $\pi^+ p \longrightarrow \pi^+ p\gamma$) в работе⁽⁴⁾, с целью измерения магнитного момента Δ -резонанса. Короткое время жизни Δ -резонанса не позволяет измерить магнитный момент во внешнем магнитном поле, и для его измерения было предложено^(9,10) изучение реакции радиационного рассеяния. Полученные в этом эксперименте данные согласовывались с SPA-расчетами только в области энергий γ -квантов $\omega < 40$ МаВ, и для описания всего спектра (до $\omega < 140$ МаВ) был предложен МЭ^{/II} (<u>EED</u> – External Emission Dominance – см. (П.I) в Приложении), полученный

заменой T(s,t) —> T(\bar{s} ,t) (\bar{s} =(s₁+s₁)/2 и t=(t_p+t_π)/2) в выражениии для M^{μ}_{crt} U

В работах^{/13,14,15} было показано, что в области резкого изменения МЭ нерадиационного процесса (как, напр., в области Δ-резонанса) разложение с точностью до первой производной недостаточно (результаты расчетов зависят от выбора промежуточной точки, в которой проводится разложение), и был предложен метод учета следующих членов в разложении МЭ нерадиационного процесса. Выражение, полученное таким методом^{/13/}(т.н. Метод конечных разностей^{/14/} или <u>HPT</u> – Hard Photon Theorem^{/15/}), приведено в Приложении (П.3).

Важным при проведении вичислений в рамках подхода Лоу является вопрос выбора между модификациями расчетов и вопрос о границах их применимости для описания процессов радиационного рассеяния. Теоретически эти вопросы изучались в работах/14,15,16/, где было указано на некоторое расширение области применимости подхода Лоу и его модификации для γ-квантов высоких энергий.

Практическая проверка этого утверждения важна еще и потому, что аналогичный подход был применен для описания процессов слабого взаимодействия /17/.

Экспериментальное доказательство применимости подхода Лоу для области высоких начальных энергий и для широкой области энергий ү-квантов в настоящее время представляет особый интерес, поскольку такой подход обобщается в теории для описания процессов излучения других типов безмассовых частиц/18/ (калибровочных бозонов, гравитонов).

В настоящей работе представлено экспериментальное исследование процесса (I), проведенное на установке "Сигма-АЯКС" на ускорителе У-70 ИФВЭ при начальной энергии 43 ГэВ. Процесс (I) изучался в области 0.2 < $it_p i < 0.4$ (ГэВ/с)² значений квадрата переданного протону четирехимпульса в широком диапазоне энергий γ -квантов (2+40 ГэВ в лабораторной системе). Полученные результаты сравниваются с теоретическими расчетами, выполненными с матричными элементами ЕЕД-, SPA- и НРТ-приближений (см. выражения П.I, П.2 и П.3 в Приложении).

U

В дальнейшем в работе^{/12/} была получена модификация SPA-приближения, которая описывала экспериментальные данные^{/4/} во всем дианазоне энергий.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Сечение реакции (I) сильно меняется в зависимости от энергии излученного фотона (на два порядка в нашём случае). Поэтому изучение реакции (I) проводилось в два этапа. Область относительно мягких γ-квантов исследовалась одновременно с процессом упругого рассеяния^{/I9/} в сеансе I, а область жестких γ-квантов – в отдельном сеансе 2. <u>Схема установки</u> приведена на рис.2. Установка была подробно описана раньше^{/I9,20/}, поэтому кратко приведем только ее основные параметры, использованные при обработке экспериментальных данных.

Рис.2 Схема экспериментальной установки.

<u>Пучок</u> π^- -мезонов с импульсом 43±1 ГаВ/с выделялся с помощью сцинтилляционных счетчиков совпадений $S_1 + S_4$, антисовпадательных счетчиков A_1 и A_2 и газовых черенковских счетчиков C_1 , C_2 и D. Направление пучковой частицы измерялось годоскопами H_1 и H_2 и пропорциональными камерами I+8 с точностью $\sigma=0,1$ мрад в обеих проекциях XY и X^{2} .

В эксперименте использовалась жидководородная мишень $^{/21/}$ T с рабочим объемом: длина 400 мм, ϱ 60 мм. Направление рассеянного в мишени <u> π -мезона</u> в проекции XY измерялось с помощью пропорциональных камер 9+14 с точностью σ = 0,35 мрад. Направление

Используется система координат: ось у направлена вдоль пучка, х горизонтальное направление, Z - вертикальное.

в проекции ZY измерялось пропорциональными камерами I5+I8 и 34 с точностью 0,2 мрад. Импульс рассеянного пиона измерялся с точностью $\sigma_p/p = 4\%$ (для частиц с импульсом 43 ГэВ/с). Это определялось, в основном, точностью измерения направления рассеянной частицы (σ_{θ} =0,6 мрад) в плоскости XY с помощью камер 3I+33 за магнитом.

Протоны регистрировались двухплечевым спектрометром. Направление протонов измерялось пропорциональными камерами (Y-координата плоскостями 19+22 (25+28); Z-координата плоскостями 23,24 (29,30)), а также цилиндрической камерой ССН. Точность измерения определяли многократное рассеяние в веществе спектрометра на пути протона до пропорциональных камер (суммарное количество вещества - 0,04 рад.дл.) и разрешение пропорциональных камер о=3 мрад. Кинетическая энергия протонов измерялась в диапазоне 60+220 МэВ сцинтилляционными калориметрами W₁, W_B/22/. Калибровка и энергетическое разрешение калориметров определялись с помощью протонов в отобранных событиях упругого рассеяния /22/. При этом для энергетического разрешения в измеряемом диапазоне кинетической энергии Tk было получено выражение /22/:

 $\sigma_{T_k} / T_k = (0,74^2 / T_k [MeB] + 0,03^2)^{1/2}$

(3)

Для измерения направления и энергии <u>γ-квантов</u> служил гаммадетектор (ГД) 0108^{/23,24/} с апертурой XxZ=1200х900 мм², составленный из черенковских счетчиков полного поглощения с радиаторами из свинцового стекла с поперечным размером 100х100 мм² и длиной 420 мм (I4 рад. дл. и ≈I яд. дл.). Калибровка и изучение характеристик счетчиков проводились на пучке электронов с энергией I3,3 и 26,6 ГэВ. Точность измерения энергии γ-кванта, усредненная по всей площади, определялась формулой^{/23,24/}:

 $σ_{\rm E}/{\rm E}$ = 0,015 + 0,09/νЕ[ГэВ]. (4) Координата попадания γ-кванта в ГД измерялась в среднем с точностью σ≈II мм^{/23,24/},что соответствует точности σ_θ≈0,95 мрад в измерении направления γ-кванта.

Запись событий на магнитную ленту проводилась в том случае, когда вырабатывался сигнал <u>"Триггер"</u>, в который были включены: - сигналы счетчиков пучкового телескопа S_{I+4} , пучковых счетчиков антисовпадений A_I и A_2 и счетчика В, которые выделяли взаимодействие пучковой частицы в мишени;

– сигналы правого R и левого L регистрирующего плеча установки, представлявшие собой совпадения сигналов от счетчиков $S_L\ (S_R)$ и сигналов плоских калориметров $W_L(W_R)$ (счетчики S_L и S_R были расположены вблизи мишени и с запасом перекрывали телесный угол плоских спектрометров, динодные сигналы ФЭУ счетчиков плоских

спектрометров суммировались и дискриминировались порогом, соответствующим энерговыделению » 50 МэВ);

- отсутствие сигнала цилиндрического спектрометра AJ^{/22/}, означающего вылет частиц из мишени в область азимутальных углов, не регистрируемую боковыми спектрометрами;

 отсутствие сигнала с охранного счетчика А_γ, расположенного по пучку за мишенью и имевшего в центре отверстие 170×140 мм² (счетчик А_γ представлял собой сендвич свинец-сцинтиллятор толщиной ≈ 2 рад.ед. и служил для подавления событий с частицами, вылетающими под большими углами);

- сигнал с годоскопа Н_{Зг}, который обеспечивал наличие рассеянной вперед заряженной частицы.

- сигнал П = C_I·C₂·D пороговых и дифференциального черенковских счетчиков, выделяющий п-мезоны в пучке.

Таким образом, сигнал "Триггер" представлял собой:

"Триггер" = $S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot \overline{A}_1 \cdot \overline{A}_2 \cdot \overline{B} \cdot \overline{B} \cdot (L+R) \cdot \overline{A}_{\gamma} \cdot \overline{AJ} \cdot H_{32}$

В <u>сеансе 2</u> для того, чтобы увеличить аксептанс установки, плоскости 9+14, измеряющие направление рассеянной частицы в проекции ХҮ, были подвинуты ближе к мишени. Это привело к небольшому ухудшению точности измерения в проекции ХҮ направления трека рассеянной частицы (σ=0,40 мрад). В триггерном сигнале не требовалось срабатывание годоскопа Н₃₂, и дополнительно было включено требование энерговыделения > 30 ГэВ в ГД С108.

Записанная на магнитные ленты информация была обработана программами геометрической реконструкции. На выходные ленты записывались параметры восстановленных треков, не использованные при восстановлении срабатывания трековых детекторов, номера сработавших каналов кодировщиков и амплитуды в них, мониторы и т.п. Эта информация использовалась при дальнейшем анализе.

З. АНАЛИЗ СОБЫТИЙ π р ----> π рγ В СЕАНСЕ І

При <u>отборе событий</u> процесса радиационного рассеяния (I) требовалось:

- I) наличие одного трека пучковой частицы;
- 2) наличие одного трека вперед рассеянного т-мезона;
- 3) один трек, зарегистрированный боковым спектрометром;

4) малое энерговыделение (меньше 800 МэВ) в счетчике ГД, в который попадает π^- -мезон, и отсутствие сигнала в области 3х3 вокруг этого счетчика. Этот критерий отбирает события без развития адронного ливня от π^- -мезона в ГД, мешающего выделению и обработке сигналов от γ -квантов. Из распределения энерговыделения от π^- -мезонов в ГД было определено, что этому условию

удовлетворяет $24/ \frac{2}{2} = (39\pm1)$ событий (это значение соответствует вероятности прохождения π -мезоном \approx I ядерной длины радиатора счетчика без развития адронного каскада);

5) кроме сигнала от π-мезона, в ГД зарегистрирован только один кластер³ размером ≤2х2 счетчика ГД (из поперечной формы электромагнитного ливня следует^{/24/}, что отклик γ-кванта в ГД укладывается в область ≤2х2 счетчика ГД).

Переопределенность в числе измеренных кинематических переменных в сеансе I позволила определять значение кинетической энергии протона с помощью программы кинематического фитирования^{/25/}. Это позволило изучить процесс (I) и в области кинетических энергий протона больше максимально измеряемого сцинтилляционным спектрометром значения 220 МэВ (≈ 0,40 (ГэВ/с)² для t_p).

Чтобы исключить влияние триггерного требования энерговыделения в сцинтилляционном калориметре на распределение по t_p/19/, для анализа отбирались события, в которых |t_p|>0,20(ГэВ/с)². Энергетическое разрешение установки позволило изучить процесс (I) в области энергий γ-квантов ω≥2ГэВ.

Число N_{Пру} наблюдаемых событий процесса (I) определялось из приведенного на рис.З распределения по значению χ^2 кинематического фита событий, отобранных по критериям I)+5) в кинематической области $|t_p|>0.20(\Gamma_{B}/c)^2$, $\omega \gtrsim 2\Gamma_{B}$. Подложка фоновых событий экстраполировалась из области $\chi^2>9$, в которой распределение аппроксимировалось постоянной или линейной по χ^2 зависимостью. Разница в определении N_{Пру} этими двумя методами составляла ±2% и была приписана систематической ошибке.

Как уже отмечалось, в сеансе I одновременно изучался процесс упругого тр-рассеяния^{/19/}. Это позволило при вычислении сечения процесса (I) провести нормировку на сечение упругого тррассеяния:

 $\sigma_{\pi p \gamma} = \frac{N_{\pi p \gamma}}{\mathscr{B}_{I} \varepsilon_{\pi p \gamma}} \cdot \frac{\sigma_{\pi p}}{N_{\pi p} / \varepsilon_{\pi p}}$, (5) где $\varepsilon_{\pi p \gamma}$ - геометрический аксептанс установки для событий процесса (I) (определенный методом Монте Карло) имел значение 12% (относительная неопределенность в значении $\varepsilon_{\pi p \gamma}$ при расчетах с

^ЭКластером в ГД называем сработавшую область ГД (счетчики с амплитудой больше некоторого порога) вокруг локального максимума (счетчик ГД, амплитуда в котором больше, чем во всех 4 соседних счетчиках).

разными матричными элементами составляет ±2%) и коэффициент \mathfrak{x}_{I} =(0,39±0,0I) связан с отбором событий без развития адронного каскада от π -мезона в ГД.

Значение нормировочного коэффициента составляло $\frac{\pi p}{N_{\pi p}/\epsilon_{\pi p}} = (3,56\pm0,02)$ нб /событие. В него вошли: измеренное в этом же сеансе^{/19/} $\sigma_{\pi p} = (0,589\pm0,004)$ мб и $N_{\pi p} = 34750$ – сечение и число событий упругого $\pi^- p$ -рассеяния в области передач 0,2<|t|<0,5 (ГэВ/с)². Значение геометрического аксептанса установки для событий упругого рассеяния составляло $\epsilon_{\pi p} = 0,21$.

Систематическая ошибка в определении сечения, связанная с возможной неточностью в положении ГД, оценивалась из сравнения значений сечений, полученных при обработке событий с у-квантами в полной апертуре ГД и при обработке событий с у-квантами только в центральной области (≈ 50% полного аксептанса ГД для событий процесса (1)). Полученные значения сечений совпадают с точностью ±3%.

4. АНАЛИЗ СОБЫТИЙ П р ----> П рү В СЕАНСЕ 2

Отбор событий. В части событий сеанса 2 энерговыделение в ГД было обусловлено адронным ливнем от т-мезона (или складывалось с энерговыделением ОТ γ -KBAHTOB). **UTOOH** NCKJЮЧИТЬ влияние энерговыделения от п-мезона, для дальнейшего анализа отбирались события, в которых п-мезон не попадает в апертуру ГД. Как правило, ₿ этих событиях π_мезон нө регистрируется пропорциональными камерами за магнитом, перекрывающими апертуру ГД. Такие события составляют ≈2/3 статистики в сеансе 2.

I) - с одним треком пучковой частицы;

2) - с одним треком, зарегистрированным боковым спектрометром;

массы

3) - с одним треком, зарегистрированным Х-камерами до магнита:

4) - с одним кластером размером не больше 2х2 счетчика ГД/24/

Неизмеренные характеристики п⁻-мезона – направление в плоскости YZ и величина импульса – определялись, а измеренные параметры уточнялись с помощью программы кинематического фитирования²⁵⁷.

Рис.5 Распределение созе γ -квантов в системе покоя η^0 -мезона (а) и π^0 -мезона (б).

Основным источником фона являются события с π^0 - и η^0 -мезонами в конечном состоянии. Рассмотрим сначала фон событий с <u>несимметричными</u> распадами π^0 - и η^0 -мезонов, когда один из γ -квантов не регистрируется ГД (то есть его энергия меньше энергии обрезания ≈ 240 МэВ, или γ -квант не попадает в апертуру ГД). На рис.4 приведено распределение по инвариантной массе двух зарегистрированных γ -квантов, в котором четко видны пики π^0 - и η^0 -мезонов. События из области этих пиков использовались для оценки фона, проведенной следующим образом.

Из распределения событий по сояб одного из γ -квантов в системе покоя η^0 -мезона, приведенного на рис.5а), можно оценить количество событий, не зарегистрированных в области сояб>0,68 – 170±15. Распределение такой же величины для γ -квантов от распадов π^0 -мезонов (см. рис.5б) позволяет оценить количество событий с не-зарегистрированным γ -квантом в области сояб>0,96 – 220±20.

Кроме того, вклад фоновых событий с незарегистрированным γ -квантом от распада π^0 - и η^0 -мезонов оценивался также с помощью программы Монте Карло, моделирующей распады π^0 - и η^0 - мезонов, в которую закладывались измеренные в нашем эксперименте угловое и энергетическое распределения π^0 и η^0 -мезонов. Обе оценки фона совпадают в пределах указанной в первом методе точности.

События с η^0 -мезонами с соз θ >0,68 и события с π^0 -мезонами с соз θ >0,96 с весами, соответствующими (для данного значения соз θ) числу событий с незарегистрированным γ -квантом от распада π^0 - и η^0 -мезонов, обрабатывались программой кинематического фитирования как события с одним γ -квантом. Это позволило вычесть вклад этих фоновых событий (о процедуре вычитания см. ниже).

<u>Фон симметричных распадов π^0 -мезонов</u>. Для части π^0 -мезонов в области соз0<0.74 (см. рис.56) γ -кванты попадают в соседние счетчики ГД и образуют в ГД только один кластер. Часть таких событий образует кластер размером $\leq 2x2$ счетчика ГД и является также источником фона.

Для подавления фона таких событий использовался найденный в работе $^{/24/}$ количественный критерий для распределения энергии в кластере, который использует величины $\varepsilon_{\rm X}$, $\varepsilon_{\rm Z}$ – отношения энергии половины кластера (по соответствующей оси) к суммарной энергии кластера. Для кластеров с размером $\leq 2x2$ счетчика в ГД, образованных двумя γ -квантами от распада π^0 -мезона, характерно примерное равенство энергий в его двух половинах, то есть одно из отношений $\varepsilon_{\rm X}$ или $\varepsilon_{\rm Z}$ имеет значение \approx I/2. В том же случае, когда кластер возник от одного γ -кванта, $\varepsilon_{\rm X}(\varepsilon_{\rm Z})\approx I/2$ означает, что γ -квант попал в узкую область посередине между счетчиками.

Рис.6 а) Распределение событий с одним кластером размером ≤2x2 счетчика ГД по величине S.

с) Распределение доли событий с S>S_{cut} в ГД, образованных одним γ-квантом (●, коэффициент I-k_I) и доли событий с S≤S_{cut}в ГД, образованных двумя γ-квантами (о, коэффициент I-k₂).

Количественно эти рассуждения можно выразить с помощью величины^{/24/}:

 $S = \varepsilon_{\mathbf{x}} (I - \varepsilon_{\mathbf{x}}) + \varepsilon_{\mathbf{x}} (I - \varepsilon_{\mathbf{x}}).$ (6)

В приведенном на рис.6а) распределении по величине S полной статистики 2530 событий, отобранных по критериям I)+4), видно разделение событий с кластером, образованным одним у-квантом (пик в области малых значений S), и событий с кластером, образованным S≈0,25). Ha рис.60) π⁰-мезонами приведена (пик в области S>Scut кластером, $S_{\rm cut}$ событий с С зависимость от до ли образованным у_квантом, и доли событий с. S≤S_{cut} с кластером, образованным т⁰-мезоном. Выбором значения S_{cut}=0,14 события были разделены на 2 группы. События со значением S≤O,I4 содержат k_т=(78±2)% событий с одним ү-квантом. События же с S>0,14 содержат $k_2 = (8I\pm 2)$ % событий с кластером, образованным π^0 -мезонами.

<u>Определение сечения</u>. По кинематическим критериям^{/19/}, использовавшимся в сеансе I, для данных этого сеанса был проведен отбор событий упругого π -рассеяния. Это позволило провести нормировку на сечение упругого процесса при вычислении сечения процесса (I) и в сеансе 2.

В работе^{/24/} было определено, что зарегистрированные в сеансе 2 события упругого рассеяния с относительным энерговыделением

Рис.7 Распределение дифференциального сечения упругого рассеяния по квадрату переданного четырехимпульса в сеансе 2 в сравнении с результатом аппроксимации (19/ аналогичного распределения в сеансе I.

E/p>0,73 ₿ ГД OT рассеянного П-мезона составляют æ₂ $(2,85\pm0,06)\%$ COONTINE BCOX ynpyroro рассеяния (ошибка статистическая). Систематическая ошибка величины ж₂, учитывающая возможное несоответствие калибровок ГД в сеансе I и 2, составляет 0,15%. В распределении по квадрату переданного четырехимпульса событий упругого рассеяния в сеансе 2 (см. рис.7) видно влияние триггерного требования энерговыделения в СЦИНТИЛЛЯЦИОННОМ калориметре для передач |t_n|<0,16 (T9B/c)². Оно BMCCTC С требованием измерения, в этом сеансе, калориметром кинетической энергии протона определяет область 0,16<|t_n|<0,40 (ГэВ/с)² для изучения процесса (I).

Включенное в триггерный сигнал требование энерговыделения в ГД и энергетическое разрешение установки позволили изучить процесс (1) в области энергий у-квантов от <u>32</u> до 40 ГэВ.

Из приведенных на рис.8 а), б) и в) распределений χ^2 кинематического фита событий, отобранных по критериям I)+4) в кинематической области 0,16< $|t_p|<0.40$ (ГэВ/с)², 32< $\omega<40$ ГэВ, определялись числа событий с S<0,14, S>0,14 и фоновых событий от распадов η^0 и π^0 -мезонов с незарегистрированным γ -квантом: N_S<0,14, N_S>0,14 и N_{TT}. Разница в определении значений этих величин при вычитании линейной или постоянной по χ^2 подложки фоновых событий составляет ±3%. Число событий процесса (I) N_{TP} γ определялось из соотношений:

 $\begin{array}{rcl} k_{I} & \cdot (N_{\pi p \gamma} + N_{\pi \eta}) &+ & (I - k_{2}) \cdot N_{\pi} &= & N_{s \leq 0, I4,} \\ (I - k_{I}) \cdot (N_{\pi p \gamma} + N_{\pi \eta}) &+ & k_{2} \cdot N_{\pi} &= & N_{s > 0, I4,} \end{array}$

где N $_{\pi}$ — число фоновых событий от симметричных распадов π^0 -мезонов. Таким образом N $_{\pi D}$ вычислялось как:

$$N_{\pi p \gamma} = \frac{k_2 \cdot N_{s \le 0, 14} - (1 - k_2) \cdot N_{s > 0, 14}}{k_1 + k_2 - 1} - N_{\pi \gamma},$$

in cevenue onpegenanoch no dopmyne⁴⁴:

$$\sigma_{\pi p \gamma} = \frac{N_{\pi p \gamma}}{\varepsilon_{\pi p \gamma}} \cdot \frac{\sigma_{\pi p}}{N_{\pi p \gamma} (\varepsilon_2 \cdot \varepsilon_{\pi s})/\varepsilon_{\pi p}}.$$
(6)

πργ επργ Ν_{πр}/(82 ε_{XZ})/ε_{πр}. Значения Ν_{πрγ}, определенные при разных величинах S_{cut} в области 0,10+0,20 с соответствующими значениями коэффициентов k_I и k₂ (рис.66), совпадают с точностью ±3%. При этом для S_{cut}=0,14 получается наименьшее значение (15%) относительной статистической ошибки в определении Ν_{πрγ}.

Рис.8 Распределение χ^2 кинематического фита для событий со значением S<0.14 (а), S>0.14 (б) и для фоновых событий с потерей одного γ -кванта от распадов π^0 - и η^0 -мезонов (в) в сеансе 2.

Чири определении дифференциальных сечений значения N_{πрγ} и є_{πрγ} вычислялись отдельно для каждой точки спектра, то есть определение аксептанса и вычитание фонов проводились дифференциально.

Геометрический аксептанс $\varepsilon_{\pi D \gamma}$ составлял в этом сеансе II,5% . Он определялся методом Монте Карло. Относительная систематическая значении аксептанса, ошибка в связанная С вычислениями, проведенными с разными матричными элементами, составляет 3%.

По сравнению с сеансом I в нормировочный коэффициент, кроме величин: N_{ло}=5230 -число событий упругого процесса с E/p>0,73 , $\sigma_{\pi p}$ значение сечения упругого процесса в области 0,2<|t_p|<0,5(ГэВ/с)² и $\varepsilon_{\pi p}$, входят также коэффициенты \varkappa_2 и $\varepsilon_{\chi 2}$. Коэффициент $\varkappa_2 = (0.0285 \pm 0.0006)$ равен доле упругих событий, регистрируемых в сеансе 2. Появление коэффициента с казано с различием критериев отбора событий радиационного рассеяния в сеансах I и 2. Величина є_{хо}= (0,86±0,02) была определена с помощью программ геометрической реконструкции.

Суммарное значение нормировочного коэффициента:

 $\frac{\sigma_{\pi p}}{N_{\pi D}/(a_2 \cdot \epsilon_{xz})/\epsilon_{\pi p}} = (0,58\pm0,03) \text{H} \text{J} / \text{cod}.$

Систематическая ошибка, связанная с возможной неточностью в положении ГД, определялась, как и в сеансе I, и составляла 4%.

5. РЕЗУЛЬТАТЫ

Для интегральных сечений процесса (I) были получены значения: $σ_I (π pγ) = (I2, 0 \pm I, I_{ctat} \pm I, 3_{chct})$ мко в кинематической области $\omega > 2\Gamma$ эВ и 0,2 < $|t_n| < 0,8(\Gamma$ эВ/с)²;

 $\sigma_2(\pi^- p\gamma) = (0,3I\pm0,07_{CTAT}\pm0,04_{CNCT})$ мко в кинематической области 32< $\omega < 40\Gamma$ эВ и 0,16<|t_p|<0,4(ГэВ/с)².

Основной вклад в приведенные систематические ошибки вносит систематическая ошибка в измерении сечения процесса упругого π p-рассеяния в сеансе I^{/19/} - 10%. Остальные вклады были описаны выше, каждый из них не больше нескольких процентов. Суммирование систематических ошибок было проведено среднеквадратично.

На рис. 9 приведено измеренное дифференциальное по ω сечение процесса (I) в сходной для сезнсов I и 2 кинематической области 0,2<|t_n|<0,4 (ГэВ/с)². Расчеты, проведенные с матричными элементами (П.I+3), совпадают в области энергий ω<30 ГэВ и в пределах экспериментальных ошибок (на рисунках приведены только статистические ошибки) описывают дифференциальные сечения по ω , t_n и т_{яту} (см. рис.10 а) б)). В области ω>30 ГэВ расчеты с разными матричными элементами отличаются: (П.2) и (П.3) описывают в пределах экспериментальных ошибок все дифференциальные

распределения, полученные в эксперименте (см. рис.9, IO в) г)) $\frac{5}{7}$, тогда как EED-приближение (П.I) не описывает дифференциальное сечение по $m_{\pi\gamma}$ -инвариантной массе γ -кванта и конечного π -мезона.

Из сравнения экспериментальных дифференциальных распределений с расчетами сечения процесса (1), выполненными с матричными (II.1÷3). элементами MOKHO слелать вывол 0 применимости SPA-приближения в виде $(\Pi.2)$ и ee обобщенного вида НРТ-приближения $(\Pi.3)$ для описания процесса радиационного рассеяния знергии 43 ГэВ INDOROM диапазоне при в энергий ү-квантов. EED-приближение неприменимо для описания процесса радиационного рассеяния в области энергий у-квантов w>30 ГэВ.

৩

Расчеты П2 и П3 слабо отличаются друг от друга. Это можно объяснить тем, что матричный элемент упругого тр-рассеяния в исследованной кинематической области с хорошей точностью линейно зависит от S, и использование при расчетах первых производных (П2) и конечных разностей (П3) эквивалентно. Кроме того, линейная зависимость МЭ от S может быть причиной хорошего согласия расчетов типа Лоу в широкой области кинематических переменных, так как неучтенные в Лоу-подходе более высокие члены разложения связаны с производными высших порядков МЭ по S.

6. SAKJIOVEHNE

В заключении кратко перечислим основные результати работи: 1) Измерены значения интегрального сечения процесса $\pi^-p \rightarrow \pi^- p\gamma$ при начальной энергии 43 ГэВ:

 $\sigma_{I}(\pi p\gamma) = (12,0\pm1,I_{CTaT}\pm1,3_{CHCT})$ мкб в кинематической области $\omega > 2\Gamma$ эв и 0,2 < $|t_{p}| < 0,8(\Gamma$ эВ/с)²;

 $σ_2(\pi p\gamma) = (0,31\pm0,07_{CTAT}\pm0,04_{CNCT})$ мко в кинематической области 32< ω <40ГэВ и 0,16<|t_p|<0,4(ГэВ/с)².

2) Измерены дифференциальные сечения этого процесса по квадрату переданного протону четырехимпульса – t_p , инвариантной массе системы $\pi\gamma$ в конечном состоянии – $m_{\pi\gamma}$ й энергии γ -квантов в ширской области 2 ГэВ < ω < 40 ГэВ.

3) Проведенные рамках SPA-приближения в и его молийикании (матричные элементы Π.2 И **II.3**) расчеты сөчения процесса радиационного рассеяния описывают полученные в эксперименте данные. Расчеты с матричным элементом в EED-приближении (П.I) не описывают поведение дифференциального по т_{щу} сечения в области энергий у-квантов w>32 ГэВ.

Авторы благодарны дирекциям ИФВЭ и ОИЯИ за поддержку работы, а также Д.Ю.Бардину. И.С.Козлову, Б.З.Копелиовичу и А.В.Тарасову за полезное обсуждение теоретических вопросов.

ПРИЛОЖЕНИЕ. ВНЧИСЛЕНИЕ СЕЧЕНИЯ ПРОЦЕССА
$$\pi p \longrightarrow \pi p\gamma$$

Матричные элементы радиационного рассеяния
 $M_{EED}^{\mu'/II'} = e_{\pi} \left(- \frac{p_{1}^{\mu}}{p_{1}k'} \frac{p_{3}^{\mu}}{p_{3}k} \right) \cdot T(\bar{s}, \bar{t}) + e_{Z_{p}} \left(- \frac{p_{2}^{\mu}}{p_{2}k'} \frac{p_{4}^{\mu}}{p_{4}k} \right) \cdot T(\bar{s}, \bar{t}) + O(\omega^{0}) (\Pi.I)$
 $M_{SPA}^{\mu'/II'} = e_{Z_{\pi}} \left(- \frac{p_{1}^{\mu}}{p_{1}k'} \frac{p_{3}^{\mu}}{p_{3}k} \right) \cdot T(\bar{s}, t_{p}) + e_{Z_{p}} \left(- \frac{p_{2}^{\mu}}{p_{2}k'} \frac{p_{4}^{\mu}}{p_{4}k} \right) \cdot T(\bar{s}, t_{\pi}) + e_{Z_{\pi}} \left(p_{1}^{\mu} \frac{p_{2}^{\mu}}{p_{2}k} - p_{1}^{\mu} + p_{3}^{\mu} \frac{p_{3}^{\mu}}{p_{3}k} - p_{4}^{\mu} \right) (\sigma T(\bar{s}, t_{p})/\sigma s) + e_{Z_{p}} \left(p_{2}^{\mu} \frac{p_{1}^{\mu}}{p_{2}k} - p_{1}^{\mu} + p_{4}^{\mu} \frac{p_{3}^{\mu}}{p_{4}k} - p_{3}^{\mu} \right) (\sigma T(\bar{s}, t_{\pi})/\sigma s) + O(\omega) (\Pi.2)$
 $M_{HPT}^{\mu'/I3+I5'} = e_{Z_{\pi}} \left(- \frac{p_{1}^{\mu}}{p_{1}k} T(s_{1}, t_{p}) + \frac{p_{3}^{\mu}}{p_{3}k} T(s_{1}, t_{p}) \right) + e_{Z_{\pi}} \left[-(p_{1}^{\mu} + p_{2}^{\mu} + p_{3}^{\mu} + p_{4}^{\mu}) \frac{T(s_{1}, t_{p}) - T(s_{1}, t_{p})}{s_{1} - s_{1}} \right] + e_{Z_{p}} \left(-(p_{1}^{\mu} + p_{2}^{\mu} + p_{3}^{\mu} + p_{4}^{\mu}) \frac{T(s_{1}, t_{n}) - T(s_{1}, t_{n})}{s_{1} - s_{1}} \right) + O(\omega). (\Pi.3)$
Dement фазового пространства и полностью дифференциальное сечение
полностью дифференциальное сечение определено выражением:
do $= \frac{(2\pi)^{4} |M|^{2}}{4 (p_{1}p_{2})^{2} - m_{1}^{2}m_{2}^{2}} \right]^{1/2} d\Phi_{3}(p_{1}+p_{2};p_{3},p_{4},k), (II.4)$
Fige M- матричный элемент процесса; $d\Phi_{3}$ - элемент фазового постановка
висперимента позволяла изучать данный процесс в определенной
области энергий γ -кванта ω в лабораторной системе и в определенной
области по переданному протону четырахимиульсу $t_{p}^{-}(p_{2}-p_{2})^{2}, m_{4}k^{2}, m_{2}^{2}, m_{4}k^{2}, m_{4}^{2}, m_{4}^{2},$

инвариантной массой системы $\pi\gamma$ в конечном состоянии и двумя угловыми переменными: Φ_{γ} - азимутальный угол γ -кванта в С.Ц.И. конечного π -мезона и γ -кванта; Φ_{p} - азимутальный угол конечного протона в С.Ц.И. Элемент фазового пространства выражается с помощью этих переменных:

$$d\Phi_{3}(p_{1}+p_{2};p_{3},p_{4},k) = (2\pi)^{-9} \frac{d\Phi_{p} dt_{p} d\Phi_{\gamma} d\omega dm_{\pi\gamma}^{2}}{32 \sqrt{s_{i}} |P(\sqrt{s_{i}};m_{\pi},m_{p})| P_{\pi\gamma L}}, \quad (\Pi.5)$$

где $P_{\pi\gamma L}$ означает величину импульса системы $\pi\gamma$ в лабораторной системе и $P(\gamma \overline{s}_i; m_{\pi}, m_p)$ равно величине импульса частиц в С.Ц.И.:

$$\mathbb{P}(\sqrt{s}_{i}; \mathfrak{m}_{\pi}, \mathfrak{m}_{p}) = (s_{i} - (\mathfrak{m}_{p} - \mathfrak{m}_{\pi})^{2})^{1/2} (s_{i} - (\mathfrak{m}_{p} + \mathfrak{m}_{\pi})^{2})^{1/2} / (2\sqrt{s}_{i}).$$

Матричный элемент упругого тр-рассеяния

Матричный элемент упругого π⁻р-рассеяния можно выбрать чисто мнимым^{/26/} и записать в виде:

 $\text{ImT}(\textbf{s},\textbf{t}) = 2 \ \textbf{vs} \ P(\textbf{vs};\textbf{m}_{\pi},\textbf{m}_{p}) \ \sigma_{\text{tot}}^{\pi^{-}p}(\textbf{s}) \ \exp(-b(\textbf{s})|\textbf{t}|/2) \,.$ (**П.6**) сечения $\sigma_{tot}^{\pi^-p}(s)$ использовалась Шля зависимости полного аппроксимация работн/27/, а зависимость параметра наклона b(s) была выбрана в виде $b(s) = 6.0 + 0.61 \ln(s)$. Этим BHOODOM $\sigma_{e1}^{\pi} P$ достигается хорошее согласие NGII описании во всем интересующем нас диапазоне s. Одновременно выражение $(\Pi, 3)$ удовлетворяет оптической теореме: $(d\sigma/dt)_{t=0} = \sigma_{tot}^2/16\pi$.

Расчеты сечений проводились с помощью программы Монте-Карло, в которую был заложен расчет полностью дифференциального сечения по формуле (П.4) с матричными элементами (П.4),(П.5) и (П.6) и выражениями (П.5) для элемента фазового пространства и (П.6) для матричного элемента упругого рассеяния π р.

ЛИТЕРАТУРА

- I. Low F.E., Phys.Rev. 110(1958)974.
- 2. Burnet T.H., Kroll N.M., Phys.Rev.Lett. 20 (1968) 86.
- 3. Bell J.S., Royen Van R., Nuovo Cim. 60A (1969) 62.
- 4. Nefkens B.M.K. et al., Phys.Rev. D18(1978)3911.
- 5. Deahl J. et al., Phys.Rev. 124(1961)1987.
- 6. Van de Walle R.T. et al., Nuovo Cim. 53A(1968)745.
- 7. Блохинцева Т.Д. и др., ЯФ 8(1968)928.
- 8. Playfer S. et al., J.Phys G 13(1987)297.
- 9. Кондратия Л.А., Пономарев Л.А., ЯФ 7(1968)111.
- Захаров В.И., Кондратик Л.А., Пономарев Л.А., ЯФ 8(1968)783.
- II. Nefkens B.M.K., Sober D.I., Phys.Rev. D14(1976)2434.
- I2. Liou M.K., Nutt W.T., Phys.Rev. D16(1977)2176.
- Пономарев Л.А., ЯФ I2(1970)570.
- I4. Fischer W.E., Minkowski P., Nucl. Phys. B36(1972)519.
- I5. Haddock R.P., Leung K.C., Phys.Rev. D9(1974)2151.
- I6. Грибов В.Н., ЯФ 5(1967)399.
- 17. Adler S.L., Dothan Y., Phys.Rev. 151 (1966)1267.
- 18. Lipatov L.N., Nucl. Phys. B307(1988)705.
- Антипов Ю.М. и др., препринт ОИЯИ PI-87-539, Дубна 1987. ЯФ, т.48, I(7), 1988.
- 20. Вишневский А.В. и др., препринт ОИНИ РІ-89-202, Дубна 1989.
- 21. Мельник Ю.М. и др., препринт ИФВЭ 82-146, Серпухов 1982.

ПТЭ, **Ж**З(1983) 40.

- 22. Антипов Ю.М. и др., препринт ОИЯИ I3-87-344, Дубна 1987. ПТЭ, №5(1988) 36.
- 23. Аконджанов Г.А. и др., препринт ИФВЭ 82-97, Серпухов 1982.
- 24. Горин Ю.П. и др., препринт ОИЯИ РІ-89-206, Дубна 1989.
- CERN Computer Centre Program Library, E1016 CONLES origin V.Blobel in Formulae and Methods in Experimental Data Evaluation vol.3, CERN, 1984, p.L1.
- 26. Kamran M., Phys.Rep. 108(1984)325.
- 27. Lipkin H.J., Phys.Rev. D11(1975)1827.

Рукопись поступила в издательский отдел 25 мая 1989 года.