ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

9/11-25 P1 - 8703

A-61

2079/2-75

Н.С.Амаглобели, Ю.А.Будагов. В.Б.Виноградов, А.Г.Володько, А.Ш.Гавашели, В.П.Джелепов, В.С.Кладницкий, Ю.Ф.Ломакин, Р.Г.Салуквадзе, В.Б.Флягин, Д.И.Хубуа, Л.Шандор

РОЖДЕНИЕ РЕЗОНАНСОВ В **π** п ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГЭВ (Четырехчастичные конечные состояния)

P1 - 8703

Н.С.Амаглобели, Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, А.Ш.Гавашели, В.П.Джелепов, В.С.Кладницкий, Ю.Ф.Ломакин, Р.Г.Салуквадзе, В.Б.Флягин, Д.И.Хубуа, Л.Шандор

РОЖДЕНИЕ РЕЗОНАНСОВ В 77⁻ n ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГЭВ (Четырехчастичные конечные состояния)

Направлено в ЯФ

Codemonuti untery i Complete population i EMERINO PEHA

*Тбилисский государственный университет, Тбилиси.

В течение последних лет довольно подробно исследовались процессы образования резонансов при взаимодействиях пионов с протонами и, в частности, в четырехчастичных конечных состояниях π^{+} π^{+} π^{-} π^{-} $p^{/1/}$. Олнако до сих пор имеются лишь отдельные отрывочные сведения о подобных реакциях, происходящих на нейтроне. данные для которых получены на дейтерневых пузырьковых камерах /2/. За исключением информации, извлекаемой из экспериментов по фоторождению резонансов на ядрах и по исследованию когерентного рождения адронных систем на ядрах, в настоящее время отсутствуют данные по систематическому изучению свойств резонансов, рожденных на внутриядерных нуклонах. Поэтому представлялось важным получить экспериментальные сведения о четырехчастичных конечных состояниях, образующихся при взаимодействии л-мезонов с импульсом 5 ГэВ/с с квазисвободными нейтронами ядра углерода, т.е. о реакции $\pi^- n \rightarrow \pi^- \pi^- \pi^+ n$.

В работе представлены данные о следующих процесcax:

$$\pi^{-}\mathbf{n} \rightarrow \pi^{-}\pi^{-}\pi^{+}\mathbf{n},$$

$$\rightarrow \rho^{\circ}\pi^{-}\mathbf{n},$$

$$\rightarrow \pi^{+}\pi^{-}\Delta_{\overline{3}3},$$

$$\rightarrow \rho^{\circ}(\mathbf{f}^{\circ})\Delta_{\overline{2}2}.$$

3

Рис. 1. Распределения эффективных масс: $a/(\pi^+\pi^-)$ комбинаций; сплошная кривая - /52,3±3,8/% ρ - мезона, /3,8±1,6/% f · мезона, взятых в форме Брейт-Вигнера/14/, и /43,9±5,0/% фона/($\pi^-\pi^-$) - распределение/; б/(π^-n) комбинаций; сплошная кривая - /41,7±2,4/% Δ_{33} в форме/14/ и /58,3±4,0/% фона /(π^+n) - распределение вне области Δ^+ -резонанса/.

полученные на основе анализа 5500 событий, удовлетворяющих критериям отбора реакции $\pi^-n \to \pi^-\pi^-\pi^+ n^{/3/2}$ Указанный статистический материал отобран в результате просмотра 124.000 фотоснимков экспозиции метровой пропановой камеры в пучке π^- -мезонов с импульсом 5 $\Gamma \rightarrow B/c^{-4/2}$.

На рис. 1 приведены распределения по эффективным массам $(\pi^+\pi^-)-\mathbf{u}(\pi^-\mathbf{n})$ -комбинаций /две комбинации на l событие/. Там же показаны распределения эффективных масс тех же комбинаций после вычитания "фона". В качестве фоновых были взяты экспериментальные распределения эффективных масс $(\pi^-\pi^-)-\mathbf{u}(\pi^+\mathbf{n})$ -комбинаций соответственно. При этом пренебрегалось незначительным /5%/ вкладом Δ^+_{33} для $(\pi^+\mathbf{n})$ распределения. На указанных рисунках отчетливо видно, что процессы с рождением ρ° -мезона и Δ^-_{33} -изобары дают весомый вклад в соответствующие распределения, хорошо виден также

Рис. 2. Диаграмма Гольдгабера для реакции $\pi^{-}n \rightarrow (\pi^{+}\pi^{-})(\pi^{-}_{2}n)$. По осям отложены эффективные массы комбинаций $(\pi^{+}\pi^{-}_{1})$ и $(\pi^{-}_{2}n)$ с наименьшими переданными им импульсами.

4

5

Рис. 3. Распределение эффективных масс $(\pi^+ \pi_1^-)$ -комбинаций, взятых из событий с /1,1 ГэВ/с² $\leq M_{\pi_2^- n} \leq (1,4 \ \Gamma$ эВ/с²/.

пик, обязанный f°-мезону. На двумерной диаграмме /рис. 2/, где по осям отложены эффективные массы $(\pi^+\pi_1^-)$ -и (π_2^-n) -комбинаций с наименьшими переданными четырехимпульсами

 $t_{\pi^{-},(\pi^{+}\pi_{1}^{-})} = t_{n,(\pi_{2}^{-}\pi_{1}^{-})} \min\{t_{\pi^{-},(\pi^{+}\pi_{1}^{-})}; t_{\pi^{-},(\pi^{+}\pi_{2}^{-})}\}$

от налетающего пиона /нуклона мишени/ системе $(\pi^+ \pi^-)[(\pi^- n)]$, заметно скопление событий в полосах, соответствующих рождению ρ -мезона н Δ_{33} -изобары, и в области перекрытия этих полос, соответствующей совместному рождению ρ и Δ_{33} . На рис. 3 представлено распределение эффективных масс $(\pi^+ \pi_1)$ -комбинаций для событий, взятых из области Δ_{33}^- резонанса /1,1 Γ эB/с $\leq M_{\pi_2^- n} \leq 1,4 \ \Gamma$ эB/с²/, иллюстрирующее парное рождение резонансов.

В табл. 1 приведены результаты обработки распределений эффективных масс, представленных на рис. 1. Значительное увеличение ширины резонансов в нашем эксперименте по сравнению с табличными данными обя-

Резонанс	М, резонанса,	МэВ/с ² Ши	рина рез.	Γ, MaB/c ²
	наши данные	табличные данные	наши данные	табличные данные
р°-мезон	819±12	770 <u>+</u> 10	324+56	150±10
f° -мезон	1280+9	1270+10	55+43	170+30
Δ_{33}^- изобара	1283 <u>+</u> 9	1230-1236	265 <u>+</u> 26	110+122

Таблица

зано в основном эффектам взаимодействия продуктов распада резонансов с нуклонами родительского ядра ^{/5/}.

В табл. 2 приведены данные по сечениям процессов $/2/\div/4/$ с рождением резонансов ρ , f и Δ вместе с аналогичными данными для четырехчастичных $\pi^+ p$ - взаимодействий. Наши данные отнормированы на полное сечение процесса $\pi^+ p \rightarrow \pi^+ \pi^+ \pi^- p$ при энергии 5 $\Gamma \ni B^{/6/2}$:

$$\sigma_{\pi^+ p \to \pi^+ \pi^+ \pi^- p} = /2,76 \pm 0,04/$$
 мбарн.

Заметное уменьшение сечений образования Δ^- и совместного рождения $\rho(f)$ -мезона и Δ^- -изобары в нашем эксперименте по сравнению с данными работы $\frac{6}{6}$ может

Ta	блица	2
----	-------	---

Реакция π [−] n →	сечение канала (мбарн)	реакция <i>π⁺</i> р →	сечение канала (мбарн)	энергия (ГэВ)
$\Delta_{33}^{-}\pi^{+}\pi^{-}$	0 , 80 <u>+</u> 0,09	$\Delta_{33}^{++}\pi^{+}\pi^{-}$	1,10 <u>+</u> 0,02 1,36 <u>+</u> 0,18 1,26 <u>+</u> 0,13	4,0 /7/ 5,5/8/ 7,0/9/
ρ°π n	1,32 <u>+</u> 0,17	ρ°π ⁺ p	0,65 <u>+</u> 0,13 1,25 <u>+</u> 0,17 0,69 <u>+</u> 0,13	4,0 ^{/7/} 5,5 ^{/8/} 7,0 ^{/9/}
f° π ⁻ n	0,11 <u>+</u> 0,05			~
ρ°Δ 3 3	0,23 <u>+</u> 0,05	$\rho \circ \Delta_{33}^{++}$	0,60 <u>+</u> 0,05 0,87 <u>+</u> 0,08 0,63 <u>+</u> 0,06 0,68 <u>+</u> 0,09	4,0 ^{/10/} 5,0 ^{/6/} 5,1 ^{/11/} 5,5 ^{/8/}
f°Δ ⁻ 33	0,06 <u>+</u> 0,03	$f^{\circ} \Delta_{33}^{++}$	0,112 <u>+</u> 0,030	5,0 ^{/6/}

быть объяснено вторичными взаимодействиями с внутриядерными нуклонами как самих резонансов, так и продуктов их распада.

На рис. 4 приведены дифференциальные сечения $d\sigma/dt'$ рождения ρ^{α} мезона /0,68 $\Gamma \partial B/c^2 \leq M_{\pi^+\pi^-} \leq 0.98 \Gamma \partial B/c^2/$ и изобары /1,14 $\Gamma \partial B/c^2 \leq M_{\pi^-\pi} \leq 1.34 \Gamma \partial B/c^2/$. В рас-

Рис. 4. Дифференциальные сечения $d\sigma/dt'$ рождения a/ ρ -мезона /0,68 ГэВ/с² $\leq M_{\pi+\pi}-\leq$ 0,98 ГэВ/с²/ и б/ Δ_{33}^- -изобары /1,14 ГэВ/с² $\leq M_{\pi-n} \leq$ 1,34 ГэВ/с²/.

9

Рис. 5. Элементы спиновой матрицы плотности для ρ - мезона и Δ -изобары, рассчитанные методом моментов с учетом фона /12/в зависимости от переданного резонансам четырехимпульса t'. Сплошные кривые - расчет по модели ОРЕА /7/

пределении для ρ -мезона хорошо виден пик при малых $t' \leq 0,2 / \Gamma \Im B/c/^2$.

Аппроксимация дифференциального сечения суммой двух экспонент $d\sigma/dt' \sim a \exp(-bt') + \beta \exp(-ct')$ дает следующие значения для наклонов $b = /28\pm10//\Gamma_{3}B/c/^{-2}$ и $c = /3,6\pm0,7//\Gamma_{3}B/c/^{-2}$. Данные по дифференциальному сечению рождения изобары хорошо описываются одной экспонентой с наклоном $c = /4,2\pm0,5//\Gamma_{3}B/c/^{-2}$. Элементы спиновой матрицы плотности для ρ° -мезона и Δ^{-} изобары, рассчитанные методом моментов с учетом фона^{/12/}, представлены на рис. 5 в зависимости от переданного резонансам четырехимпульса t'. В пределах ошибок эксперимента поведение и величина элементов спиновой матрицы плотности для резонансов в нашем случае не отличаются от аналогичных данных для пионпротонных взаимодействий^{/7/} и удовлетворительно описываются с помощью модели OPEA^{/7/}.

Таким образом, представленные данные показывают, что основные черты процессов образования резонансов с нуклонами ядра, совпадают с аналогичными процессами на свободных нуклонах. В то же время ряд характеристик этих процессов, таких как ширины резонансов, сечения их рождения на ядрах и др. дают уникальную возможность исследовать взаимодействие нестабильных частиц с внутриядерными нуклонами. Для этих целей, и в частности для изучения взаимодействия резонансов, имеющих разную спиральность /13/, необходимо с большей, чем это известно в настоящее время, точностью знать элементы спиновой матрицы плотности состояний резонансов, рождающихся как на свободных нуклонах, так и на ядрах.

Литература

- 1. D.R.O.Morrison. Review of Quasi Twobody Reactions, XVth ICHEP, Kiev, 1970.
- 2. Abolins et al. Phys. Rev. Lett., 15, 125 (1965).
- 3. Н.С.Амаглобели и др. Письма в ЖЭТФ, 14, 448/1971/.
- 4. А.В.Богомолов и др. ПТЭ, 1, 61 /1964/.
- 5. А.С.Пак, А.В.Тарасов. Препринт ОИЯИ, Р2-8133, Дубна, 1974.
- 6. Pols et al. Nucl . Phys., 25B, 109 (1971).
- 7. Aderholz et al. Phys. Rev., 138B, 897 (1965).
- 8. Prenfice et al. XVth ICHEP, Kiev, 1970.
- 9. Slattery et al. Nuovo Cim., 50A, 377 (1967).
- 10. ABBBHLM Collaboration. Nuovo Cim., 35, 659 (1965).
- 11. Arménse et al. Nuovo Cim., 65A, 637 (1970).
- 12. D.R.Lynch et al. Phys.Lett., 9, 309 (1964).

11

13. А.С.Пак, А.В.Тарасов. Препринт ОИЯИ, Р2-5752, Дубна, 1971.

٠

0

14. J.J.Jackson. Nuovo Cim., 34, 1644, 1964.

Рукопись поступила в издательский отдел 17 марта 1975 года.