

ОбЪЕДИНЕННЫЙ Институт Ядерных Исследований Дубна

94

P1-88-685

1988

Г.Р.Гулканян*, И.М.Равинович*, А.П.Чеплаков

ИНКЛЮЗИВНЫЕ И МНОЖЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ КУМУЛЯТИВНЫХ ПРОТОНОВ В ЯДРО-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 4,2 ГэВ/с НА НУКЛОН

Направлено в журнал "Ядерная физика"

*Ереванский физический институт

Изучению процессов образования кумулятивных протонов во взаимодействиях частиц высоких энергий с атомными ядрами посвящего большое число работ. В ядро-ядерных столкновениях, где могут проявляться новые интересные свойства кумулятивного рождения^{/1/}, эти процессы, особенно в области энергий свыше нескольких ГэВ на нуклон, изучены сравнительно мало ^{/2-7/}.

В настоящей работе представлены новые экспериментальные данные по множественным характеристикам и инклюзивным спектрам кумулятивных протонов в области углов их вылета $\theta_p > 90^\circ$ и импульсов ($250 \div 750$) МэВ/с во взаимодействиях протонов и легких релятивистских ядер d, He и C с ядрами углерода и тантала при первичном импульсе 4,2 ГэВ/с на нуклон. Эксперимент выполнен с помощью двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, облученной в пучках ядер дубненского синхрофазотрона. В рабочем объеме камеры размещались три тонкие / ~1 мм/ танталовые пластины /А = 181/. Методические вопросы эксперимента подробно изложены в работе ^{/8,9/}.

Статистика используемых в данной работе взаимодействий приведена в табл.1. Там же приведены средние множественности $<n_{P}^{k} > и$ инклюзивные сечения $\sigma_{A_{P}A_{T}}$ (A_{P} - снаряд, A_{T} - мишень) образования протонов с импульсами (250÷750) МэВ/с, вылетающих в заднюю полусферу ($\theta_{P} > 90^{\circ}$). При вычислении инклюзивных сечений $\sigma_{A_{P}A_{T}}^{k} = \sigma_{A_{P}A_{T}}^{ln} \cdot <n_{P}^{k} >$ использовались неупругие сечения $\sigma_{A_{P}A_{T}}^{ln}$ ядро-ядерных взаимодействий, взятые из работы⁷⁸⁷. В отдельной колонке представлены имеющиеся результаты расчетов по дубненской версии каскадной модели /ДКМ/¹⁰⁷.

Зависимость σ_{Ap,A_T}^k от атомного веса ядра-снаряда A_P аппроксимировалась степенной зависимостью – A^{α} . Показатель α для танталовой мишени $a_{Ta} = 0,68 \pm 0,03$ примерно на 10% больше показателя для углеродной мишени $a_C = 0,61 \pm 0,04$. Зависимость инклюзивных сечений от атомного веса ядра-мишени A_T оказалась практически одинаковой для всех снарядов; при степенной аппроксимации этой зависимости – A^{β} показатели β для налетающих ядер p, d, Не и C равны соответственно 1,22 ± 0,04, 1,21 ± ± 0,04, 1,26 ± 0,03, 1,27 ± 0,03. Слабая зависимость /в пределах экспериментальных ошибок/ показателей α и β от комбинаций сталкивающихся ядер позволяет описать экспериментальные дан-

Таблица 2

Та	блица	1
ıа	Oliniqa	

A _P A _T	N соб.	σ ^k _{ApA T}	$< n \frac{k}{P} > {}^{\mathfrak{s} \kappa c \mathfrak{n}}$.	< n ^k _P > ^{дкм}
pC	3561	40±4	0,15±0,01	0,19±0,01
dC	5029	69±5	0,18±0,01	0,20±0,01
HeC	1967	105 ± 6	0,23±0,01	0,21±0,01
СС	4115	183 ± 14	0,23 ± 0,01	0,29±0,01
рТа	1673	1086 ± 76	0,65±0,02	_ 、
dTa	1176	1891±129	0,97±0,05	-
Не Та	1597	3382±162	1,39±0,05	_
СТа	1237	5925 ± 278	1,73±0,06	-

Рис.1. Зависимость инклюзивного сечения рождения кумулятивных протонов от атомных весов сталкивающихся ядер. Точки - экспериментальные данные, линия результат аппроксимации выражением ~А⁶_д А⁶_т.

ные приближенным факторизованным выражением $\sigma_{A_{P}A_{T}}^{k} = \sigma_{0} \cdot A_{P}^{a} \cdot A_{T}^{\beta}$, где $\sigma_{0} = 1,86\pm 0,16$ мб, $a = 0,66\pm 0,02$, $\beta = 1,24\pm 0,02$ /рис.1/. Отметим, что примерно такая же факторизованная зависимость ранее была получена в работе ^{/11/} для инклюзивных сечений протонов с импульсами (0,4 ± 1) ГэВ/с при угле вылета

Ap
 P
 d
 He
 С
 Среднее

$$\sigma_{ApTa}^k$$

 27,2±3,3 27,4±2,7 32,2±2,3 32,4±2,9 29,8±2,3

 29,8±2,3

Полученная зависимость σ_{APAT}^{k} от A_{P} близка к А-зависимости неупругого рА-сечения ($\sigma_{PA}^{in} ~ A^{2/3}$), откуда следует, что отношение $\sigma_{APAT}^{k}/\sigma_{pAP}^{in} ~ A_{T}^{d}$ является с точностью до $10 \div 15\%$ универсальной /не зависящей от типа ядра-снаряда/ величиной, характеризующей источник кумулятивных протонов – ядро-мишень. Этот факт теоретически предсказан в модели малонуклонных корреляций ^{/12/} и экспериментально подтвержден в упомянутых выше работах ^{/2}, ^{11/}. Из предсказываемого в модели ^{/12/} "закона подобия" инклюзивных спектров следует, в частности, независимость отношения инклюзивных сечений $\sigma_{APAT1}^{k}/\sigma_{APAT2}^{k}$ от атомного веса ядра-снаряда A_{P} . Как видно из табл.2, это предсказание выполняется с точностью ~8%.

Остановимся более подробно на зависимости инклюзивных сечений от A_P . Ранее было показано ^{/13,14/}, что средние множественности пионов < n_{π} в ядро-ядерных столкновениях пропорциональны среднему числу провзаимодействовавших нуклонов ядраснаряда $< \nu_P > = A_P \cdot \sigma_{NA_T}^{in} / \sigma_{A_PA_T}^{in}$:

$$\langle \mathbf{n}_{\pi} \rangle_{\mathbf{A}_{\mathbf{P}}\mathbf{A}_{\mathbf{T}}} = \frac{\mathbf{A}_{\mathbf{P}} \cdot \sigma_{\mathbf{N}\mathbf{A}_{\mathbf{T}}}^{\mathrm{in}}}{\sigma_{\mathbf{A}_{\mathbf{P}}\mathbf{A}_{\mathbf{T}}}^{\mathrm{in}}} \cdot \langle \mathbf{n}_{\pi} \rangle_{\mathbf{N}\mathbf{A}_{\mathbf{T}}}.$$
 /1/

Этот факт свидетельствует о том, что основным механизмом рождения пионов являются независимые взаимодействия нуклонов налетающего ядра с ядром-мишенью. Из /1/ следует простое соотношение для инклюзивных сечений *т*-мезонов:

$$\frac{\sigma_{A_{P}A_{T}}^{\pi}}{A_{P} \cdot \sigma_{NA_{T}}^{\pi}} = 1.$$
 (2)

Иначе обстоит дело с инклюзивными сечениями кумулятивных протонов. Как следует из представленных в табл.1 данных, левая часть выражения /2/ для кумулятивных протонов всегда меньше единицы, заметно зависит от Ари, возможно, намного слабее – Таблица 3

Åp	d	Не	С
R (A _p , C)	• 0,86± 0,11	0,66±0,08	0,38±0,05
R (A _p , Ta)	0,87± 0,09	0,78±0,07	0,45±0,04

$$\frac{\sigma_{A_{P}A_{T}}^{k}}{A_{P} \cdot \sigma_{NA_{T}}^{k}} \equiv R(A_{P}, A_{T}) < 1.$$
(3)

Экспериментальные значения R(A_P, A_T) приведены в табл.3, из которой следует, что выход протонов назад на один провзаимодействовавший нуклон ядра-снаряда уменьшается с ростом А р причем это уменьшение, возможно, несколько заметнее для более легкой мишени. Этот экспериментальный факт может быть объяснен двумя обстоятельствами. Во-первых, при прохождении ядра-снаряда через мишень в последней происходит разрушение нуклонных корреляций. С ростом размеров снаряда этот эффект усиливается /при этом относительная доля разрушенных корреляций при фиксированном Ар должна быть больше для более легкого ядра-мишени/. Взаимодействие части нуклонов снаряда с некоррелированными нуклонами мишени не может привести к образованию через механизм малонуклонных корреляций /12/ кумулятивных протонов. Частично подавляется также другой механизм, играющий заметную роль в образовании кумулятивных протонов, - поглощение малоэнергичных пионов на скоррелированных нуклонных парах мишени с вылетом протона назад /6,15,16/

Во-вторых, вылетающие в заднюю полусферу протоны из мишени могут перерассеяться на нуклонах снаряда и вылететь под меньшими углами /в частности, под углами $\theta_P < 90^\circ$ /. Вклад таких перерассеяний увеличивается с ростом A_P ; при этом ожидается также некоторое изменение /сдвиг в сторону меньших углов/ угловых распределений кумулятивных протонов. Наши экспериментальные данные подтверждают это /рис.2/; более наглядно это изменение видно из табл.4, где представлены отношения $N(90^\circ < \theta < 120^\circ)/N(120^\circ < \theta < 180^\circ)$ выходов протонов, вылетающих назад из ядра углерода при взаимодействии с ним различных снарядов.

Как отмечалось выше, наличие заметной зависимости в выражении /3/ от атомного веса ядра-снаряда Ар означает, что образование кумулятивных протонов в ядро-ядерных столкновениях

нельзя рассматривать как результат независимых взаимодействий нуклонов снаряда с мишенью. Представляется интересным выяснить, какая зависимость от А_Р проявляется в инклюзивных спектрах кумулятивных протонов в различных областях фазового пространства. В данной работе такое исследование проведено для углеродной мишени.

Экспериментальные данные по инвариантным инклюзивным сечениям $\mathbf{f} = \mathbf{E} d^3 \sigma / dp^3$ кумулятивных протонов в A_PC-взаимодействиях /A_P = p, d, He, C / при импульсе 4,2 ГэВ/с на нуклон представлены в табл.5-8 и на рис.3 /для pC-взаимодействий/, где приводятся также результаты аппроксимации инвариантных сечений выражением

$$f(T_{\mathbf{p}}, \cos\theta_{\mathbf{p}}) = C(\cos\theta_{\mathbf{p}}) \exp\left[-T_{\mathbf{p}}/T_{\mathbf{o}}(\cos\theta_{\mathbf{p}})\right], \qquad (4/4)$$

где $\mathbf{T}_{\mathbf{P}}$, сов $\theta_{\mathbf{P}}$ - кинетическая энергия и угол вылета протона.

На рис.3 приводятся также имеющиеся данные по pC-взаимодействиям при близких значениях начального импульса и углов регистрации кумулятивного протона; видно, что согласие наших данных с опубликованными ранее /1?/ удовлетворительное.

Из представленных данных видно, что инклюзивные спектры с изменением A $_{\rm P}$ претерпевают определенные изменения. Так, если для налетающего протона и дейтрона зависимость параметра на-клона T от угла вылета $\theta_{\rm P}$ практически отсутствует /в преде-

Таблица 7

НеС-взаимодействия

θ_{p}	90°÷100°	100°÷110°	110° ÷130°	130°÷180°
25 ÷ 75	1145 ± 125	791 ± 104	718 ± 75	450 ± 54
75 ÷ 125	274 ± 52	225 ± 47	121 ± 26	106 ± 22
125 ÷ 175	134 ± 32	118 ± 30	22 ± 10	15 ± 7
175 ÷ 225	47 ± 18	40 ± 16	8 ± 6	6 ± 4
225 ÷ 275	24 ± 12	7 ± 6	4 ± 3	4 ± 3
То	46,4 ± 3,7	45,9±1,4	33,6±0,5	33,1±1,2

Таблица 5

·	рС-взаимодействия			
$\theta_{\rm P}$ T _p ,M ₉ B	90° ÷ 100°	100°÷110°	110°÷130°	130°÷180°
25 ÷ 75	449 ± 45	322 ± 38	304 ± 28	173 ± 19
75 ÷ 125	121 ± 20	89 ± 17	58 ± 10	32 ± 7
125 ÷ 175	31 ± 9	28 ± 8	18 ± 5	17±5
175 ÷ 225	9 ± 4	11 ± 5	5 ± 2	5 ± 2
225 ÷ 275	3 ± 2	3 ± 2	3 ± 2	3 ± 2
To	33,8±0,8	42,1 ± 3,2	37,8±0,7	40,6±3,0

Таблица 8

СС-взаимодействия

θ _P Τ _p ,MэB	90°÷100°	100°÷110°	110°÷130°	130°÷180°
25 ÷ 75	2258±166	1672 ± 143	1214 ± 92	662 ± 62
75÷125	700 ± 78	519 ± 67	264 ± 36	139 ± 24
125 ÷ 175	146 ± 32	167 ± 34	55 ± 15	10 ± 6
175 + 225	96 ± 24	42 ± 16	20 ± 8	6 ± 4
225 ÷ 275	58 ± 17	21 ±10	15 ± 7	4 ± 3
Т _о	44,2±1,4	42,3±2,3	37,1±0,6	27,6 ±0,9

В табл.9 приведены отношения инвариантных сечений протонов

$$\mathbf{r}_{\mathbf{A}\mathbf{p}}(\mathbf{T}_{\mathbf{p}},\theta_{\mathbf{p}}) = \frac{1}{\mathbf{A}_{\mathbf{p}}} \frac{(\mathbf{E}d^{3}\sigma/d\mathbf{p}^{3})_{\mathbf{A}\mathbf{p}\mathbf{C}}}{(\mathbf{E}d^{3}\sigma/d\mathbf{p}^{3})_{\mathbf{p}\mathbf{C}}}$$
 /5/

для четырех областей изменения кинематических переменных T_P и θ_P . Как видно из табл.9, наиболее заметное падение отношения $r_{A_P}(T_P, \theta_P)$ с ростом A_P /то есть, как отмечалось выше, сильное

00				Габлица б
		dC-вэаимоде	йствия	
$\theta_{\mathbf{P}}$ T _p ,M9B	90°÷100°	100°÷110°	110°÷130°	130°÷180°
25 ÷ 75	844 ± 64	610 ± 55	439 ± 35	340 ± 28
75 ÷125	228 ± 28	166 ± 24	80 ± 12	76 ± 11
125 ÷175	33±9	28 ± 9	33±7	17 ± 5
175 ÷ 225	17 ± 6	19 ± 7	9±3	11 ± 3
225 ÷ 275	10 ± 4	6 ± 3	4 ± 2	5 ± 2
To	37,6±0,6	40,0 ±0,8	38,1±1,1	39,1±1,6

лах ошибок данного эксперимента/, то в HeC- и CC-взаимодействиях наблюдается заметное /примерно в полтора раза/ уменьшение T_o с ростом θ_p ; если в области углов $\theta_p = 90^\circ \pm 100^\circ$ энергетические спектры протонов в HeC- и CC-взаимодействиях несколько жестче, чем в pC- и dC-взаимодействиях, то при больших углах $\theta_p = 130^\circ \pm 180^\circ$ картина меняется на противоположную, особенно для CC-взаимодействий.

Рис.3. Инвариантные инклюзивные сечения кумулятивных протонов в pC-взаимодействиях: • – pC-взаимодействия при импульсе 4,2 ГэВ/с, $\theta = 110^{\circ}$ – 130°; • – pC-взаимодействия, 3,0 ГэВ/с, $\theta = 119^{\circ}$; О – pCвзаимодействия, 5,0 ГэВ/с, $\theta = 119^{\circ}$.

Таблица 9

Ap	d	Не	С
25 < T_{p} < 75 90° < θ_{p} < 110°	0,94±0,16	0,63±0,12	0,42±0,08
$75 < T_{P} < 275$ $90^{\circ} < \theta_{P} < 110^{\circ}$	0,86±0,15	0,74±0,14	0,49±0,09
$25 < T_{P} < 75$ 110° < $\theta_{P} < 180°$	0,82±0,14	0,61±0,12	0,33±0,06
$75 < T_P < 275$ 110° < $\theta_P < 180°$	0,83±0,14	0,51±0,10	0,30±0,05

влияние эффектов разрушения нуклонных корреляций в ядре-мишени и перерассеяний кумулятивных протонов в ядре-снаряде/ наблюдается в области сравнительно больших углов вылета $\theta_{\rm P} = 110^\circ + \pm 180^\circ$ и энергий $T_{\rm P} = 75 \pm 275$ МэВ.

Рис.4. Распределения по множественности кумулятивных протонов.

Рис.5. Импульсные спектры кумулятивных протонов в рС-взаимодействиях.

Рис.8. То же, что на рис.5, для СС-взаимодействий.

На рис.4-8 наши экспериментальные данные для распределений по множественностям и импульсные спектры кумулятивных протонов в (p, d, He, C)C взаимодействиях сравниваются с предсказаниями дубненской версии каскадной модели /10/. Видно, что модель в целом неплохо описывает указанные распределения, хотя имеется некоторое превышение расчетных средних множественностей над экспериментальными /см.также табл.1/, а импульсные распределения в модели предсказываются несколько более жесткими, чем в эксперименте.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Измерены инклюзивные сечения образования протонов с импульсами (0,25÷0,75) ГэВ/с, вылетающих в заднюю полусферу в л.с.к., во взаимодействиях протонов, ядер дейтерия, гелия и углерода с ядрами углерода и тантала при импульсе 4,2 ГэВ/с на нуклон. Полученные данные согласуются с предсказываемым в модели малонуклонных корреляций "законом подобия" для инклюзивных спектров.

Получено приближенное факторизованное выражение для инклюзивных сечений: $\sigma_{A_PA_T}^k = \sigma_0 \cdot A_P^\alpha \cdot A_T^\beta$, где $\sigma_0 = 1,86 \pm 0,16$ мб, $\alpha = 0.66 \pm 0.02$. $\beta = 1.24 \pm 0.02$.

2. Измерены инвариантные инклюзивные спектры кумулятивных протонов в A_pC -взаимодействиях / $A_p = p$, d, He, C /. Получено указание на некоторое подавление выходов протонов из ядра-мишени под большими углами при увеличении атомного веса ядра-снаряда A_{p} , что может быть интерпретировано как влияние процессов перерассеяния кумулятивных протонов на нуклонах снаряда.

В заключение авторы выражают признательность коллективу сотрудничества по обработке снимков с двухметровой пропановой камеры ЛВЭ ОИЯИ за помощь в получении и обработке экспериментального материала и обсуждения.

ЛИТЕРАТУРА

- 1. Балдин А.М. Краткие сообщения по физике, ФИАН, 1971, т.1, с.35.
- 2. Аникина М.Х. и др. ЯФ, 1984, т.40, с.489.
- 3. Аникина М.Х. и др. ОИЯИ, 1-84-216, Дубна, 1984.
- 4. Гаспарян А.П. и др. ОИЯИ, Р1-84-327, Дубна, 1984.
- 5. Гаспарян А.П. и др. ОИЯИ, Р1-85-14, Дубна, 1985.
- 6. Гулканян Г.Р. и др. ЕрФИ-643/33/-83, Ереван, 1983.
- 7. Гулканян Г.Р. и др. ОИЯИ, Р1-88-143, Дубна, 1988.
- 8. Ахабабян Н. и др. ОИЯИ, 1-12114, Дубна, 1979.
- 9. Ангелов Н. и др. ОИЯИ, 1-12424, Дубна, 1979.
- 10. Гудима К.К., Тонеев В.Д. ЯФ, 1978, т.27, с.658; Toneev V.D., Gudima K.K. - Nucl.Phys., 1983, A400, p.173.
- 11. Geaga J.V. et al. Phys.Rev. Lett., 1980, 45, p.1993.
- 12. Стрикман М.И., Франкфурт Л.Л. ЯФ, 1980, т.32, с.1403.
- 13. Abdrachmanov E.O. et al. Z.Physic C, 1980, 5, p.1.
- 14. Гулканян Г.Р. и др. ЯФ, 1984, т.40, с.745.
- 15. Армутлийски Д. и др. ЯФ, 1987, т.46, с.12.
- 16. Асатурян В.М. и др. ЯФ, 1987, т.45, с.1059.
- 17. Баюков Ю.Д. и др. ИТЭФ-148, М., 1983.

Рукопись поступила в издательский отдел 14 сентября 1988 года.