

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

K 471

P1-88-412

Е.Н.Кладницкая, С.Ю.Сивоклоков*

НЕКОТОРЫЕ МЕТОДИЧЕСКИЕ ВОПРОСЫ ИЗМЕРЕНИЯ ИМПУЛЬСОВ И ОТБОРА СОБЫТИЙ НА УГЛЕРОДНОЙ МИШЕНИ ИЗ ВЗАИМОДЕЙСТВИЙ В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

*Научно-исследовательский институт ядерной физики Московского государственного университета

ВЛИЯНИЕ ОШИБОК ИЗМЕРЕНИЯ ИМПУЛЬСОВ НА ФОРМУ РАСПРЕДЕЛЕНИЙ

Процесс измерения импульсов частиц в пузырьковой камере характеризуется определенным разбросом измеренных значений относительно истинного значения импульса. Так, если частица имеет импульс P_0 , то в результате многократных измерений мы получим некоторое распределение $F_{P_0}(P_{N3M})$. Вид этого распределения определяется многими факторами: длиной трека частицы L, ее импульсом P_0 , углом вылета частицы относительно плоскости фотографирования, качеством фотоснимка и др. В данной работе рассматривается только зависимость от L и P_0 , то есть считалось, что

$$\mathbf{F}(\mathbf{P}_{\mu \mathbf{3} \mathbf{M}}) = \mathbf{F}(\mathbf{f}(\mathbf{L}, \mathbf{P}_{\mathbf{0}})). \tag{1}$$

Если истинное распределение частиц по импульсам имеет вид g(P), то после измерения импульсов этих частиц будем иметь распределение

$$g_{\mu \kappa c \Pi}(P_{\mu \mu M}) = \int g(P) \cdot F(P_{\mu \mu M}, P) dP .$$
(2)

Задача нахождения g(P) по известным $g_{3\kappacn.}(P_{и3M.})$ и $F(P_{и3M.}, P)$ относится к классу некорректных задач и требует для своего решения высокой статистической обеспеченности. Можно, однако, оценить отличие $g_{3\kappacn.}(P_{и3M.})$ от g(P), решая прямую задачу: подставляя в (2) в качестве g(P) распределения, полученные в модельных расчетах.

Рассмотрим влияние ошибок измерений на форму импульсных спектров, полученных для протон-углеродных (pC) и углерод-углеродных (CC) взаимодействий при начальном импульсе 4,2 ГэВ/с на нуклон в дубненском варианте каскадной модели (ДКМ)^{/1/}. Для определения вида функции (1) использовались результаты измерений импульсов первичных протонов, зарегистрированных в 2-метровой пропановой камере Лаборатории высоких энергий ОИЯИ. Измерения проводились на участках треков разной длины (L = 90, 70, 53, 46, 35 и 28 см) при трех значениях начальных импульсов протонов ($P_0 = 2,3; 4,2$ и 10 ГэВ/с). Обмер треков осуществлялся на полуавтоматических приборах САМЕТ, обсчет измерений производился по программе геометрической реконструкции ГЕОФИТ.

1

Рис. 2. Зависимости отношения $\sigma_k/\langle k \rangle$ для распределений первичных протонов по k от импульса протонов P_0 и длины трека L.

Известно, что при измерении в пузырьковой камере импульсов частиц с заданным импульсом P распределение по величине k == $(1/P_{изм})$ описывается гауссовской кривой. На рис. 1а,б,в представлены распределения по величине k для протонов с импульсами 2,3; 4,2 и 10 ГэВ/с. Линии на рисунке — аппроксимация распределений гауссовскими функциями. Видно, что дисперсия распределений возрастает с уменьшением длины измеренного участ-

ка трека и с ростом начального импульса протонов. На рис. 2 показаны зависимости величины $\sigma_k/\langle k \rangle = (\sigma_k = \sqrt{\langle k^2 \rangle - \langle k \rangle^2})$ от импульса и длины трека и их аппроксимация линейной функцией вида $\sigma_k/k = a(L) \cdot P + b(L)$. Значения параметров а и в приведены в табл. 1.

Таблица 1

Параметры аппроксимации зависимости $\sigma_k^{/<k>$ от L и P_0 линейной функцией вида $\sigma_k^{/<k> = a(L) \cdot P_0 + b(L)}$

a(L), (ГэВ/с) ⁻¹	b(L)
$2,9 \cdot 10^{-3}$	0,058
$3,3 \cdot 10^{-3}$	0,068
$7,4.10^{-3}$	0,074
$13,9.10^{-3}$	0,067
$24,7 \cdot 10^{-3}$	0,065
	a(L), $(\Gamma \rightarrow B/c)^{-1}$ 2,9 \cdot 10^{-3} 3,3 \cdot 10^{-3} 7,4 \cdot 10^{-3} 13,9 \cdot 10^{-3} 24,7 \cdot 10^{-3}

Моделирование процедуры измерений для событий, полученных по ДКМ (то есть вычисление (2)), проводилось следующим образом. Было получено распределение dN_p / dL вторичных протонов из реальных СС-взаимодействий, измеренных в пузырьковой камере. Далее каждому протону из банка моделированных событий приписывалось значение длины трека $L_i = \text{RND}(dN_p/dL)$ (здесь и далее операция $\text{RND}(f(\mathbf{x}))$ обозначает розыгрыш по методу Монте-Карло значения случайной величины \mathbf{x} , распределенной с плотностью вероятности $f(\mathbf{x})$). По значениям P_i и L_i определялись значения $a(L_i)$ и $b(L_i)$ и значение $\sigma_{ki}/k_i = a(L_i) \cdot P_i + b(L_i)$. Таким образом, находились параметры гауссовского распределения, соответствующие "размытию" импульса P_i в процессе измерения. Далее разыгрывалось "измеренное" значение импульса:

$$\frac{1}{P_{H3M.}} = \text{RND}\left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(k_{i} - k_{H3M.})^{2}}{2\sigma_{k_{i}}^{2}}\right)\right)$$

Это новое значение импульса использовалось при построении распределений $\frac{dN_p}{dP_{\mu 3M.}}$ и $\frac{dN_p}{dP_{\mu 3M.}^2}$, показанных на рис. 3 и 4 в сравнении с соответствующими распределениями, полученными без учета ошибок измерений импульсов.

Видно, что для больших значений $P_{nab.}$ и P_{\perp}^2 ($P_{nab.} > 4$ ГэВ/с и $P_{\perp}^2 > 1,5$ (ГэВ/с)²) учет ошибок измерений несколько меняет форму распределений. Особенно это заметно для резко спадающего при $P_{nab.} > 4$ ГэВ/с распределения по $P_{nab.}$ для рС-событий. Для взаимодействий с большим начальным импульсом искажение распределений вторичных частиц из-за ошибок измерений будет более су-

щественным, что следует из увеличения ширины распределения по k с ростом импульса (см. рис. 1,2). Следует отметить, что в описанном примере учитывались не все факторы, которые влияют на разброс измеренных значений

Рис. 3. Распределение по Р_{паб.} для протонов из pC-и CC-событий (ДКМ) без учета ошибок измерений (О и Δ) и с учетом ошибок измерений (● и ▲).

Рис. 4. Распределение по P_{\perp}^2 для протонов из pC- и CC-событий (ДКМ). Обозначения те же, что на рис. 3. Прямые — аппроксимация распределений в области $P_{\perp}^2 > 1$ (ГэВ/с)² экспонентой, в — показатель экспоненты.

импульсов. Так, например, для треков частиц, летящих под большими углами к плоскости фотографирования, измерительные ошибки будут больше, чем те, которые можно учесть только на основе данных по измерению пучковых протонов.

Из изложенного следует, что при импульсах частиц Р_{лаб.} > > 4 - 5 ГэВ/с (для данной методики измерений) для корректного сравнения модельных расчетов с экспериментальными

данными необходимо учитывать влияние ошибок измерений на форму распределений по кинематическим переменным.

2. ОЦЕНКА ЭФФЕКТИВНОСТИ КРИТЕРИЕВ ОТБОРА ВЗАИМОДЕЙСТВИЙ НА ЯДРАХ УГЛЕРОДА ИЗ СОБЫТИЙ В ПРОПАНЕ

При использовании в качестве мишени рабочей жидкости пропановой пузырьковой камеры возникает задача разделения зарегистрированных событий на взаимодействия с ядрами водорода и ядрами углерода, входящими в состав пропана (C_3H_8). Для выделения событий на углеродной мишени из событий в пропане обычно используются $^{/2,3/}$ следующие критерии: 1) $n_+ - n_- > Z_A + 1; 2)$ $n_p > 1; 3)$ $n_p^b > 0;$ 4) $n_- > N(P_0)$; 5) $m_t = \Sigma (E_i - P_i') > 1,1 m_p$. Здесь $n_+(n_-) - 4$ исло положительных (отрицательных) частиц в событии; $Z_A - 3аряд$ налетающей частицы (ядра); $n_p - 4$ исло медленных ($P_{na6.} < 0,75$ ГэВ/с) протонов в событии; $n_p^b - 4$ исло протонов, вылетающих в заднюю полусферу в лабораторной системе; $m_t -$ т.н. масса мишени, $m_p -$ масса протона, E_i , $P_i' - 3$ нергия и продольный импульс і-й частицы, суммирование в пятом критерии идет по всем заряженным частицам в событии, кроме положительных с P_{na6} /Z > 3 ГэВ/с, $\theta < 4^{\circ}$ и протонов с $P_{na6} < 300$ МэВ/с, которые считаются непровзаимодействовавшими фрагментами ядра-снаряда и мишени. Величина N(P₀) определяется по значениям топологических сечений рождения π^- -мезонов в Ар-взаимодействиях, и при импульсе налетающей частицы 4,2 ГэВ/с на нуклон она равна 1 для рС₇ 2 для dC -, α C - и CC-взаимодействий.

Применение указанных критериев, например, для CC₃ H₈-взаимодействия при начальном импульсе 4,2 ГэВ/с на нуклон дает возможность выделить около 98% из числа событий, ожидаемых в соответствии с известными сечениями СС- и Ср-взаимодействий^{/4/}. Возникает, однако, вопрос — насколько точно критерии (1-5) выделяют именно углеродные события, насколько велика примесь событий на водороде среди выделенных?

Для выяснения этого вопроса была промоделирована процедура разделения событий в пропане. В качестве исходных данных использовались события pC- и CC-взаимодействий при импульсе 4,2 ГэВ/с на нуклон, которые выделялись из банка моделированных по каскадной (ДКМ) модели столкновений ядер. Взаимодействия pC были пересчитаны в антилабораторную систему и вместе с CC-событиями составили 24250 CC₃H₈-взаимодействий. Соотношение между числом Cp- и CCсобытий соответствовало отношению экспериментальных Cp- и CCнеупругих сечений взаимодействия⁷⁴⁷. На вторичные частицы из моделированных событий накладывались условия, близкие к экспериментальным условиям регистрации частиц:

— протоны считались зарегистрированными, если они имели импульс $P_{na6.} > 150$ МэВ/с, дейтроны — $P_{na6.} > 250$ МэВ/с, тритоны — $P_{na6.} > 350$ МэВ/с (частицы с меньшим импульсом имеют длину трека в камере меньше 2 мм и практически не видны в реальных событиях на снимке); дейтроны и тритоны при обработке событий считались протонами;

— π^+ -мезоны "идентифицировались" в интервале импульсов 40 МэВ/с < $P_{nab.}$ < 700 МэВ/с, π^+ -мезоны с $P_{nab.}$ >700 МэВ/с считались протонами (средняя множественность таких π^+ -мезонов около 0,5 на событие);

-- π^+ - и π^- -мезоны с Р_{лаб.} < 40 МэВ/с считались незарегистрированными (такие π -мезоны не видны в камере из-за малой длины трека);

— π^- -мезоны в интервале 40 МэВ/с < Р_{лаб.} < 70 МэВ/с считались протонами, так как в камере из-за небольшой длины такие π^- -мезоны неотличимы от остановившихся протонов (средняя множественность таких π^- -мезонов составляет ~0,03); — положительные частицы с $P_{na6.}/Z > 3 \Gamma ext{ FB/c}$ и углом вылета $\theta < 4^{\circ}$ считались непровзаимодействовавшими фрагментами ядра-снаряда, а с $P_{na6.} < 300 \text{ МэB/c}$ (дейтроны с $P_{na6.} < 500 \text{ МэB/c}$) — фрагментами ядра-ими ядра-мишени.

Ко вторичным частицам с Р_{лаб.} > 1 ГэВ/с была применена процепура моделирования процесса измерения импульсов, описанная в первом разделе. После наложения критериев (1-5) события "в пропане" разделились на группы, указанные в табл. 2. Как следует из этой таблицы, критерии (1-4) действительно выделяют преимущественно ССсобытия. Примесь в них Ср-событий - ~1%. Эта примесь возникает в основном из-за приписывания положительного знака медленным (с Р_{ваб.} < 70 МэВ/с) *п*⁻-мезонам. Применение критерия (5) в добавление к первым четырем доводит число выделенных событий до 90% от N_{ip}^{CC}, но среди них примесь Ср-событий достигает уже 16%. На рис. 5 показано распределение приведенных в табл. 2 групп событий по величине массы мишени m,. Видно, что значительная часть Ср-событий имеет значение m_t > 1,1 m_р. Примерно в 50% случаев это связано с приписыванием π^+ -мезону с $P_{na6} > 700$ МэВ/с массы протона, в остальных же случаях с протоном-мишенью, по-видимому, взаимодействует более одного нуклона из налетающего ядра, что также приводит к эффекту увеличения массы мишени. В табл. 3 даны характеристики всех неупругих СС-взаимодействий (столбец 1), событий, выделенных по критериям (1-4) (2-й столбец) и событий, выделенных по критериям (1-5) (3-й столбец). События, характеристики которых приводятся в четвертом столбце, получены статистическим разделением

Таблица 2

Количество событий, удовлетворяющих различным критериям

	СС-события	Ср-события
Всего событий	12900	11350
Событий типа дифракционного		
развала ядра (все частицы		
с $P_{na5}/Z > 3 \Gamma э B/с и \theta < 4^\circ$)	250	157
Неупругих событий (N _{in})	12650	11193
Удовлетворяет критериям (1-4)	8735	94
Не удовлетворяет критериям (1-4),		
но удовлетворяет критерию (5)	775	1764
Не удовлетворяет критериям (1-5)	3140	9335

Рис. 5. Распределение по величине m_t/m_p всех моделированных СС-событий (—), всех Ср-событий, (+), событий, выделенных по критериям (1-4) (---).

Таблица З

Характеристики различных групп выделенных событий

	Все СС-собы- тия	События, вы- деленные из С ₃ Н ₈ по кри- териям (1-4)	События, вы- деленные по критериям (1-5)	События, раз- деленные ста- тистически
$N_{co6.}$ $< n_{\pm} >$ $< n_{p} >$ $< n_{-} >$ $< n_{-} >$	$12650 \\ 8,30 \pm 0,05 \\ 4,20 \pm 0,02 \\ 1,48 \pm 0,01 \\ 1.48 \pm 0.01 \\ 1.48 \pm$	$8829 \\10,6 \pm 0,1 \\5,32 \pm 0,03 \\1,86 \pm 0,01 \\1,02 \pm 0,01 \\1,03 \pm 0,01 \\1,03 \pm 0,01 \\1,04 \\1,04 \pm 0,01 \\1,04 \\1$	$113689,15 \pm 0,054,70 \pm 0,031,60 \pm 0,01$	$126508,39 \pm 0,054,25 \pm 0,031,45 \pm 0,02$
< P _p ^{<i>p</i>+} >, Γ ₃ B/c < P ₋ >, Γ ₃ B/c < P ^p >, Γ ₃ B/c < P ^p >, Γ ₃ B/c	$\begin{array}{r} 1,48 = 0,01 \\ 1,80 \pm 0,01 \\ 0,63 \pm 0,01 \\ 0,479 \pm 0,002 \end{array}$	$\begin{array}{r} 1,86 \pm 0,01 \\ 1,75 \pm 0,01 \\ 0,61 \pm 0,01 \\ 0,474 \pm 0,002 \end{array}$	1,62 ±0,01 1,84 ±0,01 0,63 ±0,01 0,477±0,002	$\begin{array}{r} 1,52 \pm 0,02 \\ 1,84 \pm 0,01 \\ 0,62 \pm 0,01 \\ 0,475 \pm 0,002 \end{array}$

 $\rm CC_3H_8$ -взаимодействий. В этом методе к группе, выделенной по критериям (1-4), добавлялась часть событий из группы неразделенных $\rm CC_3H_8$ -событий так, чтобы суммарное число случаев равнялось ожидаемому числу CC-событий. В таком подходе предполагается, что невыделенные

по критериям (1-4) СС-взаимодействия близки по своим характеристикам к Ср-событиям, так как обусловлены в основном периферическими взаимодействиями. Из табл. 3 следует, что значения средних множественностей для событий, разделенных таким статистическим методом, ближе к значениям для истинных СС-взаимодействий, чем характеристики событий, разделенных по критериям (1-5). Средние импульсные характеристики событий, выделенных с использованием обоих методов, близки к характеристикам неупругих СС-взаимодействий.

выводы

 Критерии (1-4) выделяют ~70% СС-взаимодействий из всех моделированных событий в пропане. Эти выделенные события содержат ~90% т⁻-мезонов.

2. Использование критерия (5) приводит к значительной примеси (16%) Ср-взаимодействий среди отобранных событий.

3. Средние множественности частиц в событиях, выделенных по критериям (1-5), отличаются примерно на 10% от истинных значений.

4. Характеристики событий, отобранных по критериям (1-4) и по дополнительному статистическому разделению остатка, практически совпадают с характеристиками "чистых" СС-событий.

Приведенные результаты следует рассматривать как оценки эффектов, имеющих место в эксперименте, так как модель описывает экспериментальные данные с ограниченной точностью (на уровне 80%). Трудно также точно учесть при моделировании экспериментальные условия регистрации вторичных частиц (границы регистрации и идентификации частиц на опыте не являются резкими, а размыты в некотором интервале импульсов и углов). Однако можно сделать вывод, что как ошибки в измерении импульсов, так и эффективность критериев отбора групп событий необходимо учитывать при сравнении модельных расчетов с экспериментом.

Авторы благодарны А.П.Чеплакову за помощь в обработке измерений, В.С.Мурзину за полезные обсуждения, авторам ДКМ за возможность использовать банк данных модели, лаборантам за обработку снимков.

ЛИТЕРАТУРА

1. Гудима К.К., Тонеев В.Д. – ЯФ, 1978, т.27, с.658;

Gudima K.K., Toneev V.D. - Nucl. Phys.A, 1983, v.400, p.173.

- 2. Агакишиев Г.Н. и др. ОИЯИ, 1-83-662, Дубна, 1983.
- 3. Армутлийски Д. и др. ОИЯИ, Р1-86-263, Дубна, 1986.
- 4. Ангелов Н. и др. ОИЯИ, P1-80-473, Дубна, 1980; ЯФ, 1980, т. 33, с. 1046.

Рукопись поступила в издательский отдел 9 июня 1988 года.