

сообщения объединенного института ядерных исследований дубна

Б 425

P1-88-617

1988

Р.Н.Бекмирзаев<sup>1</sup>, О.В.Гришина<sup>2</sup>, И.Долейши, М.М.Муминов<sup>1</sup>, М.У.Султанов<sup>1</sup>, П.Тас, З.Трка

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЙ НЕЙТРОНОВ С ПРОТОНАМИ И ЯДРАМИ УГЛЕРОДА ПРИ р=4,2 ГэВ/с

Самаркандский государственный университет им. А.Навои <sup>2</sup> Научно-исследовательский институт ядерной физики МГУ, Москва

#### 1. ВВЕДЕНИЕ

Для понимания механизма взаимодействий адронов с ядрами представляет интерес экспериментальное изучение множественности, импульсных и угловых характеристик вторичных частиц в этих взаимодействиях. В настоящее время имеется много данных по взаимодействию заряженных адронов с ядрами и практически отсутствуют аналогичные данные по соударениям нейтронов. В связи с этим в последнее время начали систематически изучаться процессы образования быстрых нейтронов ( $p \ge 1 \ \Gamma$ эB/с) в ядерных соударениях и их взаимодействия с нуклонами и ядрами (см., например, 1/). В настоящей работе изучаются взаимодействия с протонами и ядрами углерода нейтронов с  $p = 4,2 \ \Gamma$ эB/с, образованных в результате взаимодействия дейтронов с  $p = 4,2 \ \Gamma$ эB/с нуклон с пропаном ( $C_3 H_8$ ) с помощью 2-метровой пропановой камеры. В этой работе в основном будут рассматриваться образование и взаимодействия так называемых нейтронов-спектаторов (или стриппингов), которые практически не принимали участия в первичном d( $C_3 H_8$ )-взаимодействии и поэтому имеют  $p_{n_s} = 4,2 \ \Gamma$ эB/с.

# 2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Экспериментальный материал получен при облучении 2-метровой пропановой пузырьковой камеры дейтронами с р = 4,2 ГэВ/с на нуклон на синхрофазотроне ЛВЭ ОИЯИ. Дважды было просмотрено около 26 тысяч стереоснимков для нахождения как первичных взаимодействий дейтронов с пропаном (С<sub>3</sub>H<sub>8</sub>), так и вторичных звезд, образованных нейтральными частицами (<sup>с</sup>n<sup>···</sup>-звезд). Правила просмотра этих стереоснимков были следующими. В эффективном объеме камеры отбирались только такие стереоснимки, на которых число первичных звезд с n<sub>ch</sub> ≥ 2 было не больше двух, и регистрировались все вторичные ''п''-звезды с  $n_{ch} \ge 3$  (здесь  $n_{ch}$  — число вторичных заряженных частиц в звезде). Эффективность нахождения звезд в двойном просмотре оказалась равной 99%. Всего найдено 4396 первичных и 438 "п"эвезд. Из всех "n"-звезд 404 измерены вместе с координатами первичных звезд, и получены импульсные и угловые характеристики вторичных частиц в них. В 34 событиях из-за плохого качества стереоснимков этого было сделать нельзя, и на их потерю вводилась соответствующая поправка.

1

Используя данные работы  $^{\prime 2\prime}$ , мы ввели поправки на количество потерянных при просмотре неупругих  $d(C_3H_8)$ -взаимодействий, и их общее число составило 4903 события. После измерения в выбранной эффективной области оказалось 4845 первичных и 353 "п"-звезд. Из найденных "п"-звезд выделены такие, которые можно отнести к взаимодействию спектаторных нейтронов ( $\theta_n \leq 2^\circ$ ) с p = 4,2 ГэВ/с. К ним были отнесены 93 "п"-звезды, пространственный угол  $\theta$  "вылета" которых был  $\theta_{n_S} \leq 2^\circ$  по отношению к первичной звезде\* $^{\prime 3\prime}$ . Использование импульсных характеристик вторичных заряженных частиц в "п"-звездах в этом случае не дает дополнительной информации для выделения п $_8$ .

### 3. ХАРАКТЕРИСТИКИ НЕЙТРОНОВ-СПЕКТАТОРОВ

Для получения данных о доли нейтронов-спектаторов и их характеристик в nC- и np-взаимодействиях необходимо учесть конечные размеры детектора — эффективной области камеры, то есть ввести так называемые геометрические "веса" регистрации "n\*-звезд:

$$W = \left[\frac{L_1}{L_2} \left(1 - \exp\left(-\frac{L_0}{L_1}\right)\right]^{-1},\tag{1}$$

где  $L_1$ — средняя длина свободного пробега нейтрона с импульсом  $p_n$  в пропане до неупругого взаимодействия, которое выводит его из пучка,  $L_2$ — средняя длина свободного пробега нейтрона до образования звезды с  $n_{ch} \ge 3$  и  $L_0$ — потенциальная длина пробега нейтрона в эффективной области камеры. Значения  $L_1$  и  $L_2$  задаются известными формулами:

$$L_{1} = \frac{1}{n\sigma_{n}^{in}(C_{3}H_{8})}, \quad L_{2} = \frac{1}{n\sigma_{n}^{n}ch^{\geq 3}(C_{3}H_{8})}, \quad (2)$$

где п — число молекул пропана в 1 см<sup>3</sup>. Значения сечений  $\sigma_n^{in}$  и  $\sigma_n^{ch^2 \circ}$  брались из работы<sup>/4/</sup>. Для нейтронов-спектаторов ( $\theta_{n_S} \leq 2^\circ$ ,  $p_{n_S} \approx 4,2$  ГэВ/с) "веса" слабо меняются, и поэтому их флуктуацией можно пренебречь ( $\langle W_{n_S} \rangle = 12,5 \pm 0,4 \rangle$ . В этом случае, так как импульс нейтрона известен, представляет интерес определить величину коэффициента (k), который характеризует соотношение между  $P_{n_S}$  и суммарным импульсом всех заряженных частиц в "п"-звезде:

$$p_{n_{s}} = k < \Sigma \vec{p}_{ch} > .$$
(3)

\*При ограничении  $\theta_n \leq 3^\circ - N_n = 114$ . Однако в этом случае имеется большая примесь,  $\geq 90\%$ , провзаимодействовавших нейтронов с  $\theta_n = 2^\circ \div 3^{\circ/3/}$ .

Из полученных данных по  $\Sigma \vec{p}$  значение  $k = 1,6 \pm 0,1$ , что совпадает с оценкой этой величины, полученной другим способом в работе <sup>757</sup>. Таким образом, прямые измерения "п"-звезд показывают, что в среднем  $(60 \pm 10)\%$  импульса нейтрона "уносят" нейтральные частицы (нейтроны и  $\pi^{\circ}$ -мезоны) при  $p_n = 4,2$  ГэВ/с.

После нахождения  $W_i$  для "n"-звезд можно определить долю ( $\Delta$ ) спектаторных нейтронов в  $d(C_3 H_8)$ -взаимодействиях при  $p_d = 4,2 \Gamma$ эB/с · нуклон:

$$\Delta_{n_{S}} = \frac{\Sigma W_{i}}{N_{3B} (C_{3} H_{8})} = 0.24 \pm 0.02 .$$
 (4)

Из изотопической симметрии сильных взаимодействий следует, что доля протонов-спектаторов в этих взаимодействиях  $\Delta_{p_S} \approx \Delta_{n_S}$ . Отсюда легко найти, что среднее число провзаимодействовавших нуклонов в налетающем дейтроне составляет

$$<\nu_{\rm N}> = 2\Delta_{\rm n_S} + 2(1 - 2\Delta n_{\rm S}) = 1.52 \pm 0.06.$$
 (5)

Число dp- и dC-неупругих взаимодействий определялось из общего числа найденных  $d(C_3H_8)$ -взаимодействий в соответствии с известными сечениями  $\sigma_{in}$  (dp) и  $\sigma_{in}$  (dC)<sup>22</sup>. Из событий с "n"-звездами выделялись nC-взаимодействия по следующим критериям:

1)  $Q = n_{+} - n_{-} \neq 1$ , 2)  $n_{p} > 1$ , 3)  $n_{p}^{b} > 0$ , 4)  $n_{-} \geq 2$ .

Здесь  $n_p$ — число протонов с  $p \leq 0,75 \ \Gamma \mbox{--} Число протонов, вылетающих в заднюю полусферу в л.с. координат, <math display="inline">n_-(n_+)$ — число отрицательно (положительно) заряженных частиц в звезде. Достаточно выполнения хотя бы одного из этих условий, чтобы отнести событие к nC-взаимодействиям. С использованием этих критериев было выделено  $(73 \pm 9)\%$  nC-взаимодействий,  $(27 \pm 5)\%$  np-соударений. По известным сечениям nC- и np-взаимодействий с  $n_{ch} \geq 3$  при  $p = 4,2 \ \Gamma \mbox{-} Bc 3 з 10\%$ , что хорошо согласуется с полученными нами результатами  $^{3\prime}$ . В табл.1 приведена соответствующая статистика событий для разного типа вза-имодействий. Так как число  $n_{S}p$ -взаимодействий мало, то для сравнения мы используем также данные, полученные в результате расчетов по Лунд-модели, которая удовлетворительно описывает нуклон-нуклонные взаимодействия при этих энергиях  $^{4,6\prime}$ .

|                         | Статистика событий с учетом "весов"<br>для " <sup>n</sup> ''звезд |              |             |                     |                             | Таблица 1                   |  |
|-------------------------|-------------------------------------------------------------------|--------------|-------------|---------------------|-----------------------------|-----------------------------|--|
| Тип взаимо-<br>действия | $d(C_{3}H_{8})$                                                   | dC           | dp          | $n_{s}(C_{3}H_{8})$ | <sup>n</sup> s <sup>C</sup> | <sup>n</sup> s <sup>p</sup> |  |
| N <sub>co6</sub> .      | 4845<br>±70                                                       | 3326<br>± 58 | 1519<br>±39 | 1163<br>±120        | 843<br>±105                 | 320<br>±61                  |  |

# 4. ХАРАКТЕРИСТИКИ ВТОРИЧНЫХ ЧАСТИЦ В пр- И nC-вЗАИМОДЕЙСТВИЯХ ПРИ p<sub>n</sub> = 4,2 ГэВ/с

В этом разделе мы приведем данные по множественности вторичных частиц и их импульсным характеристикам в np- и nC-взаимодействиях при условии  $n_{ch} \ge 3$ . Для сравнения используются расчеты по Лундмодели (версия 6.2), проведенные на ЭВМ ЕС-1061 ОИЯИ для пръзаимодействий при  $p_n = 4,2$  ГэВ/с. По этой модели было смоделировано 3,5 тысячи пр-взаимодействий и получены данные как для всех неупругих np-взаимодействий, так и для np-соударений с  $n_{ch} \ge 3$ . В табл.2 приведены средние множественности вторичных частиц в np- и nC-взаимодействиях и результаты расчетов по Лунд-модели.

Из таблицы видно, что число протонов в nC-взаимодействиях значительно больше, чем в np-соударениях, что связано в первую очередь с их каскадным размножением в ядре углерода ( $p_p \ge 0.15 \ \Gamma \ni B/c$ ). Кроме того, и процессы многократного взаимодействия нейтронов с ядрами углерода ( $\nu_N = 1.5$ ) также дают вклад в увеличение  $\langle n_p \rangle u \langle n_{\pi} + \rangle$  (см. раздел 3). В то же время  $\langle n_{\pi} - \rangle$  в пределах ошибок одина-

|                                                                | Таблица 2 |
|----------------------------------------------------------------|-----------|
| Средние множественности <n<sub>i &gt; вторичных частиц</n<sub> |           |
| в неупругих np- и nC-взаимодействиях                           |           |
|                                                                |           |

| Тип взаимо-<br>действия                | $< n_{\pi^+} >$ | < n <sub><i>n</i></sub> -> | $< n_p > \dots$ |
|----------------------------------------|-----------------|----------------------------|-----------------|
| $nC(n_{ch} \geq 3)$                    | 0,76 ± 0,10     | 0,93 ± 0,09                | 3,02 ± 0,15     |
| np(n <sub>ch</sub> ≥3)                 | $0,39 \pm 0,10$ | $1,03 \pm 0,04$            | $1,64 \pm 0,10$ |
| np <sub>nM</sub> (n <sub>ch</sub> ≥ 3) | $0,18 \pm 0,06$ | $1,02 \pm 0,04$            | $1,21 \pm 0,04$ |
| np <sub>все</sub> (ЛМ)                 | $0,32 \pm 0,04$ | $0,32 \pm 0,04$            | 1,00 ± 0,04     |
| $n_{n_{ch} \geq 3}(C_3H_8)$            | 0,66 ± 0,08     | 0,96 ± 0,07                | 2,64 ± 0,13     |

Таблица 3

Средние импульсные характеристики вторичных частиц в пр-и пС-взаимодействиях

| p_1 >, ГэВ/сТипвзаимо-цействия                        | < p <sub><i>n</i></sub> +> | < p <sub><i>n</i></sub> -> | < <sup>d</sup> d > | < b <sup>1</sup> ( <i>n</i> <sup>+</sup> ) > | < <b>b</b> <sup>1</sup> ( <i>m</i> <sup>-</sup> ) > | < (d) <sup>T</sup> d > |
|-------------------------------------------------------|----------------------------|----------------------------|--------------------|----------------------------------------------|-----------------------------------------------------|------------------------|
| nC (n <sub>ch</sub> ≥ 3) .                            | 0,43 ± 0,04                | 0,52 ± 0,04                | 0,78 ± 0,04        | 0,31±0,04                                    | $0,24 \pm 0,04$                                     | 0,32±0,04              |
| np $(n_{ch} \ge 3)$                                   | $0,35 \pm 0,08$            | 0,68 ± 0,08                | $1,51 \pm 0,10$    | $0,21 \pm 0,08$                              | $0,34 \pm 0,08$                                     | $0,40 \pm 0,08$        |
| $np_{n_M}(n_{ch} \ge 3)$                              | I                          | $0,66 \pm 0,02$            | $1,72 \pm 0,08$    | $0,21\pm0,02$                                | $0,26 \pm 0,01$                                     | $0,32 \pm 0,02$        |
| np <sub>ace</sub> (MM)                                | $0,64 \pm 0,02$            | $0,66 \pm 0,02$            | $1,70 \pm 0,06$    | $0,23 \pm 0,01$                              | $0,26 \pm 0,01$                                     | 0,32±0,01              |
| п <sub>псh 2 3</sub> (С <sub>3</sub> H <sub>8</sub> ) | $0,42 \pm 0,07$            | $0.57 \pm 0.07$            | $0,90 \pm 0,09$    | $0,29\pm 0,07$                               | $0,27 \pm 0,07$                                     | 0,34±0,07              |
|                                                       |                            |                            |                    |                                              |                                                     |                        |

ково для np- и nC-взаимодействий. Лунд-модель удовлетворительно описывает эти данные для np-взаимодействий с  $n_{ch} \ge 3.0$ тсюда можно считать, что и для всех неупругих np-соударений Лунд-модель дает правильные оценки  $< n_{r\pm} > u < n_p > *$ .

В табл. 3, 4 приведены средние значения некоторых импульсных и угловых характеристик вторичных частиц в np-, nC- и n (C<sub>3</sub>H<sub>8</sub>)-взаимодействиях (n<sub>ch</sub>  $\geq$  3). Здесь же даны значения этих величин, полученные по Лунд-модели для всех неупругих np-взаимодействий и для np-соударений с n<sub>ch</sub>  $\geq$  3. Как видно из этих таблиц, поперечные импульсы (p<sub>1</sub>) пионов и протонов в пределах ошибок согласуются с расчетами по Лунд-модели, как и полные импульсы и  $<\cos\theta_n >$  для  $\pi^-$ -мезонов. Относительно большой импульс протонов (табл. 3) в np-взаимодействиях связан с диссоциацией налетающего нейтрона (n  $\rightarrow$  p $\pi^-$ ), что хорошо видно в импульсных спектрах протонов. В связи с относительно большим вкладом каскадного размножения протонов в nC-взаимодействиях их средний импульс почти в два раза меньше, чем в np-взаимодействиях.

> Угловые характеристики вторичных частиц в np- иnC-взаимодействиях при p = 4,2 ГэВ/с

Таблица 4

| Тип взаимо-<br>действия    | $<\cos \theta_{\pi^+}>$ | $<\cos\theta_{\pi}$ -> | $< \cos \theta_{\rm p} >$ | $<\theta_{\pi}^{\circ}+>$ | <0°>       | $<\theta_{p}^{\circ}>$ |
|----------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------|------------------------|
| $nC(n_{ch} \ge 3)$         | $0,45 \pm 0,07$         | $0,65 \pm 0,06$        | $0,56 \pm 0,04$           | 60±5                      | 44 ± 5     | 49±5                   |
| $np(n_{ch} \ge 3)$         | $0,62 \pm 0,10$         | $0,68 \pm 0,07$        | 0,89±0,03                 | 47 ± 8                    | $47 \pm 8$ | $22\pm8$               |
| $np_{nM}(n_{ch} \ge 3)$    |                         | $0,68 \pm 0,02$        |                           |                           |            | <u></u>                |
| np <sub>все</sub> (ЛМ)     | $0,63 \pm 0,02$         | $0,68 \pm 0,02$        |                           |                           |            |                        |
| $n_{n_{ab}\geq 3}(C_3H_8)$ | $0,\!48 \pm 0,\!06$     | 0,66±0,05              | $0,\!62 \pm 0,\!04$       | $58\pm4$                  | $43\pm4$   | $44 \pm 4$             |

Таким образом, в настоящей работе получены прямые экспериментальные данные по образованию нейтронов-спектаторов в  $d(C_3H_8)$ соударениях и средние характеристики вторичных частиц в пр- и пСвзаимодействиях при р = 4,2 ГэВ/с. Лунд-модель удовлетворительно описывает результаты по пр-взаимодействиям.

Авторы признательны участникам сотрудничества по исследованию множественных процессов за полезные обсуждения.

### ЛИТЕРАТУРА

- 1. Бекмирзаев Р.Н. и др. ОИЯИ, Р1-88-192, Дубна, 1988.
- 2. Агакишиев Г.Н. и др. ОИЯИ, 1-83-622, Дубна, 1983.
- 3. Бекмирзаев Р.Н. и др. ОИЯИ, РІ-85-680, Дубна, 1985.
- 4. Бекмирзаев Р.Н. и др. ОИЯИ, РІ-87-652, Дубна, 1987.
- 5. Бекмирзаев Р.Н. и др. ОИЯИ, РІ-84-733, Дубна, 1984; ОИЯИ, РІ-87-311, Дубна, 1987.

6. Батюня Б.В. и др. ОИЯИ, Р1-88-327, Дубна, 1988.

<sup>\*</sup> Здесь  $< n_p > -$  среднее число протонов с 0,15  $\le p \le 0,75$  ГэВ/с. Из изотопической симметрии пр-взаимодействий следует, что  $< n_p > = < n_n > u < n_{m+} > = < n_{p-} >$ .