87-941

P1-87-941

Д.К.Копылова

НАБЛЮДЕНИЕ НУКЛОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЙ С Р₀ = 4,2 И 10 ГэВ/с С СУММОЙ КИНЕТИЧЕСКИХ ЭНЕРГИЙ ВТОРИЧНЫХ ЧАСТИЦ БОЛЬШЕ НАЧАЛЬНОЙ

введение

В настоящей работе обобщаются основные результаты, полученные при изучении ядерных взаимодействий с быстрыми частицами вперед на снимках с 2-метровой пропановой камеры^{/1-2/}. В $p(C_3.H_8)$ -, $n(C_3 H_8)$ - и $d(C_3 H_8)$ -взаимодействиях с $P_0 = 4,2$ ГэВ/с чуклон^{/1,3/} и в $p(C_3 H_8)$ -взаимодействиях с $P_0 = 10$ ГэВ/с^{/2/} найдены события, где суммарная кинетическая энергия вторичных частиц больше начальной.

Для пояснения обратимся к закону сохранения полной энергии для ядерных взаимодействий (пренебрегая энергией связи нуклонов в ядре):

$$\mathbf{T}_{o} + \mathbf{m}_{o} + \mathbf{M} = \Sigma \left(\mathbf{T}_{i}\right)_{\phi p} + \Sigma \left(\mathbf{T}_{i} + \mathbf{m}_{\pi}\right)_{3 a p} + \Sigma \left(\mathbf{T}_{i}\right)_{n} + \Sigma \left(\mathbf{T}_{i} + \mathbf{m}_{\pi}\right)_{H e \bar{u} \tau} + \mathbf{M}',$$

где T_0 и m₀ — кинетическая энергия и масса налетающей частицы, T_i — кинетические энергии вторичных частиц любого сорта, M' — сумма масс фрагментов ядра и остаточного ядра. После применения закона сохранения барионного заряда получим $T_0 \ge T_{\rm M3M}$, где $T_{\rm M3M}$ —сумма кинетических энергий фрагментов ядра (p,d) и полных энергий, рожденных во взаимодействии *n*-мезонов, наблюдаемых в камере. Однако в ядерных взаимодействиях есть неупругие события с $T_{\rm M3M} > T_0$. Если это так, то для этих событий следует предположить в процессе взаимодействия уменьшение остаточной массы ядра M'.

События с $T_{\mu_{3M}} > T_0$ — это события с быстрыми частицами ($P_{j|i}/P_0 > 0,5$) вперед, среди которых наблюдаются и быстрые, π -мезоны, и имеющие $\Sigma P_{j|i} > P_0$ (рис. 1). Главный методический вопрос — это вопрос идентификации положительных частиц ($\pi^+, \mathbf{p}, \mathbf{d}$) в этих взаимодействиях. В зависимости от их массы, при определенном импульсе, меняется величина кинетической энергии, и для быстрых частиц это изменение значительно ($T_{\pi} > T_p > T_d$; $\delta T_{p \to d} \approx 0,6 \Gamma$ эВ при $P = 4 \Gamma$ эВ/с).

[•] В отобранных взаимодействиях проводилась идентификация быстрых частиц статистическими методами. Было получено, что, в основном самые быстрые частицы во взаимодействии имеют ту же массу, что и налетающая частица, а среди частиц с Р > > 1 ГэВ/с, которые считались протонами, половину составляют

Объеденства пистатут писрания со слозаний

Рис. 1. а) Схематическое изображение событий с $T_{H3M} > T_0$, б) pC_{KYM} -взаимодействие с энергичными σ -электронами на следе быстрой частицы.

п⁺-мезоны. Это увеличивает величину Тизм по сравнению · с найденной ранее. Из-за возможных, не учитываемых нами методических погрешностей в измерении импульсов быстрых частиц на "хвосте" спектра, проводилось сравнение распределений Тизм> >То для неупругих событий с распределениями Тизм для упругих взаимодействий, имеющих максимальную погрешность. Был сделан вывод о том, что рассмотренными методическими причинами не удается полностью объяснить существование указанных событий.

На примере наблюдаемых pC -событий оценим, какова величина превышения Т_{изм} над Т_о в предположе-

ний, что лётящая вперед частица — протон. Среди рС-взаимодействий есть события с кумулятивными *п*-мезонами назад ($\theta \approx 180^{\circ}$)^{4/} и одной положительной частицей вперед. При $P_0 = 10 \ \Gamma_{9}B/c$ и $P(\tau_{WM}) = 0.3 \ \Gamma_{9}B/c$ из закона сохранения импульса $P_0 = P_1'' + P_2''$ следует, что импульс частицы вперед — 10,3 $\Gamma_{9}B/c$, и тогда минимальное значение $T_{и_{3M}} - T_0$ составляет ~ 0,7 $\Gamma_{9}B$ (без учета нейтральных частиц). В принципе, превышение $T_{u_{3M}}$ над T_0 может быть и в событиях, где наблюдаются частицы с большим P_1 , при условии, что частица вперед — той же природы, что и налетающая.

В камере найден редкий случай (вероятность наблюдения такого события составляет (1:5) x10⁻⁶) рС -взаимодействия с кумулятивным π^+ -мезоном назад, где на следе летящей вперед частицы зафиксированы два σ -электрона (рис. 16) с энергией, близкой к E_{δ}^{max} для дейтрона. Вероятность того, что эта частица — протон, а не дейтрон, составляет > 78%, и в предположении протона получено $T_{\mu 3M} - T_{\rho} = (0,75 \pm 0,30)$ ГэВ.

СОБЫТИЯ С $T_{MAM} > T_{0}$

а) Методика выделения событий

При начальном импульсе 4,2 ГэВ/с. нукл события с Тизм> > T₀ выделялись из p(C₃ H₈) - и n(C₃ H₈)-взаимодействий; n(C₃ H₈) события были взяты из d($C_3 H_8$)-взаимодействий, имеющих стрип-пинговый протон с углом вылета $\theta \leq 3^\circ$ и импульсом (3,5--4,7) ГэВ/с. При начальном импульсе 10 ГэВ/с использовались две группы событий: p(C₃ H₈) -взаимодействия и pC -события, имеющие заряженную частицу назад (π, p, d) , и отобранные для анализа кумулятивных взаимодействий по критериям, описанным в работе /4/. Будем условно называть эти события кумулятивными (рСкум)*. Из всех типов событий исключались однолучевые звезды, т.к. существуют их потери при просмотре. Для остальных событий находилась сумма продольных импульсов всех заряженных вторичных частиц ($\Sigma P_{\parallel i}$) и величина $T_{\mu 3M}$, равная сумме кинетических энергий фрагментов (p, d) и полных энергий рожденных частиц: $T_{изм} = \Sigma(T_i)_{\phi p} + \Sigma(T_i + m_{\pi})$. Идентификация вторичных частиц проводилась обычным способом, используемым в пропановой камере^{/5/}. Положительные частицы с Р > > 1 ГэВ/с считались протонами. Отбирались только те события, в которых импульсы вторичных частиц измерены с ошибкой ниже 15%. По кинематическим критериям из р(С3 Н8)-событий выделялись упругие взаимодействия.

Величина T_0 находилась из распределений $T_{изм}$, построенных для упругих взаимодействий или стриппинговых протонов, т.к. корректное сравнение величин $T_{изм}$ и T_0 может быть сделано только тогда, когда они получены из измерений импульсов частиц, находящихся в одной и той же области камеры ($\bar{T}_0^{ynp} = 3,1 \Gamma_3 B$; $\sigma = 0,5 \Gamma_3 B$; $\bar{T}_{ynp}^{ynp} = 8,6 \Gamma_3 B$; $\sigma = 1,3 \Gamma_3 B$). События с $T_{u3M} > T_0$ по своему положению в камере не отличаются от всех остальных взаимодействий ($\bar{X}, \bar{Y}, \bar{Z}$ вершин событий с $T_{u3M} > T_0$ в пределах ошибок совпадает с $\bar{X}, \bar{Y}, \bar{Z}$ событий без выборки). Разделение взаимодействий на углеродные (pC) и нуклонные (pp) не проводилось из-за неопределенности такого деления ~ 10%.

б) Идентификация положительных частиц

В событиях с $T_{\mu_{3M}} > T_{o}$ проводилась идентификация положительных частиц с $P_{\mu_{3M}} > 0,8$ ГэВ/с (π^+, p, d) методом счета числа σ -электронов с $E_{\delta} > 1$ МэВ на их треках ^{/6/}. В $p(C_{3}H_{8})$ -событиях с $P_{o} = 4,2$ ГэВ/с получено: число π^+ -мезонов среди частиц с P = (0,8-2,5) ГэВ/с составляет (48 ± 13)%, а протонов среди частиц

* Отбирались взаимодействия, где в интервал углов $\theta > 135^{\circ}$ в л.с.к. испускался хотя бы один протон с кумулятивным числом $\beta > 1,2$ или π -мезон с $\beta > 0,6$, где $\beta = (E - P\cos\theta)/m_N$ (E-полная энергия, P-импульс рассматриваемой частицы в л.с.к., $m_N -$ масса нуклона).

2

Рис. 2. Распределение величин T_{N3M} для $n(C_3H_8)$ взаимодействий в предположении,что частицы с $P > 1 \Gamma_3 B/c$ протоны (пунктирная линия). Распределение $T_{N3M} > T_0$ после внесения поправок в идентификацию быстрых положительных частиц (сплошная линия).

с P> 2,5 ГэВ — (97 ± 12) %.В событиях с P₀ = 10 ГэВ/с в интервале импульсов (1:5) ГэВ/с π^+ -мезоны составляют (46± \pm 16) %. Для частиц с P > 5 ГэВ/с использовался метод измерения пробегов до взаимодействия ⁷⁷. Пробег получился

равным (152 $^{+40}_{27}$) см, что наилучшим образом согласуется с пробегом протонов в пропане (L $_p$ = 140 см; L $_d$ = 90 см).

Для событий с Р₀ = 4,2 ГэВ/с проводилось сравнение импульсных спектров π^- -мезонов и положительных частиц в р- и п-пропан -взаимодействиях. Это также дало возможность оценить долю π^+ -мезонов среди положительных частиц с Р = (0,8-2,5) ГэВ/с. В событиях с Т_{ИЗМ} > Т₀ в р(С₃ H₈)-взаимодействиях эта доля составляет ~ 53%, а в n(С₃ H₈)-взаимодействиях — ~ 40%.

В работах ^{/8/} электронной методикой изучалась импульсная зависимость выходов частиц (π^+ , p, d) в рА-взаимодействиях под углом 3,5° с Р₀ = 4,54 и 10,1 ГэВ/с. В рВе -взаимодействиях получено отношение выходов:

для $P_0 = 4,54 \ \Gamma \Im B/c \begin{cases} N(\pi^+)/N(p) = 1 & P = (1 \div 2) \ \Gamma \Im B/c \\ N(p)/N(d) = 100 & P = (2,5 \div 4) \ \Gamma \Im B/c \\ \Pi \Pi \Pi P_0 = 10,1 \ \Gamma \Im B/c \end{cases}$ (N(π^+)/N(p) = 1 $P = (1 \div 5) \ \Gamma \Im B/c \\ N(p)/N(d) = 300 & P > 5 \ \Gamma \Im B/c.$

Данные работ ^{/8/} согласуются с полученными нами результатами и были также использованы для внесения поправок в идентификацию положительных частиц (р $\rightarrow \pi^+$). Исправленные в соответствии с измененной идентификацией значения $T_{изм}$ для $n(C_3 H_8)$ взаимодействий приведены на рис. 2.

в) Оценка погрешностей измерений в величинах Т_{ИЗМ} > Т_о Так как величина истинных экспериментальных ошибок $\Delta T_{ИЗМ}$ на "хвосте" распределения Т_{ИЗМ} неизвестна, рассмотрим два крайних случая — максимальных и минимальных погрешностей. Распределение Т_{ИЗМ} для упругих событий учитывает ферми-импульс нуклонов в ядре и дает максимально возможную погрешность для событий с Т_{ИЗМ} > Т_о (из расчетов по геометрической программе для

Рис, 3. Распределение величин $T_{N3M} \, dля \, p(C_3 H_8)$ -взаимодействий после внесения поправок в идентификацию быстрых положительных частиц (сплошная линия); распределение $T_{N3M} \, dля \, упругих$ взаимодействий (пунктирная линия). a) $P_0 = 4.2 \, \Gamma_9 B/c$, б) $P_0 = 10 \, \Gamma_9 B/c$.

Р_о = 4,2 ГэВ/с $\overline{\Delta T_{N3M}}^{ynp}$ = 0,30 ГэВ, а $\overline{\Delta T_{M3M}}^{T_{M3M} > T_0}$ = 0,27 ГэВ). Однако $\overline{\Delta T_{M3M}}^{ynp}$, выдаваемая геометрической программой, в 1,7 раза меньше среднеквадратичной ошибки, полученной из распределения T_{M3M}^{ynp} , и поэтому $\Delta T_{M3M}^{T_{M3M} > T_0}$ также в 1,7 раза было увеличено. На рис. 3 проводится сравнение распределений $T_{M3M} > T_0$ с T_{M3M}^{ynp} , где число событий из правой части распределения T_{M3M}^{ynp} (среднее значение T_0') нормировано на число событий с $T_{M3M} > T_0$. В случае минимальной ошибки T_0' совпадает с T_0 . Число событий, выходящих за упругие кривые, составляет (3-4)% от всех неупругих взаимодействий. Для $n(C_3 H_8)$ -событий с $T_{M3M} > T_0$ сравнение проводится с правой частью распределения стриппинговых протонов. В двух крайних случаях разность средних значений $T_{M3M} - T_0$ со статистическими ошибками, увеличенными в 1,7 раза, составляет для $P_0 = 4,2$ ГэВ/с:

в р(С₃ H₈) взаимодействиях (0,18 ÷ 0,48) ± 0,09 ГэВ,

в $n(C_3H_8)$ -взаимодействиях $(0,20 \div 0,54) \pm 0,10$ ГэВ для $P_0 = 10$ ГэВ/с в $p(C_3H_8)$ -и pC_{KYM} -событиях $(0,48 \div 1,22) \pm 0,21$ ГэВ. Добавление энергии 7-квантов, включенных в ленту суммарных результатов только для pC_{KYM} -событий, увеличивает значение T_{M3M} в среднем на взаимодействие на $(0,22 \pm 0,04)$ ГэВ (без весов). Учет весов 7-квантов приводит не только к увеличению энергии ($E_{\gamma_1} \cdot W_{\gamma_1}$), но и к увеличению ошибок. Разность $\overline{T}_{M3M} - \overline{T}_0$ с учетом $E_{\gamma}/8_3$ в сумме для $p(C_3H_8)$ и pC_{KYM} -взаимодействий находится в пределах $(0,59\div1,33) \pm 0,22$ ГэВ. Ошибки в Т_{ИЗМ} для событий с Т_{ИЗМ} > T₀ находились также способом "размытия" этого распределения путем розыгрыша ошибок Т_{ИЗМ}. Ошибка среднего значения для P₀ = 4,2 ГэВ/с получена равной 0,20 ГэВ, и тогда величина разности Т_{ИЗМ} - T₀ составляет (0,51± ± 0,21) ГэВ, а для P₀ = 10 ГэВ/с - 0,52 ГэВ и (1,33±0,54) ГэВ соответственно.

г) Характеристики событий с Т_{изм} > Т_о

На рис. 4 приводятся импульсные распределения подожительных частиц с максимальным импульсом в событиях с $T_{\rm M3M} > T_0$ при $P_0 = 4,2$ и 10 ГэВ/с. Во всех распределениях наблюдается увеличение числа частиц с импульсами, близкими к импульсу первичной частицы.

В табл. 1 приведены характеристики π -мезонов из событий с $T_{\text{ИЗМ}} > T_0$ в сравнении с характеристиками π -мезонов из всех неупругих **p**- и n-пропан-событий при $P_0 = 4,2$ ГэВ/с. Из таблицы видно, что во взаимодействиях с $T_{\text{ИЗМ}} > T_0$, среднее энерговы-

Рис. 4. а) Импульсное распределение положительных частиц с максимальным импульсом в $p(C_3 H_8)$ событиях, где $T_{N3M} > T_0$, (сплошная линия); частицы с P_{max} из $p(C_3 H_8)$ взаимодействий без выборки (пунктир), $P_0 = 4.2 \Gamma \beta B/c$; б) импульсное распределение положительных частиц с P_{max} в событиях с $T_{N3M} > T_0$; pC_{KYM} -события (пунктир); сумма для $p(C_3 H_8)$ и pC_{KYM} событий (сплошная линия), $P_0 = 10 \Gamma \beta B/c$.

Таблица 1

$P_{o} = 4,2 \Gamma \Im B/c$	Т _{ИЗМ} > Т _о		Все события	
	N(π⁻) /вз.	Р(<i>π</i> ¯)/вз. ГэВ/с	N(т)/вз.	Р(<i>π</i> ¯)/вз. ГэВ/с
р(С ₃ Н ₈) (151 сл)	0,61±0,06	0,36 ± 0,04	0,28 ± 0,01	0,16 ± 0,01
п(С ₃ Н ₈) (172 сл)	1,12 ± 0,01	0,83 ± 0,06	0,59 ± 0,02	0,39 ± 0,02

Таблица 2

	Р _{лаб} ГэВ/с	$\bar{ heta}_{nab}$	Р _⊥ ГэВ/с	ÿ
Все nC-взаим.	0,63 ± 0,03	41 ± 1,5	0,27 ± 0,01	1,08 ± 0,03
Из nС-взаимодей ствий выброше- ны события с Т _{изм} > Т _о	0,56 ± 0,03	44 ± 1,5	0,24±0,01	0,99 ± 0,03
Расчет по ДКМ	0,54 [±] 0,01	47 ± 1	0,231±0,005	0,94 ± 0,01

деление, приходящееся на π^{-} мезоны в событии, Р π^{-}/s_{3} , более чем в два раза превышает энерговыделение, наблюдаемое во всех событиях без выборки. В основном это происходит за счет увеличения числа π^{-} -мезонов. Для идентифицированных π^{+} -мезонов наблюдается та же тенденция. Было проведено сравнение характеристик π^{-} -мезонов в nC -событиях с дубненской каскадной моделью $^{/9/}$. Согласие улучшается, если из nC -взаимодействий исключить события с Т $_{\rm ИЗМ} > T_{\rm 0}$ (см. табл. 2). Из таблицы видно, что π^{-} -мезоны с большими импульсами и летящие под малыми углами вперед не описываются каскадной моделью. Характеристики событий с $T_{\rm ИЗМ} > T_{\rm 0}$ при $P_{\rm 0} = 10 \ \Gamma$ эB/с представлены в таблице 3. Разделим условно эти события на две группы: в первую попадут те, в которых самая быстрая частица во взаимодействии имеет $P_{\rm max} < 8,5 \ \Gamma$ эB/с, во вторую — все остальные (см. рис. 46). В событиях, где $P_{\rm max} < 8,5 \ \Gamma$ эB/с, наблюдается в (2-3) раза большее энерговыделение, приходящееся на π^{-} -мезоны во взаимодействии, по сравнению с взаимодействиями без выТаблица З

P ₀ = 10 Γ3B/c	T _{N3M} > T _o			Все события	
	N (π ⁻)/вз.	Р(<i>п</i> ⁻)/вз. ГэВ/с	Е _у /вз. ГэВ (рС _{кум})	N(7 ⁻)/вз.	Р (л [–])/вз. ГэВ/с
Р _{тах} < 8,5 ГэВ/с 88 сл 31у	1,44 ± 0,12	2,43 ± 0,15	0,44 ± 0,10 (2,7 ± 1,1) c· W	1,15 ± 0,2	1,04 ± 0,02
Р _{max} > 8,5 ГэВ/с 120 сл 11у	0,63 ±0,08	0,38 ± 0,05	0,07 ± 0,03 (0,3 ± 0,2)		

борки. Это происходит как за счет увеличения числа π -мезонов, так и за счет увеличения их импульсов. Небольшая статистика γ -квантов не позволяет с хорошей точностью учесть энергию ($E_{\gamma}W_{\gamma}$), уносимую π° -мезонами. Однако наблюдаются положительные корреляции между числом π^{-} и π° -мезонов, вылетевших из взаимодействий с $P_{\max} < 8,5$ ГэВ/с. В основном γ -кванты вылетают в переднюю полусферу так же, как и быстрые π^{-} -мезоны.

В событиях с Т_{изм} > Т_о изучались азимутальные корреляции между быстрыми частицами, летящими вперед, $\Delta \phi_1$ (с Р_{тах} и следующей по импульсу частицей) и в рС_{кум}-событиях корреляции между частицами с Р > 5 ГэВ/с и кумулятивными π -мезонами назад ($\Delta \phi_2$). Получены значения величин отклонения (σ) среднего значения разности азимутальных углов от ожидаемого для случая симметричных распределений ($\overline{\Delta \phi} = \pi/2$); $\delta_1 = \overline{\Delta \phi_1} - \overline{\Delta \phi} = 0,72 \pm 0,08$ и $\delta_2 = \overline{\Delta \phi_2} - \overline{\Delta \phi} = 0,53 \pm 0,18$. Этот результат служит указанием на вылет частиц из единой промежуточной системы /2,3/.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основной вопрос, обсуждаемый в этой работе, — наблюдаются ли действительно ядерные взаимодействия с $T_{изм} > T_0$ или эти события есть результат проявления методических ошибок? Важным аргументом в пользу истинности их существования является отличие характеристик событий с $T_{изм} > T_0$ от всех остальных взаимодействий. В выделенных событиях наблюдается в (2-3) раза большее энерговыделение, приходящееся на π -мезоны. Причем при $P_0 = 4,2$ ГэВ/с это происходит, в основном, за счет увеличения числа π -мезонов, а при $P_0 = 10$ ГэВ/с-как за счет числа, так и за счет увеличения их импульсов. В этих же взаимодействиях наблюдается и большее число γ -квантов, которые летят в переднюю полусферу. Эта первая работа не была

целенаправленной на поиск событий с Тизм > То, в ней использован имеющийся статистический материал и не обойдены недостатки применяемой методики. Наиболее оптимальный объект исследования, где можно избежать неопределенности в идентификации быстрых частиц, — это л С-взаимодействия при Р = = (4+7) ГэВ/с с обязательным привлечением данных по нейтральным мезонам. По предварительным результатам, в πC взаимодействиях с Р_о = 4,65 ГэВ/с, наблюдаемых в 1-метровой пропановой пузырьковой камере, найдено 2,7% событий с Тизи То (Др/р 🗉 ~ 7%) * В *п*-р взаимодействиях с Р₀ = 5 ГэВ/с, зарегистрированных в 1-метровой водородной камере, число событий с Тизм $> T_0$ из-за ошибок измерения составляет < 0.4% ($\Delta p/p \sim 3\%$)^{/2/}. Истинная величина Т_{изм} в событиях занижена, т.к. в нее не входят энергии фрагментов ядра, не регистрируемые камерой, и нейтральных частиц, компенсирующих большой импульс вперед. Можно было предполагать, что в событиях с быстрыми заряженными частицами нейтральных частиц мало или нет вовсе. Однако данные по рСкум -взаимодействиям свидетельствуют о том, что число у-квантов больше в тех событиях, где наблюдается и большое энерговыделение п - мезонов, т.е. величина Тизм в этих событиях должна намного увеличиться. Большая часть событий не детектируется как события с T $_{\rm H3M} >$ T $_{\rm O}$ из-за вылета в них быстрых нейтральных частиц, а также отбрасывается по причине больших ощибок в импульсах частиц ($\Delta p/p > 15\%$).

Источником появления кумулятивных частиц, как и частиц с большим P_{\perp} , в ядерных взаимодействиях является, по-видимому, "дополнительная" кинетическая энергия ** .Это следует из того, что, с одной стороны, рС $_{\rm KYM}$ -события отличаются от всех рС -взаимодействий по своим характеристикам $^{(10,11)}$, а с другой стороны, во всех рС $_{\rm KYM}$ -взаимодействиях наблюдаются те же тенденции, что и в событиях с $T_{\rm изм} > T_{\rm 0}$. В рС $_{\rm KYM}$ -событиях по сравнению с рС -взаимодействиями получены:

1. Бо́льшая множественность рС_{кум} -событий. Отличие, в среднем, составляет 1,7 частицы на взаимодействие ^{/10,11/}. Оказалось, что взаимодействия с испусканием кумулятивных протонов сопровождаются, как правило, повышенной множественностью протонов, события с $\pi^{\circ}_{Kym}^{\pm}$ имеют повышенную множественность π -мезонов всех знаков.

2. В рС_{кум}-взаимодействиях по сравнению с обычными рС-событиями наблюдается отличие характеристик (\bar{p} , $\bar{\theta}$, $\bar{\gamma}$) вторичных идентифицированных частиц: в $\pi_{\rm кум}$ -событиях это имеет место

9

^{*} По нашей просьбе данные получены А.А.Маиловым и Ю.Ф.Ломакиным.

^Т Имеется в виду энергия, дополнительная по отношению к допустимой по современным теоретическим представлениям, но вместе с тем возможная в рамках закона сохранения полной энергии.

для π^-, π^+, p , а в р -событиях для \dot{p} и π^- -мезонов и нет отличия для π^+ -мезонов /10,11/ .

3. Вероятность испускания кумулятивного π -мезона к уже наблюдаемому π_{KYM} или кумулятивного протона к p_{KYM} в (3-4) раза больше вероятности соответствующего кумулятивного взаимодействия среди неупругих pC-столкновений. Вероятность pC_{KYM} -взаимодействий с одновременным вылетом π_{KYM} и p_{KYM} сравнима с полной вероятностью pC_{KYM} -взаимодействий. Этот результат можно связывать с фактом независимости процессов испускания π_{KYM} и p_{KYM} .

Как в $pC_{кум}$ -событиях, так и в событиях с $T_{изм} > T_{o}$, "дополнительная" кинетическая энергия идет или на образование большого числа π -мезонов разных знаков (среди них могут быть один или несколько кумулятивных мезонов), или на увеличение энергии барионов: образуются кумулятивные протоны и увеличивается множественность протонов в событии. Если во взаимодействии появляется "дополнительная" кинетическая энергия, то она должна распределяться между всеми вторичными частицами. Это иллюстрируется таблицей 4.

Таблииа 4

β _π	$< P_{\perp}^{2} > (\Gamma \Im B/c)^{2}$	Ν _γ /вз.	Σ(N _{γi} W _i) /вз.	Е _π -∕вз.
(0,6-1 <u>)</u> 488 сл.	0,18 ± 0,01	0,26 ± 0,04	2,38 ± 0,23	1,12 ± 0,04
>1 83 сл.	0,53 ± 0,08	0,36 ± 0,07	3,09 ± 0,57	1,37 ± 0,07

В рС_{кум}-событиях чем больше энергия кумулятивного *п*-мезона ($\beta > 1$), тем больший средний поперечный импульс частиц и большее, чем в других событиях, энерговыделение *п*-мезонов и число у-квантов. Эти события поднимаются как бы на новый энергетический уровень, который, судя по распределениям Т_{изм} (рис. 3), в части событий может отличаться от Т_о для P₀ = = 4,2 ГэВ/с на 1 ГэВ, а для P₀ = 10 ГэВ/с на (2-3) ГэВ.

Появление адрон-ядерных взаимодействий с $T_{N3M} > T_0$ может быть связано с уменьшением остаточной массы ядра-мишени, наблюдать которое используемая методика не позволяет.

В принципе, к такому эффекту могло бы привести образование в процессе взаимодействия ядерного фрагмента (ядра отдачи) с аномально большой энергией связи. К появлению событий с Т_{изм} > Т_о привело бы и несохранение барионного числа. Однако, согласно современным представлениям, при рассматриваемых энергиях вероятность такого процесса крайне мала.

Автор благодарит Д.Армутлийского, Р.Н.Бекмирзаева, Н.К.Куциди, Р.Тогоо за помощь в обработке материала, В.Л.Любошица и М.И.Подгорецкого за обсуждения и критические замечания, И.Н.Ерофееву, Е.Н.Кладницкую, Т.Канарека, В.Б.Любимова, В.М.Попову, С.Ю.Сивоклокова, Г.П.Тонееву, А.П.Чеплакова и группу румынских физиков: Е.Балеа, О.Балеа, В.Болдеа, С.Дица, Т.Понта за создание лент суммарных результатов $p(C_3 H_8)$ - и $d(C_3 H_8)$ -событий, а также выражает благодарность коллективу, обслуживающему 2-метровую пропановую камеру, и лаборантам отдела за получение и просмотр пленки.

ЛИТЕРАТУРА

- 1. Армутлийски Д. и др. ОИЯИ, Б1-1-87-247, Дубна, 1987.
- 2. Армутлийски Д. и др. ОИЯИ, Б1-1-87-372, Дубна, 1987.
- 3. Балеа Е. и др. ОИЯИ, РІ-85-132, Дубна, 1985.
- 4. Балдин А.М. ДАН СССР, 1975, 222, с.1064.
 - Агакишиев Г.Н. и др. ОИЯИ, РІ-83-327, Дубна, 1983.
- 5. Ангелов Н. и др. ОИЯИ, 1-12424, Дубна, 1979.
- 6. Бэм Я. и др. ОИЯИ, РІ-2842, Дубна, 1966.
- 7. Абдивалиев А. и др. ОИЯИ, 1-11590, Дубна, 1978.
- 8. Воронцов И.А. и др. ИТЭФ-85, Москва, 1983; ИТЭФ-144, Москва, 1984.

9. Гудима К.К., Тонеев В.Д. – ЯФ, 1978, т.27, с.669; Nucl. Phys. A, 1983, v.400, p.173.

10. Армутлийски Д. и др. ОИЯИ, РІ-85-839, Дубна, 1985.

11. Любимов В.Б. ОИЯИ, 1-83-710, Дубна, 1983.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Копылова Д.К.

P1-87-941

Наблюдение нуклон-углеродных взаимодействий с P₀ = 4,2 и 10 ГэВ/с с суммой кинетических энергий вторичных частиц больше начальной

Среди р (С₃ H₈)- и п(С₃ H₈)-взаимодействий с P₀ = 4,2 ГэВ/с и р(С₃ H₈)-взаимодействий с P₀ = 10 ГэВ/с, зарегистрированных в 2-метровой пропановой камере, наблюдались неупругие события с быстрыми частицами вперед, в которых сумма кинетических энергий фрагментов и полных энергий рожденных частиц ($T_{и3M} = \Sigma$ (T_1) (T_0) + Σ ($T_1 + m_{\pi}$)) превышает значение кинетической энергии налетающей частицы (T_0). В событиях с $T_{и3M} > T_0$, в предположении максимальных и минимальных погрешностей $\Delta T_{и3M}$ найдены границы изменения величин $T_{и3M} - T_0$. После проведенной статистическими методами идентификации быстрых положительных частиц для событий с P₀ = 4,2 ГэВ/с получено $T_{и3M} - T_0 = (0,19 \pm 0,51)$ ГэВ со статистической ошибкой 0,09 ГэВ, а для P₀ = 10 ГэВ/с (0,59 \pm 1,33) \pm 0,21 ГэВ, что соответствует числу событий с $T_{и3M} > T_0$ от 3 до 9%. В группе событий с $T_{и3M} >$ » T_0 наблюдается повышенное в (2-3) раза энерговыделение, приходящееся на π^- мезоны, по сравнению с событиями без выборки. Делается вывод о том, что появление событий с $T_{и3M} > T_0$ не удается полностью объяснить методическими причинами.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Kopylova D.K.

х

P1-87-941

Observation of Nucleon-Carbon Interactions at $P_0 = 4.2$ and 10 GeV/c with the Summary Kinetic Energy of Secondaties Higher that the Incident One

Inelastic events with fast forward particles have been observed among $p(C_3H_8)$ and $n(C_3H_8)$ interactions at $P_0 = 4.2$ GeV/c and $p(C_3H_8)$ interactions at $P_0 = 70$ GeV/c detected in a 2 m propane bubble chamber. In these events the sum of the kinetic energies of fragments and the total energies of produced particles, $T_{meas} = \Sigma(T_i)_{fi} + \Sigma(T_i + m_{\pi})$, exceeds the kinetic energy of the projectile (T_0) . Assuming maximum and minimum errors of ΔT_{meas} the limits of variation of $T_{meas} - T_0$ have been found in the events with $T_{meas} > T_0$. Using the statistical methods of identification of fast positive particle, $\overline{T}_{meas} > T_0 = (0.19 \div 0.51)$ GeV with a statistical error of 0.09 GeV for the events of $P_0 = 4.2$ GeV/c, and it is equal to $(0.59 \div 1.33) \pm 0.21$ GeV for $P_0 = 10$ GeV/c. This corresponds to the number of events with $T_{meas} > T_0$ from 3 to 9\%. In the group of events with $T_{meas} - T_0$ a (2-3) fold increase of energy release for π -mesons has been observed as compared to the events without selection. The conclusion can be drawn that the events with $T_{meas} > T_0$ cannot be conpletely interpreted as a consequence of methodic errors.

The investigation has been performed at the Laboratory of High Enerdyes, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987