

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

A 654

P1-89-213

1989

ЦЕНТРАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ ЯДЕР НЕОНА-22 С ТЯЖЕЛЫМИ ЯДРАМИ ФОТОЭМУЛЬСИИ ПРИ Р_= 4,1 А ГэВ/с

Сотрудничество: Алма-Ата - Бухарест -Гатчина - Дубна - Душанбе - Ереван -Зерноград - Кошице - Краков - Ленинград -Москва - Ташкент - Тбилиси - Улан-Батор

ВВЕДЕНИЕ

Общие характеристики и особенности неупругих взаимодействий ядер неона-22 с ядрами фотоэмульсии при $P_0 = 4,1$ А ГэВ/с и их зависимость от $Q = \Sigma Z_{fr}$ - суммарного заряда всех фрагментов ядра снаряда, приведены в^{/1,5/}. Некоторые особенности центральных взаимодействий ядер неона-22 с ядрами фотоэмульсии, в том числе характеристики "особых" событий, приведены в^{/2-4/}. Критерии выделения и характеристики центральных взаимодействий я и углерода с ядрами серебра и брома при импульсе 4,5 А ГэВ/с рассмотрены в^{/7,9/}.

В настоящей работе приведены данные о множественности и угловых характеристиках вторичных частиц центральных взаимодействий ядер неона-22 на ядрах Ag, Br при $P_0 = 4,1$ A ГэВ/с. В результате изучения флуктуаций плотности релятивистских частиц по псевдобыстроте для центральных взаимодействий методом быстротных интервалов выделены события, содержащие плотные группы частиц. Приведены характеристики плотных групп и событий, в которых они возникли. Рассмотрены поперечные импульсы вторичных релятивистских частиц "особых" событий.

ЭКСПЕРИМЕНТ

Стопки слоев ядерных фотоэмульсий типа БР-2 размером 10х $x20x0,06 \text{ см}^3$ облучались горизонтально пучком ядер неона-22 с импульсом $P_0 = 4,1$ А ГэВ/с на синхрофазотроне ОИЯИ. Поиск ядерных взаимодействий осуществлялся просмотром вдоль следа. Для каждого взаимодействия определено число ливневых частиц n_s - однократно заряженных релятивистских частиц с $\beta > 0,7$ и число медленных ($\beta \le 0,7$) сильно ионизирующих частиц $N_h = n_b + n_g$, где $n_b -$ число фрагментов с $\beta \le 0,25$ ядра мишени; $n_g -$ число частиц с $0,25 < \beta \le 0,7 / n_g$, в основном, протоны отдачи/. Для всех заряженных частиц определены полярные (θ) и азимутальные (ψ) углы вылета, для s-частиц с $\theta \le 3^\circ$ /а на части статистики с $\theta \le 5^\circ$ / измерялись импульсы по многократному кулоновскому рассеянию. Это позволило выделить события без фрагментов-спектаторов ядра-снаряда, т.е. события с Q = 0. Для выделения центральных взаимодействий на тяжелых ядрах фотоэмуль-

объеминия инстетут плечных исследования

сии Ag, Br использовали критерии: Q = 0 и N_h \geq 7. Условие Q =0 обеспечивает центральность взаимодействия, а N_h \geq 7 – отбор соударений с ядрами мишени Ag, Br. Из общего числа 4309 взаимодействий выделено 237 событий центральных взаимодействий на всех ядрах фотоэмульсии, в том числе на ядрах Ag, Br – 226 событий, что составляет ~5,2% от взаимодействий на всех ядрах фотоэмульсии /или ~9,5% от взаимодействий на ядрах Ag, Br /.

МНОЖЕСТВЕННОСТЬ ЗАРЯЖЕННЫХ ЧАСТИЦ

На рис. 1 представлены распределения по ${\tt n}_{\tt s}, {\tt n}_{\tt g}$, п $_{\tt b}$ и ${\tt N}_{\tt h}$ = ${\tt n}_{\tt b}+{\tt n}_{\tt g}$ для центральных взаимодействий ${\rm ^{22}Ne}+{\tt Ag}$, Br . В табл.1 приведены средние значения ${\rm <n}_{\tt g}{\rm >}, {\rm <n}_{\tt b}{\rm >}, {\rm <n}_{\tt g}{\rm >}, {\rm <N}_{\tt h}{\rm >}$ для различных групп по ${\tt N}_{\tt h}$ центральных взаимодействий ядер не-она-22 на ядрах фотоэмульсии. Там же для сравнения приведены данные для всех взаимодействий, а также для группы взаимо-действий Ne+Em c Q=1: события с N_{\tt h} \leq 6 и Q = 0 - центральные взаимодействия ядер Ne на легких ядрах фотоэмульсии; с ${\tt N}_{\tt h} \geq 28$ - события, которые сопровождаются полным разрушением

ядер мишени Ag, Br.

Из анализа данных рис. 1 и табл. 1 и после изучения корреляций $< n_s > = f(N_h) < n_s > = f(n_g)$ можно заключить, что:

1/ Для центральных взаимодействий Ne + Ag, Br

а/ при переходе к центральным взаимодействиям $<\!n_s\!>$ и $<\!N_h\!>$ увеличиваются; примерно в три раза;

б/ для большинства событий $N_h \ge 17$ /220 событий из 226/;

в/ для различных групп по N_h ($N_h = 7 - 27$ и $N_h \ge 28$) $< n_s > u < n_b >$ практически не изменяются, а $< n_g >$ увеличивается примерно в 2 раза;

Рис. 1. Распределение по n_s , n_g , n_b , N_h для взаимодействий Ne + AgBr /события с Q = 0 и $N_h \ge 7/$.

Габлица	1.	Множественность	заряженных	частиц
---------	----	-----------------	------------	--------

N _h	< n ₈ >	< n _b >	< n _g >	< N _h >	N _{взаим} .	
≥ 0	32,6±0,6	8,5±0,3	21,9±0,6	30,4±0,7	$ \begin{array}{c} 237\\ 11\\ 226\\ 80\\ 146\\ 19 \end{array} \qquad Q=0 $	
≤ 6	24,7±1,2	0,9±0,3	3,7±0,5	4,6±0,4		
≥ 7	33,2±0,7	8,9±0,4	22,8±0,6	31,7±0,7		
7-27	32,6±1,2	8,0±0,4	14,4±0,5	22,4±0,5		
≥ 28	33,6±0,7	9,4±0,3	27,4±0,6	36,8±0,7		
"особые"	31,5±2,5	8,8±0,9	22,7±1,2	31,5±1,6		
≥ 0	28,6±0,6	8,9±0,3	18,4±0,6	27,3±0,8	$ \begin{array}{c} 225 \\ 16 \\ 87 \\ 122 \end{array} $ Q=1	
≤ 6	19,0±1,5	0,6±0,2	3,7±0,4	4,3±0,4		
7-27	28,1±0,9	7,8±0,3	11,9±0,6	19,7±0,6		
≥ 28	30,1±0,7	10,7±0,3	24,9±0,6	35,6±0,6		
Ne + Em $(N_h \ge 0)$	10,53 ±0,05	4,22 ±0,03	6,32 ±0,04	10,54 ±0,05	4309	

г/ <n_s > не зависит от N_h , n_g; данному интервалу по n_s соответствует широкое распределение по n_g, N_h . Для всех вза-имодействий ($N_h \ge 0$) <n_s > увеличивается примерно в 3 раза при изменении N_h от 15 до 27, для $N_h \ge 28 < n_s >$ остается без изменения $^{/1/}$.

2/ Средние характеристики взаимодействий Ne + Ag, Br с Q = = 1 и Q =0 близки, $\langle n_s \rangle$ и $\langle N_h \rangle$ для событий с Q =1 примерно на 10% ниже, чем для Q = 0, однако в области $n_s \rangle$ 40 преобладают события с Q = 0, а в области $n_s \langle 20 - coбытия c Q = 1$.

РАСПРЕДЕЛЕНИЕ ПО ПСЕВДОБЫСТРОТЕ РЕЛЯТИВИСТСКИХ ЧАСТИЦ

В качестве угловой характеристики релятивистских частиц используется псевдобыстрота $\eta = -\ln tg \theta/2$. Распределения по плотности релятивистских частиц по псевдобыстроте /числу частиц на единицу псевдобыстроты/ $\rho(\eta) = (1/N) dn_{\rm B}/d\eta$ для различных интервалов по $N_{\rm h}$ центральных взаимодействий Ne + AgBr /события с Q = 0 и $N_{\rm h} \ge$ 7/ приведены на рис.2. На рис. 3 локазаны аналогичные распределения для событий с Q = 1. В табл. 2 даны средние характеристики распределений по псевдобыстроте

- 2

ુ3

Таблица 2. Характеристики распределений по псевдобыстроте для различных групп Ne + Em - взаимодействий, P₀ = = 4,1 A ГэB/с

N _h	<η>	D(η)	N звезд	N частиц		
≥ 0	1,47±0,06 /1.57±0.02/	0,93	237	7785		
≤6	$2,0\pm0,3$	0,88		272	the star	
(≥ 7)	/1,10±0,02/			1 e 1 🚺	Q = 0	
7–27 ≥ 28	1,51±0,11 1,42±0,08	0,95 0,91	80 146	2609 4904	•	
≥0 ≤6 7-27 ≥28.	1,54±0,06 1,95±0,24 1,60±0,11 1,46±0,08	0,94 0,93 0,97 0,90	225 16 87 122	6423 304 2445 3674	Q=1	

* В скобках приведены значения для pA-взаимодействий с 4,5 ГэB/с.

 $<\eta>$ и дисперсии D(η) для событий с Q = 0 и Q = 1 для различных интервалов по N_b.

Из анализа данных рис. 2,3 и табл. 2 следует, что распределения по псевдобыстроте релятивистских частиц для событий различных групп по $N_h(N_h=7 \div 27$ и $N_h \ge 28)$ близки, при переходе от Q=0 к Q=1 плотность частиц $\rho(\eta)$ в центральной области уменьшается примерно на 20%. Максимальная средняя плотность релятивистских частиц по псевдобыстроте для событий с Q=0 и $N_h \ge 7$ достигает $<\rho(\eta)_{max} > = 17,5 \pm 0,05$ /интервал псевдобыстрот 1 \div 1,2/, при этом средняя плотность частиц $<\rho(\eta) >$ для интервалов быстрот 0,5 \div 1,0, 1,0 \div 2,0, 2,0 \div 3,0 составляет ≈ 11 , 15 и 7 соответственно.

ФЛУКТУАЦИИ В ПЛОТНОСТИ РЕЛЯТИВИСТСКИХ ЧАСТИЦ ПО ПСЕВДОБЫСТРОТЕ

1. Для центральных взаимодействий /Q = 0 и N_h ≥ 7/ проведен анализ угловых характеристик индивидуальных событий с целью выделения плотных групп частиц. Использован метод быстротных интервалов. Выделялись события, в которых была группа частиц с числом K \geq 6 на интервале $\Delta \eta \leq 0, 1$, что соответствовало плотности частиц $\rho(\eta) \ge 60$. Из 226 центральных взаимодействий Ne + AgBr выделено 46 событий с плотными группами $\rho(\eta) \ge 60$, т.е. около 20% центральных взаимодействий. При $< \rho(\eta)_{max} > = 1,75$ $(\Delta \eta = 0, 1)$ вероятность появления числа частиц K \geq 6 на $\Delta \eta \leq 0, 1$ по Пуассону составляет менее 2% от всех центральных взаимодействий, т.е. меньше 4,5 событий. Ниже приведены характеристики событий с плотными группами. Для них $< n_s > = 43, 1 \pm 1, 1;$ $<n_{\rm h}>=7,8\pm0,4;<n_{\rm g}>=23,8\pm1,1$ и $<N_{\rm h}>=31,6\pm1,1$. Из сравнения этих данных со средними < n_{s} > для центральных взаимодействий с Q = 0 и N $_{\rm h}$ \geq 7 следует, что < n $_{\rm s}$ > \approx в 1,3 раза больше для событий с плотными группами, а характеристики $< n_b >, < n_g >$, <N_h>не отличаются.

На рис. 4 дано интегральное распределение событий по $\rho(\eta)$. Как следует из рис. 4, это распределение может быть представлено экспонентой

$$N(> \rho) \approx e^{-a\rho/\rho_0}$$

где $\rho_0 = \rho_{\text{max}} = 17,5$ и $a = 0,6 \pm 0,1$.

На рис. 5 показано распределение по $\langle \eta \rangle$ плотных групп частиц. Для интервала быстрот η от 0,9 до 1,8 это распределение согласуется с распределением Пуассона. При среднем $\langle \eta \rangle = 1,4$ dN/d $\langle \eta \rangle = 5$. Как видно из рис. 5, распределения по $\langle \eta \rangle$ для

5

15

<?>

20

всех событий ($\rho(\eta) \ge 60$) и событий с $\rho(\eta) \ge 100$ подобны. На рис. 6 показан пример распределения по $\rho(\eta)$ для уникального события типа $n_b = 7$, $n_e = 17$, $n_s = 43$, особенностью которого является наличие плотной группы частиц с K = 10 на $\Delta \eta = 0,089$, что соответствует $\rho(\eta) = 112$. Для данного события $\langle \eta \rangle = 0.69$, и если учесть, что для центральных взаимодействий $< \rho(\eta) > = 10$ для $\eta \approx 0.7$, т.е. 1 частицы на $\Delta \eta = 0.1$, то вероятность наблюдения 10 частиц /по Пуассону/ будет ≈ 10-7.

Таким образом, среди центральных взаимодействий Ne + AgBr примерно в 20% событий наблюдаются плотные группы частиц с $\rho(\eta) \ge 60$, что является особенностью взаимодействий ядро - ядро.

2. Для центральных взаимодействий на ядрах AgBr изучено распределение событий по наличию групп частиц с $K \ge 2$ на интервале псевдобыстрот $\Delta \eta \leq 0.1$, что соответствует плотностям частиц по псевдобыстроте $\rho ≥ 20$. Анализ проведен на экспериментальных событиях, а также на событиях, полученных по розыгрышу каскадно-испарительной модели /КИМ/. Статистика взаимодействий составила:

эксперимент	$N_{B3} = 4309,$	Nц.вз= 226	/5,2%/,
КИМ	$N_{B3} = 4976$,	N _{ц.вз} = 196	/3,9%/.

Из сопоставления приведенных данных следует, что в эксперименте доля центральных взаимодействий заметно выше.

В табл. 3 приведено распределение числа групп /кластеров/ с К ≥ 2 на ∆η ≤0,1. Из сопоставления эксперимента и модели КИМ /при нормировке на число центральных взаимодействий/ следует. что в эксперименте имеется избыток ≈ 200 плотных групп с К \geq 4 /на интервал $\Delta \eta \leq$ 0,1/; для К \geq 6 и $\Delta \eta \leq$ 0,1 наблюда-

Таблица 3. Распределение числа плотных групп /кластеров/ с K \geq 2 на интервале $\Delta \eta \leq 0,1$ для центральных взаимодействий ($Q = 0, N_h \ge 7$)

ĸ	2	3	4	5	6	7	8	9	10	N _{3B}
Эксперимент	1842	607	299	115	41	17	6	0	1	226
КИМ КИМ /норми- ровка на 226 событий/	1528 1760 5	524 605	163 183	59 68	19 22	4 4,6	1 1,15	0	00	196 226

7

ется избыток 40 событий. Методом быстротных интервалов выделено /см. пункт 1 данного раздела/ 46 событий с $K \ge 6$ ($\rho \ge$ ≥ 60), при этом фон составляет не более 4-5 событий.

ОСОБЫЕ СОБЫТИЯ И ИХ ХАРАКТЕРИСТИКИ

Среди центральных взаимодействий ядер неона на ядрах Ад, Вг выделены т. наз. "особые" события 27, в которых минимальный угол вылета релятивистских заряженных частиц $\theta > 7^{\circ}$. В этих событиях нет фрагментов-спектаторов ядра-снаряда с $Z \ge 1$ ($\theta \le 2,8^{\circ}$) и даже отсутствуют упругорассеянные спектаторы ядра-снаряда с Z = 1 ($\theta < 5,6^{\circ}$). Таких событий оказалось 19. Распределения по θ_{\min} , n_s , n_b , n_g и N_h для "особых" событий приведены на рис. 7, средние значения $< n_s >, < n_h >, < n_g >,$ < N_h >даны в табл. 1. Средние значения < n, > для "особых" событий не отличаются от тех же величин для центральных взаимодействий. Из распределений по п, /см. рис. 7/ следует, что для "особых" событий n занимает интервал от 20 до 40, т.е.

8

эти события не являются событиями самой высокой множественности. В угловых характеристиках "особых" событий наблюдаются плотные группы частиц и неравномерность распределения релятивистских частиц по псевдобыстроте.

Для индивидуальных "особых" событий была проведена оценка среднего поперечного импульса быстрых (в) частиц на основе углового распределения этих частиц. Составлялся баланс импульсов с учетом энергии, уносимой как быстрыми (в) нейтронами и нейтральными пионами, так и 8-частицами /протонами, нейтронами/:

Рис. 7. Распределение по θ_{\min} , n_{s}, n_{b}, n_{g} для "особых" собы-тий /0 = G, $N_{h} \ge 7, \theta_{min} > 7^{\circ}$ /.

Рис. 8. Распределение по < Р₁ > вторичных релятивистских частиц "особых" событий. Заштрихованные гистограммы - расчеты по каскадно-испарительной модели.

Полученное распределение показано на рис. 8. Среднее значение $< P_1 > для$ особых событий оказалось равным /0,61 \pm 0,08/ ГэВ/с, что существенно выше аналогичной величины $< P_1 >= 0,38$ ГэВ/с для случая всех Ne + Em -взаимодействий /6/. Представление о том,чего следует ожидать из суперпозиционной картины ядро-ядерных взаимодействий дают расчеты < P $_{\perp}$ > , выполненные в рамках каскадноиспарительной модели /КИМ/ для событий, выделенных как особые. Расчеты, проведенные по указанному алгоритму, дают < P_ > =(0,32 \pm 0,32 \pm 0,3 ± 0,05) ГэВ/с. Учет импульсов и углов приводит к < P_1 >=(0,41± ± 0,02) ГэВ/с. На рис. 8 гистограммы первого и второго вариантов КИМ обозначены соответственно цифрами | и ||.Очевидно, что модель не в состоянии объяснить < P₁>≈0,6. Кроме того, по аналогии с расчетами по КИМ, следует ожидать, что определение < Р, >по реальным измерениям импульсов дает большее значение этой характеристики.

= 0,62 ГэВ/с, сделанная в предположении коллективного взаимодействия ядер на основе принципа неопределенности /8/.

выводы

1. Центральные взаимодействия ядер неона-22 на тяжелых ядрах фотоэмульсии Ag, Br при $P_o = 4,1$ A ГэВ/с, выделенные по критериям Q =0 и $N_h \ge 7$, составляют ≈ 9,5% от взаимодействий на

9

ядрах Ag, Br , или ≈5,3% от взаимодействий на всех ядрах фотоэмульсии.

2. Для центральных взаимодействий Ne + Ag , Br средние множественности < n_s > и < N_h > примерно в три раза больше, чем для всех взаимодействий Ne + Em.

3. Распределения ливневых частиц по псевдобыстроте для центральных взаимодействий Ne + Ag , Br для групп взаимодействий N_h = 7 ÷ 27 и N_h ≥ 28 близки. Максимальная плотность релятивистских частиц $< \rho(\eta)_{max} > = 17,5 \pm 0,5$ приходится на интервал псевдобыстрот 1,0 ÷ 1,2.

4. Доля событий с плотными группами $\rho \ge 60$ составила $\approx 20\%$ от всех центральных Ne + Ag-, Br - взаимодействий. Оценка фона дает величину менее 2% от Ne + Ag-, Br - взаимодействий.

5. Среди центральных взаимодействий выделены "особые" события, для которых $\theta_{\min} > 7^{\circ}$ /для спектаторов с 'Z =1 $\theta < 2,8^{\circ}$ /. Доля таких событий составляет $\approx 8\%$ от центральных Ne + Ag-,Br - взаимодействий. Средний поперечный импульс быстрых заряженных вторичных частиц этих событий $\ll P_1 >> = (0,61 \pm 0,05)$ ГэВ/с.

Таким образом, особенности центральных взаимодействий ядер ²²Ne на тяжелых ядрах Ag, Br, вероятно, указывают на коллективный характер ядро-ядерных взаимодействий.

ЛИТЕРАТУРА

1. Андреева Н.П. и др. - В сб.: Краткие сообщения ОИЯИ №12-85, Дубна: ОИЯИ, 1985, с.15.

2. Краснов С.А. и др. - В сб.: Краткие сообщения ОИЯИ

№16-86. Дубна: ОИЯИ, 1986, с.11.

Andreeva N.P. et al. - In: Proc. of XX Int. Conf on Cosmic Rays. M.: Nauka, 1987, v.5, p.64.

4. El-Naghy A. et al. - JINR Preprint E1-87-472, Dubna, 1987.

- 5. Андреева Н.П. и др. Препринт ОИЯИ Р1-86-8, Дубна, 1986; ЯФ, 1987, т.45, в.1, с.123.
- 6. Шабратова Г.С. и др. Сообщение ОИЯИ Р1-86-303, Дубна, 1986.
- 7. Абдельсалам А. и др. Сообщение ОИЯИ Р1-83-577, Дубна,1983.
- 8. Толстов К.Д. Сообщение ОИЯИ Р1-86-464, Дубна, 1986.
- 9. Богданов В.Г., Перфилов Н.А., Соловьев З.И. Препринт Радиевого института им. В.Г.Хлопина РИ-152, Л., 1981.

Рукопись поступила в издательский отдел 29 марта 1989 года.