

Объединенный институт ядерных исследований

дубна

K-19

P1-88-30

1988

Т.Канарек, Е.Н.Кладницкая, Г.П.Тонеева*, Р.Тогоо

СПЕКТРЫ ПРОТОНОВ И *π*--МЕЗОНОВ В СС-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 4,2 ГэВ/с на нуклон

Направлено в журнал "Ядерная физика"

Научно-исследовательский институт ядерной физики МГУ

Канарек Т. и др. P1-88-30 Спектры протонов и *п*⁻мезонов в СС-взаимодействиях при импульсе 4,2 ГэВ/с на нуклон

Приводятся инвариантные сечения выхода протонов и π^- -мезонов под фиксированными углами в системе покоя ядра-мишени в зависимости от импульсов этих частиц для СС-взаимодействий при 4,2 ГэВ/с на нуклон. Спектры протонов и π^- мезонов, испускаемых под углами $\theta > 20^\circ$, описываются экспонентой вида $\sigma_{\text{инв}} =$ = $\operatorname{Aexp}(-P/P_0^{p(\pi^-)})$. Параметры P_0^p и $P_0^{\pi^-}$ убывают с увеличением θ . Значения параметров $P_0^{\pi^-}$ меньше величин P_0^p в соответствующих угловых интервалах до $\theta = 70^\circ$. Для углов выше 70° значения P_0^p и $P_{\pi^-}^{\pi^-}$ близки между собой.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод Л.Н.Барабаш.

Kanarek T. et al. Proton and π -Meson Spectra in CC-Interactions at 4.2 GeV/c per Nucleon Momentum

The invariant cross sections of proton and π -meson production have been measured at fixed angles in the rest system of the target nucleus versus the momenta of these particles for CC-interactions at 4.2 GeV/c per nucleon. The spectra of protons and π -mesons emitted at angles, θ , of > 20° are described by an exponent of the type $\sigma_{\text{MHB}} = A \exp(-P/P_0^{p(\pi^{-1})})$. The parameters P_0^p and $P_0^{\pi^{-1}}$ decrease with increasing θ . The values of $P_0^{\pi^{-1}}$ are smaller than those of P_0^p in the corresponding angular intervals to $\theta = 70^\circ$. The values of P_0^p and $P_0^{\pi^{-1}}$ are similar for angles above 70°.

P1-88-30

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988

ВВЕДЕНИЕ

Настоящая работа посвящена анализу спектров протонов и *п*мезонов в лабораторной системе в угловом интервале от 0 до 180° во взаимодействиях ядер углерода с импульсом 4,2 ГэВ/с на нуклон с углеродной мишенью. Представленные спектры охватывают практически полный интервал импульсов протонов и отрицательных пионов, кинематически доступный для исследуемых СС-взаимодействий.

В экспериментах по изучению ядро-ядерных соударений, проводившихся на дубненском синхрофазотроне, анализировались распределения протонов и *т*-мезонов из области фрагментации либо ядрамишени^{/1-4/}, либо ядра-снаряда^{/5-7/}. Спектры протонов в широком интервале импульсов и углов получены во взаимодействиях ядер меньших энергий (до 2,1 ГэВ) на ускорителе Бэвалак (см., например, ^{/8/}).

Исследованию спектров протонов в интервале до 1 ГэВ/с в адронядерных взаимодействиях посвящены эксперименты, выполненные в ИТЭФ (см., например, работу ^{/9/} и ссылки в ней).

Новые результаты измерения инвариантных сечений реакций рА - р X и рА - π^{\pm} X для импульсов вторичных протонов и π^{-} -мезонов в интервалах 0,6 ÷ 1,83 ГэВ/с и 0,6 ÷ 1,62 ГэВ/с соответственно под углом 119° при энергии первичных протонов 10 ГэВ приведены в работах /10/

Инклюзивные распределения протонов и *п*-мезонов по кинематическим переменным в СС-взаимодействиях при 4,2 ГэВ/с на нуклон опубликованы в /11,12/

ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Использованы стереофотографии, полученные при облучении двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ ядрами углерода с импульсом 4,2 ГэВ/с на нуклон.

Взаимодействия на ядре углерода отбирались из всех событий в пропане согласно описанной ранее методике ^{/11/}. Всего было отобрано 3342 события.

На снимках с пропановой камеры эффективность идентификации протонов близка к 100% лишь для интервала импульсов 0,15÷0,5 ГэВ/с. Протоны с импульсом Р_{лаб} < 0,15 ГэВ/с в камере не видны из-за малого пробега (< 2 мм). Для получения спектра протонов в интервале импульсов выше 0,5 ГэВ/с использовалась следующая процедура:

LUSSING REAL DURING **GHEIMOTEHA**

1

из распределений однозарядных положительных частиц, куда входят протоны (с примесью дейтронов и ядер трития) и π^+ -мезоны с $P_{na6} > 0,5$ ГэВ/с, вычитались распределения π -мезонов с $P_{na6} > 0,5$ ГэВ/с. Для СС-взаимодействий такой подход вполне правомерен, поскольку спектры π^+ и π^- -мезонов должны совпадать. Примесь дейтронов и ядер трития среди однозарядных фрагментов составляет не более $10 \div 15\%$ /8,13/. Из спектров были исключены стриппинговые фрагменты ядра-снаряда ($P_{na6} > 3$ ГэВ/с и $\theta_{na6} < 4^\circ$) и ядра-мишени ($P_{na6} < < 0,3$ ГэВ/с) /11/. Все отрицательные частицы в отобранных СС-взаимодействиях считались π^- -мезонами. В пропановой камере π^- -мезоны надежно идентифицируются с импульсом $P_{na6} > 0,07$ ГэВ/с. В дальнейшем анализе использовано ~15000 протонов и ~6000 π^- -мезонов^{*}.

ИМПУЛЬСНЫЕ РАСПРЕДЕЛЕНИЯ ПРОТОНОВ

Зависимости инвариантных сечений выхода протонов $\sigma_{\text{инв}} = E/P^2 d^2 \sigma / dp d\Omega$ от их импульса в лабораторной системе для фиксированных угловых интервалов показаны на рис.1-3. Видно, что форма спектров существенно зависит от угла вылета протонов. При малых углах (5÷10°) инвариантное сечение протонов слабо меняется вплоть

до 4 ГэВ/с, т.е. до величины, соответствующей импульсу на нуклон ядра-снаряда. Выше 4 ГэВ/с спектр экспоненциально убывает. Появление в СС-взаимодействиях протонов с импульсами, превышающими импульс нуклона в налетающем ядре (в нашем случае доля таких протонов составляет (10±1)%), обсуждалось в работе^{/11/}

Для θ_{na6} выше 10° спектры принимают спадающий вид и могут быть аппроксимированы экспонен-

Рис.1. Инвариантные сечения выхода протонов в интервалах углов $5^{\circ} \div 10^{\circ}(O)$, $10^{\circ} \div 20^{\circ}(\bullet)$ и $20^{\circ} \div 30^{\circ}(\times)$ в зависимости от импульса протонов.

π-мезоны взяты из несколько большей статистики СС-событий, чем про-

Рис.2. Инвариантные сечения выхода протонов в интервалах углов $30^{\circ \div}$ $\div 40^{\circ}(O), 40^{\circ \div} 50^{\circ}(\bullet), 50^{\circ} \div$ $\div 60^{\circ}(\times)$ (a); $60^{\circ \div} 70^{\circ}(O),$ $70^{\circ} \div 80^{\circ}(\bullet)$ (б) в зависимости от импульса протонов.

Рис.3. Ивариантные сечения выхода протонов в интервалах $80^{\circ} - 90^{\circ}(\bullet)$, $90^{\circ} \div 110^{\circ}(\circ)$ (a); $110^{\circ} \div 130^{\circ}(\bullet)$, $130^{\circ} \div 180^{\circ}(\circ)$ (б) в зависимости от импульса протонов.

Таблица

Интервал ^Ө лаб, град	Интервал Р _{лаб} , ГэВ/с	P _o ^p , χ ² / ΓэΒ/c	ст.св.	Интервал Р _{лаб} , ГэВ/с	Р ₀ ^{π-} , ГэВ/с	χ ² /ст.св.
10-20	0,8-4,0	1,14± 0,03	1,4	0,5-2,6	0,36 ± 0,01	1,2
20-30	0,4-4,0	0,60± 0,01	0,9	0,1-2,3	0,31± 0,01	1,8
30-40	0,3-3,4	$0,42 \pm 0,01$	1,0	0,1-1,8	0,26± 0,01	1,1
40-50	0,3-2,8	0,31±0,01	1,2	0,1-1,5	0,21± 0,01	0,6
50-60	0,3-2,4	0,24± 0,01	1,8	0,1-1,3	0,156± 0,005	2,6
60-70	0.3-2.0	$0,19 \pm 0,01$	0,7	0,1-1,1	0,138±0,006	0,6
70-80	0.3-1.6	$0,12 \pm 0,01$	3,9	0,1-1,1	0,121±0,007	1,0
80-90	0,3-1,1	$0,12 \pm 0,01$	1,2	0,1-0,9	0,104±0,007	1,3
90-110	0,3-1,1	$0,101 \pm 0,005$	1,7	0,1-0,7	0,085± 0,005	0,9
110-130	0,3-0,9	$0,081 \pm 0,007$	1,3	0,1-0,6	0,074± 0,005	1,4
130-180	0,3-0,9	0,082± 0,007	1,2	0,1-0,5	0,056± 0,004	1,1

той вида $\sigma_{\text{инв}} = \operatorname{Aexp}\left(-P/P_0^p(\theta)\right)$. Значения параметра $P_0^p(\theta)$, интервалы Р_{паб}, по которым проводилась аппроксимация, и значения χ^2 на степень свободы для фиксированных угловых интервалов приведены в таблице. На рис.1-3 результаты фита показаны прямыми линиями. Значения Рр(в) уменьшаются с увеличением угла испускания протонов примерно до 110°, а далее, в пределах ошибок, остаются постоянными. Полученная в нашем эксперименте зависимость P_0^p от θ_{na6} (θ_{na6} > > 20°) для спектров протонов совпадает с зависимостью Р от угла вылета протонов, полученной в работе при описании спектров протонов в интервале 350 ÷ 900 МэВ/с для СС-взаимодействий при 4,5 ГэВ/с на нуклон (рис.4).

Распределение протонов, вылетающих под углами $\theta_{nab} > 20^\circ$ по продольной быстроте (рис.5), показывает, что анализируемые нами спектры в указанном угловом интервале содержат протоны не только из области фрагментации ядра-мишени, но частично и из центральной области, куда входят протоны из обоих сталкивающихся ядер.

ИМПУЛЬСНЫЕ РАСПРЕДЕЛЕНИЯ п⁻-МЕЗОНОВ

Инвариантные сечения выхода л -мезонов в СС-соударениях в зависимости от импульса в лабораторной системе показаны на рис.6-8. При малых углах вылета "-мезонов сечения мало меняются для Р паб до 1 ГэВ/с, а потом быстро убывают.

Рис.6. Инвариантные сечения выхода п -мезонов в интервалах углов $5^{\circ} \div 10^{\circ}$ (•). $10^{\circ} \div 20^{\circ}$ (O). $20^{\circ} \div 30^{\circ}$ (×). 6 зависимости от импульса п-мезонов.

CC → π⁻+..

- 50 5**0° - 6**0

30-40

2.0

P108. (13B/c)

Выше 20° спектры π^- мезонов экспоненциально спадают с увеличением P_{na6} . Так же, как и для протонов, спадание усиливается по мере возрастания θ_{na6} . Аппроксимация инвариантных сечений функций $q_{\text{инв}} = a \exp(-P/P_0^{\pi}(\theta))$ дала значения P_0^{π} , представленные в таблице. Параметры P_0^{π} убывают вплоть до самых больших углов, однако убывание идет медленнее, чем у параметра P_0^{p} . Значения P_0^{π} меньше величины P_0^{σ} для небольших углов, по мере увеличения θ_{na6} эти параметры сближаются и в угловом диапазоне 70 \div 80° совпадают. Для углов выше 80° P_0^{p} и $P_0^{\pi-}$ близки между собой, хотя $P_0^{\pi-}$ систематически меньше P_0^{p} (см. таблицу).

ЗАКЛЮЧЕНИЕ

Во взаимодействиях ядер углерода с углеродной мишенью при импульсе 4,2 ГэВ/с на нуклон спектры всех протонов с $P_{na6} > 0,3$ ГэВ/с, испускаемых под углами $\theta_{na6} > 20^{\circ}$ (это 45% протонов), могут быть описаны экспонентой вида $\sigma_{\rm MHB} = A \exp{(-P/P_0^{\rm p}(\theta))}$. Значения параметров $P_0^{\rm p}(\theta)$ убывают с увеличением угла вылета протонов от 20° до 110°, а в интервале 110°÷180° остаются постоянными.

Значения параметров $P_0^p(\theta)$ при соответствующих углах совпадают с величинами $P_0^p(\theta)$, полученными в работе^{/3/} при описании спектров протонов в ограниченном интервале импульсов (350 ÷ 900 МэВ/с) в СС-взаимодействиях при импульсе 4,5 ГэВ/с на нуклон.

При фиксированном угле вылета ($\theta_{nab} > 20^{\circ}$) одной экспонентой описывается импульсный спектр, включающий протоны не только от фрагментации ядра-мишени, но и частично из центральной области по продольной быстроте, куда попадают протоны от фрагментации обоих сталкивающихся ядер.

Спектры π^- -мезонов ($P_{na6} > 0,1$ ГэВ/с) из тех же СС-соударений при углах $\theta_{na6} > 20^{\circ}$ (это 68% всех π^- -мезонов) также описываются экспонентой с параметрами $P_0^{\pi^-}(\theta)$, убывающими с увеличением θ_{na6} от 20° до 180°. Значения параметров $P_0^{\pi^-}$ меньше величин P_0^{p} в соответствующих угловых интервалах до $\theta_{na6} = 70^{\circ}$. Для углов выше 70° значения P_0^{p} и $P_0^{\pi^-}$ близки между собой.

Подобное соотношение параметров P_0^p и P_0^{π} для углов больше 90° наблюдалось в протон-ядерных взаимодействиях, например в pAl соударениях при 8,9 ГэВ/с²² и 10 ГэВ^{/10/}. При этом сами параметры P_0^p и P_0^{π} , определенные нами, в пределах ~ 10% погрешностей совпадают с соответствующими параметрами из работ ^{/2,10/}.

Авторы работы^{/3/} уже отмечали, что имеет место подобие формы спектров протонов в области углов $\theta_{na6} > 90^{\circ}$ как для протон-ядерных (4 ГэВ/с^{/14/} и 7,5 ГэВ/с^{/15/}), так и для ядро-ядерных взаимодействий при 4,5 ГэВ/с на нуклон.

Из сравнения наших результатов с данными работ^{2/2/} и ^{/10/} аналогичное заключение можно сделать относительно спектров π^- -мезонов, испускаемых под углами $\theta_{na6} > 90^\circ$. Авторы выражают благодарность Е.Бартке за полезные обсуждения, участникам сотрудничества по исследованию на двухметровой пропановой камере за получение экспериментального материала, лаборантам за просмотр пленок и измерение событий, И.И.Зайцевой, З.В.Сафроновой за помощь в оформлении рукописи.

ЛИТЕРАТУРА

1. Ставинский В.С. – ЭЧАЯ, 1979, т.10, вып.3, с.949.

2. Baldin A.M. et al. JINR, E1-82-472, Dubna, 1982;

Балдин А.М. и др. ОИЯИ, РІ-83-432, Дубна, 1983.

- 3. Адьясевич Б.П. и др. ЯФ, 1984, т.40, в.2(8), с.495.
- 4. Аникина М.Х. ЯФ, 1984, т.40, с.489.
- 5. Abdurakhimov A.U. JINR, EI-12730, Dubna, 1979; Nucl. Phys. A, 1981, v. 362, p. 376.
- 6. Глаголев В.В. и др. ОИЯИ, 1-80-244, Дубна, 1980; ОИЯИ, Р1-85-149, Дубна, 1985.
- 7. Ableev V.G. et al. Nucl. Phys. A, 1983, v. 393, p.491.
- 8. Nagamija S. et al. Phys. Rev. C, 1981, v.24, p.971.
- 9. Бургов Н.А. и др. ЯФ, 1976, т.24, вып.6, с.1183.
- 10. Бояринов С.В. и др. ИТЭФ, 86-130, М.: ЦНИИатоминформ, 1986; ИТЭФ, 87-5, М.: ЦНИИатоминформ, 1987.
- 11. Армутлийски Д. и др. ОИЯИ, Р1-86-263, Дубна, 1986; ЯФ, 1987, т.45, вып.4, с.1047.
- 12. Агакишиев Г.Н. и др. ОИЯИ, Р1-84-35, Дубна, 1984; ЯФ, 1984, т.40, с. 1209.
- 13. Adjasevich B.P. et al. IAE-4148/2, Moscow, 1985.
- 14. Nakai K. et al. Phys.Lett., 1983, v.121B, N6, p.373.
- 15. Баюков Ю.Д. и др. ЯФ, 1985, т.42, вып.1(7), с.185; ЯФ, 1985, т.42, вып.2(8), с.377.

Рукопись поступила в издательский отдел 13 января 1988 года.

6