

Объединенный институт ядерных исследований дубна

H 501

P1-89-14

Л.Л.Неменов

ЭФФЕКТЫ, ОБУСЛОВЛЕННЫЕ ВРЕМЕНЕМ ФОРМИРОВАНИЯ УЛЬТРАРЕЛЯТИВИСТСКОГО ПОЗИТРОНИЯ

Направлено в журнал "Ядерная физика"

введение

Распад нейтрального пиона на фотон и позитроний (A_{2e}) : $\pi^{\circ} \rightarrow \gamma + A_{2e}$, /1/

является основным источником релятивистских позитрониев на протонных синхротронах. Вероятность распада /1/ по отношению к распаду пиона на два фотона равна^{/1/}

$$\frac{w(\pi^{\circ} \rightarrow \gamma + A_{2e})}{w(\pi^{\circ} \rightarrow \gamma + \gamma)} = 1,7 \cdot 10^{-9}.$$
 /2/

Распад /1/ наблюдался: на ускорителе У-70 ИФВЭ были зарегистрированы A_{2e} с гамма-факторами (γ) от 800 до 2000^{/2/}. С помощью позитрониев от распада /1/ было измерено полное сечение взаимодействия A_{2e} с углеродом в интервале гамма-факторов от 800 до 2000^{/3/}.

Наряду с процессом /1/ позитронии могут генерироваться при взаимодействии с веществом фотонов /4-7/

$$\gamma + A_Z \rightarrow A_{2e} + A_Z$$
 /3/

и электронов /8,9/

$$e^- + A_7 \rightarrow A_{2e} + e^- + A_7$$
.

Сечение фоторождения позитрония на атоме / хорошо аппрок-

симируется зависимостью

$$\sigma_{\phi} = 0.57 z \cdot 10$$
 см /атом, /5/

где σ_{Φ} - сечение генерации A_{2e} во всех состояниях по главному квантовому числу n; сечение образования A_{2e} в основном состоянии в 1,2 раза меньше величины σ_{Φ} . В реакции /3/ энергия фото-

/4/

^{*}Наиболее точные соотношения, описывающие процесс /3/, были, получены в /7/.

на практически полностью передается позитронию. Поэтому при высоких энергиях спектр A_{2e} , рожденных на изолированных атомах, должен совпадать со спектром налетающих фотонов:

$$\frac{dN_{A}}{dE_{A}} = a \frac{dN_{\gamma}}{dE_{\gamma}}, \qquad (6/$$

где ${
m E}_{\gamma}, {
m E}_{
m A}$ – энергии фотона и позитрония; а – постоянный коэффициент.

При взаимодействии с веществом позитроний может разваливаться или возбуждаться. Полное сечение взаимодействия релятивистского A_{2e} с атомом σ_t вычислено в работе $^{/10/*}$. Сечение не зависит от энергии A_{2e} при $\gamma > 10$ и хорошо описывается формулой $\sigma_t = 0.94 z^{1,24} \cdot 10^{-19} \text{ см}^2/\text{втом.}$ /7/

Характерные толщины λ, ослабляющие интенсивность пучка позитрониев в е раз, для углерода, молибдена и платины равны

$$\lambda_{c} = 0,14$$
 MKM, $\lambda_{Mo} = 1,9 \cdot 10^{-2}$ MKM, $\lambda_{Pt} = 7 \cdot 10^{-3}$ MKM. /8/

В слое вещества толщиной λ один фотон образует позитроний с вероятностями

$$w_c^{\circ} = 1,8 \cdot 10^{-13}, w_{Mo}^{\circ} = 6,5 \cdot 10^{-13}, w_{Pt} = 8,8 \cdot 10^{-13}.$$
 (9)

Если считать поглощение A_{2e} в веществе экспоненциальным ** , то вероятности образования и выхода атома из мишени толщиной λ на один падающий фотон будут равны

$$W_c = 1, 1 \cdot 10^{-13}, W_{Mo} = 4, 1 \cdot 10^{-13}, W_{Pt} = 5, 5 \cdot 10^{-13}.$$
 /10/

Из /10/ следует, что в реакции /3/, идущей на платиновой мишени, один позитроний должен регистрироваться на фоне ≈10¹² фотонов; в распаде /1/ фон гамма-квантов на три порядка меньше.

^{*} Сечение взаимодействия релятивистского позитрония без возбуждения атома-мишени /когерентная часть полного сечения/ рассчитано в работах /11-14/.

^{**} Поглощение ультрарелятивистских A_{2e} в веществе носит неэкспоненциальный характер^{/15-18/}. Учет правильного закона поглощения A_{2e} несущественно изменит значения w из /10/.

Вследствие малой величины длины поглощения позитрониев в веществе вероятность выхода атомов существенно не изменится, если увеличить толщину мишени /1.6.8.9′. При экспоненциальном законе поглощения A_{2e} и толщине мишени $\ell >> \lambda$ максимальные значения вероятности выхода позитрониев совпадают с w° из /9/. Обозначим через $\lambda_{эфф}$ толщину мишени, на которой можно получить ≈60% от максимально возможного числа A_{2e} . По определению эффективной толщины ее величина должна совпадать с характерной длиной поглощения $A_{2e}: \lambda_{эфф} = \lambda$.

В настоящей работе рассмотрено влияние времени формирования A_{2e} на вероятность генерации атома и показано, что эффективная толщина мишени λ_{3} фр зависит от энергии фотона и для больших гамма-факторов превосходит величину λ в сотни раз.

Обсуждается использование этого эффекта для получения с помощью реакции /3/ пучков A_{2e} высокой энергии, а также опыты по детальному исследованию процесса формирования позитрония из (e⁺e⁻)-пары.

1. ВРЕМЯ ФОРМИРОВАНИЯ ПОЗИТРОНИЯ

При взаимодействии с атомом наряду с реакцией /3/ фотоны генерируют (e⁺ e⁻) - пары с положительной энергией:

$$\gamma + A_Z \rightarrow e^+ + e^- + A_Z.$$
 /11/

Для того чтобы отличить с вероятностью $\approx 50\%$ A_{2e} с главным квантовым числом n от пары с положительной энергией, необходимо в с.ц.и.(e⁺e⁻) -пары измерить суммарную энергию частиц с точностью, равной энергии связи позитрония E_n . Из соотношения неопределенности для энергии^{19/} следует, что требуемая точность достигается только в том случае, когда измерение выполняется за время, большее или равное $\tilde{t}_{d,n}$:

$$t_{\phi,n} = \frac{h}{E_n} .$$
 (12/

Время \tilde{t} отсчитывается в с.ц.и. пары от момента ее образования. Физический смысл введенного параметра позволяет определить $\tilde{t}_{\phi,n}$ как время формирования позитрония в с.ц.и. пары. При таком определении значение $\tilde{t}_{\phi,n}$ при n = 1 совпадает с удвоенной атомной единицей времени позитрония $\tilde{t}_{\phi,1} = 2t_A = 0,97\cdot 10^{-16}$ с. В л.с. при значении гамма-фактора пары у время формирования $t_{\phi,n}$ и расстояние, пройдежное парой за это время, будут равны

$$t_{\phi,n} = \gamma \frac{\hbar}{E_n}, \quad L_{\phi,n} = c\gamma \frac{\hbar}{E_n}, \quad /13/$$

где с - скорость света.

В табл.1 приведены значения $t_{\phi,n}$ и $L_{\phi,n}$ для γ = 1000 и n = 1,2,3.

Τα	$\mathcal{O}_{\mathcal{O}}$	$uu\alpha$	7
	\sim		

n	1	2	3
Е _n , эВ	6,8	1,7	0,76
t _{φ,n} , c	10-16	4•10 ⁻¹⁶	9.10-16
t _{ф,n} , c	10-13	4.10-13	9.10 ⁻¹³
L _{ф.n} , мкм	30	120	270

Из табл.1 следует, что в л.с. отличить A_{2e} от свободной пары можно только после прохождения системой (e⁺e⁻) макрорасстояния L_{ф,n}, которое естественно определить как длину формирования позитрония в л.с., а t_{ф,n} – как время формирования A_{2e} в той же системе.На длине ℓ , удовлетворяющей неравенству $\ell \ll L_{\phi,n}$, /14/

позитроний с главным квантовым числом в невозможно отличить от (e⁺e⁻)-пары. Поэтому на расстояниях, удовлетворяющих неравенству /14/, можно говорить только о (e⁺ e⁻)-парах, которые в вакууме при $\ell > L_{\phi,n}$ с определенными вероятностями перейдут в стационарные состояния: позитроний и (e⁺e⁻)-пару с положительной энергией.

Будем в дальнейшем анализировать фоторождение A_{2e} в основном состоянии, так как этот канал дает наибольший /≈84%/ вклад в сечение генерации атома.

Для пар с у = 1000 условию /14/ будет удовлетворять ℓ ≈ ≈ 1 мкм*. Если рассматривать реакцию /3/ на платиновой мишени толщиной ≈1 мкм, то в веществе мишени А_{2е} в стационарном состоянии не существует и, следовательно, не поглощается с ха-

^{*}При увеличении значения у в m раз неравенствам /14/ и /14а/, очевидно, будут удовлетворять длина ml и время $m \tilde{t}_{l}$.

рактерной длиной $\lambda_{Pt} = 7 \cdot 10^{-3}$ мкм. В платиновой мишени такой толщины будут e⁺, e⁻, взаимодействующие между собой и с атомами вещества. Кулоновское взаимодействие между e⁺ и e⁻ меняет состояние системы за время $\tilde{t}_{Kyn} \approx t_A = 4,8 \cdot 10^{-17}$ с. Время взаимодействия пары с мишенью в с.ц.и. пары $\tilde{t}_{\ell} = \ell/\gamma c$. При $\ell = 1$ мкм, $\gamma = 10^3$ $\tilde{t}_{\ell} = 3 \cdot 10^{-18}$ с и удовлетворяет неравенству $\tilde{t}_{\ell} \ll \tilde{t}_{Kyn}$. /14а/ Из /14а/ следует, что при движении через мишень состояние

(e⁺e⁻)-пары будет в основном меняться под воздействием атомов вещества^{*}. Выйдя из мишени в вакуум, система эволюционирует только под воздействием кулоновского притяжения между e⁺, e⁻ и за время t⁻> to,1 превращается в стационарные состояния: позитроний или (e⁺e⁻)-пары с положительной энергией. В дальнейшем (e⁺e⁻)-пары,удовлетворяющие неравенству /14a/, будут называться ультрарелятивистскими.

2. ВЛИЯНИЕ ВЕЩЕСТВА НА ПРОЦЕСС ФОРМИРОВАНИЯ ПОЗИТРОНИЯ

Матричный элемент процесса /3/ равен

$$M_{A,o} = b \int M_{o}(\vec{\kappa}) \phi_{1}(\vec{\kappa}) d\vec{\kappa}, \qquad (15)$$

где $M_0(\vec{\kappa})$ - матричный элемент образования (e⁺e⁻)-пары, $\phi_1(\vec{\kappa})$ волновая функция A_{2e} в основном состоянии, $\vec{\kappa}$ - относительный импульс пары /импульс e⁺ в системе покоя e⁻/, b - постоянная. Так как $\phi_1(\vec{\kappa})$ быстро убывает с увеличением к, то основной вклад в $M_{A,o}$ дает область $0 < \kappa < 2\kappa_{\rm B} = 4p_{\rm B}$, где $p_{\rm B}$ - боровский импульс, равный для позитрония $p_{\rm B} = 1,86\cdot10^{-3}$ MэB/с. В этом интервале относительных импульсов $M_0(\vec{\kappa})$ - постоянная величина и для $M_{A,o}$ имеем

$$M_{A,o} = bM_{o}(\vec{\kappa} \propto \vec{\kappa}_{B})\phi_{1}(\vec{r} = 0),$$
 /15a/

где \vec{r} – расстояние между электроном и позитроном в их с.ц.м., а $\phi_1 / \vec{r} = 0 / -$ волновая функция позитрония в координатном представлении.

^{*} Неравенство /14а/ имеет место и для ультрарелятивистских $A_{2e}^{/15/}$. В этом случае оно приводит к неэкспоненциальному за-кону поглощения A_{2e} в веществе /15-18/.

Для оценки w_{ℓ} - вероятности образования позитрония после прохождения (e+e⁻)-парой слоя вещества толщиной ℓ используем соотношение

$$\epsilon_{\ell}(\vec{\kappa} \propto \vec{\kappa}_{\rm B}) = \frac{w_{\ell}}{w_{\rm O}} = \frac{\left|M_{\ell}(\vec{\kappa} \propto \vec{\kappa}_{\rm B})\right|^2}{\left|M_{\rm O}(\vec{\kappa} \propto \vec{\kappa}_{\rm B})\right|^2} = \frac{\phi_1^2(\vec{r} = \vec{r}_{\ell})}{\phi_1^2(\vec{r} = 0)}, \qquad /16/$$

где $|\mathbf{M}_{\ell}(\vec{\kappa} - \vec{\kappa}_{\rm B})|^2$ и \vec{r}_{ℓ} - соответственно плотность вероятности обнаружения пары e⁺e⁻ с импульсом $\vec{\kappa} - \vec{\kappa}_{\rm B}$ и характерное расстояние между электроном и позитроном после прохождения парой слоя вещества толщиной ℓ . Разложим относительный импульс $\vec{\kappa}$ на направление полного импульса пары (κ_{11}) и плоскость, перпендикулярную полному импульсу (κ_{1}). При движении через микронную мишень изменения поперечных импульсов e⁺,e⁻ много меньше полного импульса пары (p>1 ГэВ/с); поэтому изменением направления \vec{p} при движении системы через вещество можно пренебречь.

При значениях $0 \le \kappa_{\perp}, \kappa_{\parallel} \le 10\kappa_{\rm B}$ величина $|\mathbf{M}_{\rm O}(\kappa_{\perp}, \kappa_{\parallel})|^2$ постоянна ^{/20}. Поэтому при дальнейших вычислениях вместо значения ϵ_{ℓ} в точке $\kappa_{\perp}, \kappa_{\parallel} \propto \kappa_{\rm B}$ будет рассчитываться величина ϵ_{ℓ} при $\kappa = 0$, так как $\epsilon_{\ell}(\kappa_{\rm B})$ практически совпадает с $\epsilon_{\ell}(0)$ при всех значениях ℓ . При движении пары через вещество средний относительный импульс частиц увеличивается из-за процессов тормозного излучения* и многократного рассеяния. Поэтому с ростом ℓ величина ϵ_{ℓ} становится меньше единицы.

Рассмотрим изменение к₁ и к₁ в процессе тормозного излучения. В слое платины толщиной l = 1 мкм $/l/x_o = 3,3\cdot10^{-4}$, где x_o — радиационная единица/ для e^+ , e^- , излучающих независимо, поперечная составляющая импульса частицы p_1 изменится на $^{/21/}$

$$\delta p_{\perp} \approx k_{\gamma} < \theta_{\gamma}^{2} > 2 = 0.5 \div 0.8 p_{B}, \quad \delta \kappa_{\perp} = 1.4 p_{\perp}, \quad /17/$$

где ky, θ_y - энергия и угол излученного фотона; нижняя и верхняя границы изменения P соответствуют энергиям излучающих электронов 0,5 и 50 ГэВ. Изменение продольной составляющей импульса частицы в с.ц.и. при излучении фотона не зависит от энергии электронов и равно

$$\delta p_{g} \approx \frac{k_{\gamma}}{\gamma} = m \frac{1}{x_{o}} \approx 10^{-4} \text{ MaB/c} \ll p_{B},$$
 /18/

^{**}В рассматриваемом интервале энергий /Е_У>1000 МэВ/ ионизационными потерями можно пренебречь по сравнению с потерями на излучение.

Рис.1. Зависимость плотности вероятности $|M_{\ell}(0)|^2$ обнаружения (e⁺e⁻) -пары с относительным импульсом $\kappa = 0$ от толщины платиновой мишени /сплошная кривая/. Плотность вероятности обнаружения (e⁺e⁻)-пары с $\kappa = 0$ при $\ell = 0$ принята равной единице. Аналогичная зависимость для мишени из углерода нанесена пунктирной кривой.

где m - масса электрона.Из /17/ и /18/ следует, что изменение величины к в процессе тормозного излучения при ℓ =1 мкм незначительно и не меняет величины ϵ_{ρ} .

Многократное рассеяние при высоких энергиях меняет только поперечную составляющую импульса κ_{\perp} . Для вычисления $|M_{\ell}(\kappa_{\perp} = 0, \kappa_{||} = 0)|^2$ в зависимости от ℓ используем соотношение

$$|\mathbf{M}_{\ell}(0,0)|^{2} = \int_{0}^{\infty} |\mathbf{M}_{0}(\kappa_{\perp},0)|^{2} \frac{\kappa_{\perp}}{\langle \mathbf{p}_{\perp}^{2} \rangle} \exp - \frac{\kappa_{\perp}^{2}}{2\langle \mathbf{p}_{\perp}^{2} \rangle} d\kappa_{\perp}, \qquad /19/$$

где $< p_{\perp}^2 >$ – среднее значение квадрата поперечного импульса, полученного электроном вследствие многократного рассеяния при прохождении слоя вещества толщиной ℓ^* . Зависимость отношения $\left| M_{\ell} \left(0,0 \right) \right|^2$

представлена на рис.1, из которого следует, что $|M_{0}(0,0)|^{2}$

в импульсном пространстве убывание плотности вероятности в е раз в области $\vec{\kappa} = 0$ происходит после прохождения е⁺e⁻-парой слоя платины толщиной $\ell = 7$ мкм.

Однако пары, имеющие после прохождения мишени толщиной ℓ относительный импульс к « $\kappa_{\rm B}$, не эквивалентны парам, имеющим тот же импульс в точке $\ell = 0$. Это связано с тем, что в результате многократного рассеяния в область к « $\kappa_{\rm B}$ попадают пары

^{*}Рассеяние e⁺, e⁻ рассматривается как рассеяние независимых частиц без учета взаимной экранировки.

с начальными относительными импульсами к_{го}, принадлежащими в основном интервалу

$$0 \le \kappa_{\perp 0} \le 1.4 < p_{\perp}^2 > \frac{1}{2}$$
 . (20/

При значениях ℓ в доли микрона верхняя граница в /20/ такова, что близкие к этой границе значения $\kappa_{\pm 0}$ оказываются много больше κ_{\pm} . Из-за наличия при $\ell = 0$ относительной поперечной скоро-

сти $v_{10} = \frac{\kappa_{10}}{m}$ электрон и позитрон при движении через мишень разойдутся на поперечное расстояние' ℓ . Если две частицы при $\ell = 0$ имели относительный импульс $\kappa_{10} = 1, 4 < p_1^2 > 2$ и $r_1 = 0$, а после прохождения слоя вещества толщиной ℓ относительный импульс стал равным $\kappa_1 \ell \propto \kappa_5 << \kappa_{10}$, то характерное расстояние, на которое разойдутся частицы, будет равно²²²

$$\mathbf{r}_{\mu} = \sqrt{\frac{2}{3}} \ell \frac{\langle \mathbf{p}_{\mu}^2 \rangle^{1/2}}{mE_{\gamma}},$$
 /21/

где E_v - энергия фотона, генерировавшего пару.

Рис.2. Сплошной кривой представлена зависимость между энергией фотона E_{γ} и толщиной слоя платины, уменьшающего вероятность выхода A_{2e} в е раз; энергия фотона отложена на левой ординате. Аналогичная зависимость для углерода представлена пунктирной кривой; энергия фотона отложена на правой ординате.

Будем считать, что после прохождения слоя платины толщиной ℓ все пары с К $_{\ell}$ «К $_{\rm B}$ возникли вследствие процесса многократного рассеяния из пар с κ_{10} = 1,4 < p_{1}^{2} > $^{\prime\prime}$. В этом приближении из /16/, /19/ и /21/ легко вычислить толщину L $_{\rm Pt}$, после прохождения которой е е -парой величина < ℓ уменьшается в е раз. Зависимость Lpt от энергии пары представлена на рис.2, из которого следует, что значение Lpt увеличивается с ростом энергии пары и превосходит характерную длину поглощения стационарного позитрония $\lambda_{\rm Pt}$ в десятки и сотни раз. Аналогичная зависимость для углерода (L $_{\rm C}$) представлена на рис.2. Так как эффективная толщина мишени зависит от энергии фотона, то для "толстой" мишени из платины / $\ell \approx 10$ мкм/ спектр позитрониев будет сильно отличаться от спектра фотонов. В интервале энергий $3 < {\rm E}_{y} < 30$ ГэВ вместо формулы /6/ имеем приближенное соотношение

dNA	-	$-2/3$ dN γ	
	œ	Ev	
dΝγ		′ dE _y	

3. ГЕНЕРАЦИЯ ПУЧКОВ УЛЬТРАРЕЛЯТИВИСТСКИХ ПОЗИТРОНИЕВ

Учет времени формирования $A_{2e}\,$ показывает, что эффективная толщина мишени, возрастая с увеличением энергии пары в сотни раз, позволяет получить пучок позитрониев с помощью реакции /3/.

Если использовать в качестве мишени платину толщиной ℓ = :: = 2 мкм, то вероятность образования позитрония на один фотон с $E_{\nu} \ge 30$ ГэВ равна

$$w_{A} \geq 1, 4 \cdot 10^{-10}$$
.

Из сопоставления соотношений /23/ и /2/ следует, что в реакции /3/ количество фотонов, генерирующих один позитроний, на порядок превосходит число фотонов, испускаемых на один A_{20} в распаде /1/. Однако для регистрации A_{20} не менее существенным является фон лептонов и адронов. Состав пучков позитрониев, генерированных в распаде /1/ и реакции /3/, приведен в табл.2.

Процесс	Позитроний	Фотоны	е ⁺ е⁻-пары	Адроны
$\pi^{\circ} \rightarrow \gamma + A_{2e}$	1	1,4.109	8·10 ⁶	2 • 10 ⁹
$\gamma + A_Z \rightarrow A_{2e} + A_Z$	1	7•10 ⁹	4 • 1 0 ⁶	2 • 1 0 ³

Таблииа 2

/22/

/23/

Из табл.2 следует, что в реакции /3/ адронный фон на шесть порядков меньше, нежели в реакции /1/. Поэтому, несмотря на больший уровень фотонного фона, выделение позитрониев, генерированных в реакции /3/, может оказаться более эффективным, нежели идентификация A_{2e}, испущенных в распаде /1/.

Использование реакции /3/ для получения пучков ультрарелятивистских A_{2e} имеет ряд преимуществ перед использованием для этой же цели распада /1/. Во-первых, выведенный пучок фотонов может быть получен на ускорителях всех типов. Интенсивность и энергия фотонного пучка могут быть максимально возможными для данного ускорителя, так как пучок может быть выведен под малыми углами к первичным частицам. Для получения пучка A_{2e} с помощью распада /1/ необходимо использовать внутренние мишени протонных кольцевых ускорителей или встречные кольца и выводить позитронии под относительно большими углами к первичному пучку, чтобы осуществить экранирование атомов от магнитных полей ускорителя^{*}. Во-вторых, в реакции /3/ позитронии генерируются на внешней мишени, что существенно упрощает постановку опытов по изучению процесса формирования A_{2e} из (e⁺e⁻)-пары.

В работе $^{/23/}$ было показано, что вероятность фоторождения (e⁺e⁻)-пар на кристалле Ge с осью <110>, параллельной импульсу фотона, увеличивается с ростом E_{γ} и при $E_{\gamma} \approx 150$ ГэВ превосходит величину бете-гайтлеровского сечения в ≈ 8 раз. Возможно, что применение кристаллических мишеней и пучков фотонов с малой расходимостью позволит существенно улучшить соотношение между A_{2e} и фотонным фоном, приведенное в табл.1 для аморфных мишеней.

4. ВЛИЯНИЕ ВРЕМЕНИ ФОРМИРОВАНИЯ А 2e НА ВЫХОД
 ИЗ УГЛЕРОДНОЙ И ПЛАТИНОВОЙ МИШЕНЕЙ ПОЗИТРОНИЕВ,
 ИСПУЩЕННЫХ В РАСПАДЕ π^o → γ + A 2e

Если в вакуумной камере ускорителя установить мишень из углерода или платины толщиной ℓ , то часть π° -мезонов за время своей жизни выйдет из мишени и распадется на фотон и пару Далитца:

 $\pi^{\circ} \rightarrow \gamma + e^{+} + e^{-}$.

/24/

^{*} Трудности с выводом пучка A_{2e} из кольцевых ускорителей существуют и при использовании для генерации позитрониев реакции /4/.

Рис.3. а - сплошной линией представлена зависимость числа позитрониев N от толщины углеродной мишени, на которой генерируются *п*о-мезоны. Позитронии испускаются в распаде $\pi^{\circ} \rightarrow \gamma + A_{2e}$. Расчет выполнен с учетом времени формирования А_{2е}. Пунктирной линией нанесена аналогичная зависимость, вычисленная без учета времени формирования позитрония. Количество по-мезонов, генерированных на мишенях разной толщины, постоянно. Число позитрониев, выходящих из тонкой мишени, принято равным единице; б - сплошной и пунктирной кривыми нанесены зависимости числа позитрониев от толщины платиновой мишени. на которой генерируются π°-

мезоны. Сплошная и пунктирная кривые рассчитаны соответственно с учетом и без учета времени формирования А_{9е}.

В этом случае формирование позитрония будет происходить в вакууме и относительная вероятность образования A_{2e} равна 1,7·10⁻⁹. Часть π° -мезонов распадается по каналу /24/ в мишени и вследствие взаимодействия e^+, e^- с веществом вероятность образования A_{2e} будет зависеть от вещества имшини, ее толщины и гамма-фактора пары.

Распределение пар Далитца по κ_{\perp} с увеличением κ_{\perp} спадает медленнее, чем аналогичное распределение для пар внешней конверсии. В интересующей нас области κ_{\perp} различие в значениях $|M_{0}(\kappa_{\perp,0})|^{2}$ для пар Далитца и пар от реакции /11/ несущественно. Поэтому зависимости $\epsilon_{\ell}(0)$ от ℓ и γ , полученные для пар внешней конверсии, применимы при малых κ_{\perp} и к парам Далитца.

Сделаем оценку влияния времени формирования A 2e на выход позитрониев из углеродной и платиновой мишеней в зависимости от ее толщины. Оценки выполним для тех условий эксперимента, которые могут быть реализованы на канале релятивистских позитрониев $^{2,3/}$: энергия протонов, генерирующих π° -мезоны, 70 ГэВ, угол регистрации A 2e в л.с. 8,4°, энергия позитрониев лежит в интервале 1200-2000 МэВ, время жизни π° -мезона $\tau=0,83\cdot10^{-16}$ с.

Выход позитрониев моделировался с учетом времени формиро. вания /вариант 1/ и в предположении о рождении в распаде /1/ сформированного позитрония, который поглощается в мишени по экспоненциальному закону с характерными толщинами из /8/ /вариант 2/. На рис.За представлены зависимости выхода А_{9е}от тол щины углеродной мишени. Видно, что количество позитрониев, вы численное в варианте 1, при толщинах более 1 мкм в 2÷4 раза превосходит число атомов, вычисленное в варианте 2. С ростом энергии (e⁺e⁻)-пары, возникшей в мишени, увеличивается вероят ность образования А_{2е}, но одновременно уменьшается доля пионс распадающихся в веществе. Оба процесса в значительной степени компенсирурт друг друга, и относительная разница в выходе $A_{2\varepsilon}$ слабо зависит от энергии позитрония. Для мишени из платины /рис.36/ в вариантах 1 и 2 разница в числе позитрониев меньше чем для углеродной мишени, так как при энергии пары ≈1 ГэВ $L_{p, \approx} = 0,25$ мкм; при этой же энергии $L_{p} \approx 1,5$ мкм.

5. ИССЛЕДОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ ПОЗИТРОНИЯ

Рассмотрим принципиальную схему опыта по исследованию процесса формирования позитрония, если в качестве источника A_{2e} используется реакция /3/.

Выведенный пучок фотонов взаимодействует с платиновой мишенью толщиной в несколько микрон /рис.4а/. Для наглядности предположим, что фотоны имеют только две энергии $E_{\gamma} = 30$ ГэВ и Е у = 300 ГэВ. Длины формирования позитрониев, генерированны фото́нами, соответственно равны $L_{\pm 1}(30) = 900$ мкм и $L_{\pm,1}(300) =$ = 9000 мкм. Если между мишенью и детектором позитрониев нет поглотителей, то будут зарегистрированы атомы с энергиями ${
m E}_{\,30}$ = 30 ГэВ и E_{300} = 300 ГэВ и интенсивностями J_{30} и J_{300} . После установки поглотителя из углерода толщиной λ_{c} = 0,14 мкм на расстоянии Q >> L $_{\Phi,1}$ (300) интенсивности J $_{30}$ и J $_{300}$ уменьшатся в е раз. При размещении детектора на расстоянии $\mathbf{Q} \propto \mathbf{L}_{\Phi,1}(300)$ интенсивность линии \mathbf{E}_{30} будет ослаблена по-прежн му в е раз, так как с поглотителем взаимодействуют сформирова шиеся $\mathrm{A}_{2\mathrm{e}}$. Однако интенсивность линии E_{300} будет ослаблена ме нее чем в е раз, так как разделение на связанные состояния и состояния с положительной энергией не может быть выполнено

^{*}Моделирование выхода позитрониев было выполнено Трусовым С.В.

Рис.4. а – принципиальная схема исследования процесса формирования позитрония, генерированного в реакции /3/. Выведенный пучок фотонов (γ) генерирует (e⁺e⁻)-пару на платиновой мишени толщиной L pt. Позитронии формируются в вакууме на длине L ϕ ,1, взаимодействуют с поглотителем из углерода λ_c и регистрируются детектором; б – принципиальная схема исследования процесса формирования позитрония, испущенного в распаде /1/. Циркулирующий пучок протонов генерирует π° -мезоны на платиновой мишени толщиной Lpt. Нейтральный пион пролетает расстояние $\ell_{\pi^{\circ}}$ и распадается в вакууме на фотон и (e⁺e⁻)пару.

достоверно. При Q \propto L $_{\varphi,\,1}$ (30) начнется заметный рост интенсивности линии E $_{30}$, а интенсивность линии E $_{300}$ будет близка к величине J $_{300}$. При Q << L $_{\varphi,\,1}$ (30) интенсивности линий совпадут с J $_{300}$.

Обсуждаемая схема эксперимента позволяет проследить эволюцию в вакууме (e⁺ e⁻)-пар, переходящих на большом расстоянии в позитроний и пары с положительной энергией. Для количественного описания результатов эксперимента необходимо рассмотреть эволюцию матричного элемента бете-гайтлеровского процесса в веществе и в вакууме. Более простой анализ результатов допускает другая схема эксперимента по изучению процесса формирования A_{2e}

На внутреннем пучке кольцевого ускорителя протонов устанавливается платиновая мишень толщиной в доли микрона. Подавляющая часть π^ю-мезонов, генерированных на такой мишени, будет

13

распадаться в вакууме. За платиновой мишенью устанавливается углеродная пленка-поглотитель. Экспериментальное исследование формирования позитрониев из пар Далитца выполняется так же, как в случае с бете-гайтлеровскими парами. В этом варианте эксперимента зависимости интенсивности A_{2e} от переменной Q/γ_i будут одинаковыми для всех участков спектра позитрониев с гамма-факторами γ_i .

В заключение я выражаю благодарность С.Б.Герасимову, А.В.Купцову, А.В.Тарасову, А.С.Паку и Ю.Г.Строганову за полезные обсуждения и ценные советы, С.В.Трусову и Л.Лучану за выполнение расчетов, С.Г.Пластининой за оформление статьи.

ЛИТЕРАТУРА

- 1. Неменов Л.Л. ЯФ, 1972, т.15, с.1047.
- 2. Алексеев Г.Д. и др. ЯФ, 1984, т.40, с.139.
- 3. Афанасьев Л.Г. и др. Препринт ОИЯИ Р1-88-741, Дубна, 1988.
- 4. Биленький С.М. и др. ЯФ, 1969, т.10, с.125.
- 5. Меледин Г.В., Сербо В.Г., Сливков А.К. Письма в ЖЭТФ, 1971, т.13, с.98.
- 6. Olsen H.A. Phys.Rev., 1986, D33, p.2033.
- 7. Любошиц В.Л. ЯФ, 1987, т.45, с.1099.
- 8. Ахундов А.А., Бардин Д.Ю., Неменов Л.Л. ЯФ, 1978, т.27, с.1542.
- 9. Holvik E., Olsen H.A. Phys.Rev., 1987, D35, p.2124.
- Pak A.S., Tarasov A.V. JINR Preprint E2-85-882, Dubna, 1985.
- 11. Дульян Л.С., Коцинян А.М., Фаустов Р.Н. ЯФ, 1977, т.25, c.814.
- 12. Коцинян А.М. Препринт ЕФИ-400/7/-80, Ереван, 1980.
- 13. Дульян Л.С., Коцинян А.М. ЯФ, 1983, т.37, с.137.
- 14. Mrowczynski St. Phys.Rev., 1986, v.A33, p.1549.
- 15. Неменов Л.Л. ЯФ, 1981, т.34, с.1306.
- 16. Любошиц В.Л., Подгорецкий М.И. ЖЭТФ, 1981, т.81, с.1556.
- 17. Пак А.С., Тарасов А.В. ЯФ, 1987, т.45, с.145.
- 18. Захаров Б.Г. ЯФ, 1987, т.46, с.148.
- 19. Ландау Л.Д., Лившиц Е.М. Квантовая механика. М.: Наука, 1974, с.185.
- 20. Borsellino A. Phys.Rev., 1953, v.89, p.1023.
- 21. Stearns M. Phys. Rev., 1949, v.76, p.836.
- 22. Росси Б. Частицы больших энергий. М.: Издательство технико-теоретической литературы, 1955.
- 23. Belkacem A. et al. Phys. Rev. Lett., 1987, v. 58, p.1196.

Рукопись поступила в издательский отдел 10 февраля 1989 года.

14