

A 139

P1-88-406

А.У.Абдурахимов, М.Х.Аникина, Г.Л.Варденга, М.Газдзицкий¹, Т.Д.Джобава², К.Йовчев³, Е.С.Кузнецова, Ю.Лукстиньш, Н.Н.Нургожин⁴, Э.О.Оконов, Т.Г.Останевич, И.И.Тулиани², Е.К.Хусаинов⁴, Л.В.Чхаидзе²

РАЗМЕРЫ ОБЛАСТИ ИСПУСКАНИЯ ВТОРИЧНЫХ 17⁻ - МЕЗОНОВ В НЕУПРУГИХ И ЦЕНТРАЛЬНЫХ ЯДРО-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ Е_р = 3,66 А·ГэВ

¹ Институт экспериментальной физики Варшавского университета

² Тбилисский государственный университет

³ Высший химико-технологический институт, София

⁴ Институт физики высоких энергий АН КазССР, Алма-Ата

Метод определения пространственно-временных характеристик области излучения частиц на основе интерференции тождественных частиц^{/1,2/}, который нашел широкое применение в исследовании адронадронных взаимодействий, стал успешно использоваться и в экспериментах с релятивистскими ядрами ^{/3-6}.

В данной работе приводятся результаты анализа экспериментального материала, полученного с помощью двухметрового стримерного спектрометра СКМ-200 ⁷⁷, экспонированного в пучках ядер ⁴He, ¹²C, ¹⁸O с энергией 3,66 А · ГэВ. В исследованиях использовались различные мишени (Li, C, Cu), представляющие собой тонкие диски толщиной 0,2 – 0,5 г/см², которые располагались внутри рабочего объема камеры. Газ Ne, заполняющий камеру, также служил мишенью. Точность измерения импульсов пионов составила 3-4%, углов – 5 · 10⁻³ рад.

Триггерная система отбирала неупругие взаимодействия по выбыванию ядра снаряда A_p из пучка, а центральные взаимодействия — по отсутствию фрагментов-спектаторов налетающего ядра в переднем конусе в пределах угла запрета θ_{ch} для заряженных фрагментов и θ_n — для спектаторов-нейтронов. Различные варианты триггера будут обозначаться следующим образом: $T(\theta_{ch}, \theta_n)^{/8/}$, где θ_{ch} и θ_n округлены до градуса.

Эффект интерференции тождественных пионов проявляется в виде увеличения вероятности испускания близких по кинематическим характеристикам пар этих частиц по сравнению со случаем отсутствия интерференции. Когда тождественные бозоны испускаются независимо с поверхности диска радиуса г, то двухчастичная плотность в фазовом пространстве может быть записана в виде / 9 /

$$P = \left\{ 1 + \frac{\left[2J_1(q_{\perp}r) / q_{\perp}r \right]^2}{1 + \left(q_0 r\right)^2} \right\} P_0 , \qquad (1)$$

где $\mathbf{q}_0 = |\mathbf{E}_1 - \mathbf{E}_2|, \ \vec{\mathbf{q}}_\perp = \vec{\mathbf{q}} - (\vec{\mathbf{q}} \cdot \vec{\mathbf{n}}), \ \mathbf{q} = \vec{\mathbf{P}}_1 + \vec{\mathbf{P}}_2, \ \mathbf{n} = \vec{\mathbf{q}} / |\vec{\mathbf{q}}|, \ r$ — время жизни источников излучения, $\mathbf{E}_1, \ \vec{\mathbf{P}}_1$ и $\mathbf{E}_2, \ \vec{\mathbf{P}}_2$ — энергии и импульсы двух частиц, $\mathbf{J}_1(\mathbf{q}_\perp \mathbf{r})$ — функция Бесселя, \mathbf{P}_0 — плотность в фазовом пространстве в отсутствие интерференции. Из-за ограниченной статистики анализировались только одномерные распределения:

$$R(q_{\perp}^{2}) = \frac{N_{\phi}}{N} \frac{dN(q_{\perp}^{2})}{dN_{\phi}(q_{\perp}^{2})} \qquad (2)$$

$$R(q_{\perp}^{2}) = \frac{N_{\phi}}{N} \frac{dN(q_{\perp}^{2})}{dN_{\phi}(q_{\perp}^{2})} \qquad (2)$$

$$R(q_{\perp}^{2}) = \frac{N_{\phi}}{N} \frac{dN(q_{\perp}^{2})}{dN_{\phi}(q_{\perp}^{2})} \qquad (2)$$

Экспериментальные распределения $R(q_{\perp}^2)$ для пар π^- -мезонов, аппроксимирующая кривая получена с помощью формулы (3).

где $dN(q_{\perp}^2)$ — число пар π^- -мезонов, образованных в одних и тех же событиях в пределах интервалов Δq_{\perp} и Δq_0 , $dN_{\varphi}(q_{\perp}^2)$ — число случайно выбранных пар π^- -мезонов из разных событий, использованное нами в качестве фона, N и N_{φ} — нормировочные множители.

Tet

Радиус с области испускания *т* -мезонов определялся путем аппроксимации экспериментальных распределений (2) функцией

$$R(q_{\perp}^{2}) = a(1 + \lambda \frac{4J_{1}^{2}(q_{\perp}^{2}r)}{(q_{\perp}r)^{2}}), \qquad (3)$$

которая получается из (1) при усреднении по некоторому интервалу q_0 . Здесь а и λ — свободные параметры. Для иллюстрации на рисунке представлены полученные при $q_0 \le 0,2$ ГэВ распределения для пар π — мезонов, рожденных в неупругих HeL1-взаимодействиях. Значения для радиуса области испускания π — мезонов приведены в таблице.

Из-за недостаточной статистической обеспеченности данных для различных пар ядер в Не А_t-неупругих взаимодействиях они были объединены в одну группу, так же как и центральные взаимодействия близких по массе пар ядер — СNe и ONe.

		Таолица
$A_p + A_t$	T ($\theta_{\rm ch}$, $\theta_{\rm n}$)	г (фм)
⁴ He + Li ⁴ He + C ⁴ He + Ne	T (0,0) T (0,0) T (0,0)	4,4±0,6
$\frac{^{12}C + Ne}{^{16}O + Ne}$	T (2,0) T (2,2)	4,3 ±0,9
$^{12}C + Cu$	T (3,3)	3,9±0,8

Как видно из таблицы, полученные радиусы испускания *п*⁻-мезонов не отличаются друг от друга в пределах приведенных ошибок, не обнаруживая значительной зависимости значений г от A_p и A_t и степени центральности A_p A_t -соударений.

Сравнение приведенных данных с результатами соответствующего анализа для π^- -мезонов, рожденных в пучках релятивистских ядер с ядрами при меньших энергиях $^{/3,6/}$, также указывает на отсутствие значительных различий в величинах, полученных в области энергий налетающих ядер $E_p = 1,8-3,66 \text{ A} \cdot \Gamma$ эВ.

Для последовательного сравнительного анализа требуются статистически более обеспеченные данные.

Авторы благодарны М.И.Подгорецкому за плодотворные обсуждения.

ЛИТЕРАТУРА

- 1. Копылов Г.И., Подгорецкий М.И ЯФ, 1972, 15, с.392; ЯФ, 1974, 19, с.434; ЖЭТФ, 1975, 69, с.414.
- 2. Cocconi G. Phys.Lett., 1974, 49B, p.459,
- 3. Fung S.V. et al. Phys. Rev. Lett., 1978, v.41, p.1592.
- 4. Ангелов Н. и др. ЯФ, 1980, 31, c.411.
- 5. Агакишиев Г.Н. и др. **ЯФ**, 1984, 39, с.543.
- 6. Zajc W.A. et al. Preprint LBL 16930, 1982.
- 7. Абдурахимов А.У. и др. ПТЭ, 1978, №5, с.53.
- 8. Аникина М.Х. и др. ЯФ, 1987, 45, с.1680.
- 9. Kopylov G.I. Phys.Lett., 1974, B50, p.472.

Рукопись поступила в издательский отдел 7 июня 1988 года.