

P1-87-853

Х.У.Абраамян*, Р.Г.Аствацатуров, М.Н.Хачатурян, А.Г.Худавердян*

ВОССТАНОВЛЕНИЕ ЭНЕРГИИ ЭЛЕКТРОНОВ И ГАММА-КВАНТОВ В ГАММА-СПЕКТРОМЕТРЕ ПОЛНОГО ПОГЛОЩЕНИЯ

Направлено	в	журнал	''Приборы	и	техника
эксперимент	ra'	1			

*Ереванский государственный университет

1. ВВЕДЕНИЕ

В экспериментах по изучению реакций с образованием частиц электромагнитной природы широко применяются черенковские y спектрометры полного поглощения /ЧГС/.Принцип работы ЧГС подробно описан в $^{/1/}$.

Соответствие между амплитудой сигнала на выходе ЧГС и энергией регистрируемой частицы /электрона или у-кванта/ устанавливается калибровкой ЧГС на пучке моноэнергетических электронов.

Точность энергетической реконструкции события зависит от целого ряда факторов. Их учет позволяет существенно уменьшить влияние систематических ошибок. Среди этих факторов следует отметить: потери энергий в конверторах, в веществе детекторов, нелинейность ЧГС к низкоэнергетическим электронам и У-квантам и др. Имеющиеся эмпирические формулы ^{2,37}, позволяющие учесть энергетические потери, как правило, работают в ограниченной области энергий / $E \ge 1$ ГэВ/ и зависят от выбора конкретного вещества.

Цель нашей работы - получить формулу для эффективных энергетических потерь электронов и У-квантов, учитывающую как наличие вещества перед ЧГС, так и нелинейности ЧГС к низкоэнергетическим электронам и У-квантам.

2. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНЫХ ЭНЕРГЕТИЧЕСКИХ ПОТЕРЬ

Определим эффективные потери энергии электронов и У-квантов в общем виде:

$$\Delta E_{i}^{\phi \phi}(E_{i},t) = E_{i} - \xi_{it}(E_{i},t)E_{i}; \quad \xi_{it} = \frac{\overline{N}_{it}(E_{i},t)}{E_{i}} - \frac{E_{e}^{(k)}}{\overline{N}_{e}(E_{e}^{(k)})}, \quad /1/$$

где E_i – энергия электрона или у-кванта, t – толщина вещества, расположенного перед у-спектрометром, \overline{N}_{it} (E_i , t) и \overline{N}_e ($E_e^{(k)}$) соответственно средние значения числа фотоэлектронов, выбиваемых из фотокатода ф3у при регистрации электронов

объсякиенный киститут Пасрима исследования и у-квантов с энергией ${\rm E}_i$ и при калибровке спектрометра моно-энергетическими электронами с энергией ${\rm E}_{\rm e}^{\,({\rm k}\,)}$. В теории ливней коэффициенты $\xi_{\rm it}$ не имеют аналитического

представления, поэтому, ограничившись предельными функциями $\xi_{i}(E_{i}) \equiv \xi_{it}(E_{i},t) \mid_{t=0}$, выразим энергетические потери следующим образом:

$$\Delta E_{\gamma}^{\vartheta \varphi \varphi}(E_{\gamma}, t) \simeq 2 \Delta E_{e} (E_{\gamma}/2, t - t_{x}), \qquad /2/$$

$$\Delta E_{e}^{\phi \phi}(E_{e}, t) \simeq \Delta E_{HOH} + \Delta E_{H} + \Delta E_{T}^{\phi \phi}, \qquad /3/$$

где t_{*} - координата точки конверсии У-кванта,

$$\Delta E_{\text{NOH}} = Lt(B - C - 0.57 + \ln E_{e})$$
 /4/

- ионизационные потери электрона, L , B и C - постоянные для данного вещества /см./4/ /,

$$\Delta \mathbf{E}_{\mathsf{H}} = \mathbf{E}_{\mathsf{t}} \left[\mathbf{1} - \boldsymbol{\xi}_{\mathsf{e}} \left(\mathbf{E}_{\mathsf{t}} \right) \right]$$
 /5/

- потери, обусловленные нелинейностью у-спектрометра к низкоэнергетическим электронам, Е, - средняя энергия электрона на глубине t,

$$\Delta E_{\tau}^{\varphi \varphi \varphi} = \Delta E_{\gamma} + \Delta E_{p}$$
 /6/

- эффективные потери электрона на тормозное излучение, являющиеся суммой ΔE_{ν} - потерь, обусловленных нелинейностью γ -спектрометра к низкоэ́нергетической части спектра тормозного излучения и $\Delta E_{\rm p}$ - энергетических потерь вторичных ${\rm e}^{\!+}\,{\rm e}^{-}$ -пар. При расчете спектра в + е - пар далее используется полный коэффициент поглощения фотонов, что позволяет пренебречь вкладом процессов рассеяния в потери на тормозное излучение.

Величины ΔE_{ν} и ΔE_{p} выражаются через ξ_{i} :

$$\Delta E_{j}(E_{e},t) = \int_{0}^{t} \int_{0}^{E_{x}} \frac{\partial n_{i}(\epsilon,x)}{\partial x} \Pi_{j}(\epsilon,x) d\epsilon dx; \quad j = \gamma, p;$$

$$\Pi_{\gamma}(\epsilon,x) = \epsilon [1 - \xi_{\gamma}(\epsilon)]; \quad \Pi_{p}(\epsilon,x) = 2\Delta E_{0}(\frac{\epsilon}{2}, t-x), \qquad /7/$$

где E_x - средняя энергия электрона на глубине x, $n_i(\epsilon, x) =$ $= \partial N_j (\epsilon, x) / \partial \epsilon$ – плотность энергетического спектра γ -квантов (j = γ) или e⁺e⁻-пар (j = p) на глубине x, $\Delta E_o(\epsilon/2, t - x)$ – эффективные потери вторичного электрона /позитрона/ с энергией */2, образованного на глубине х.

В случае t < 2 рад.ед, для величины ΔE_{o} справедлива формула /3/ при

$$\Delta E_{\tau}^{3\varphi\varphi}(E, \mathbf{x}) \simeq \int_{0}^{\mathbf{x}} \int_{0}^{E_{\mathbf{x}}} \epsilon [1 - \xi_{\gamma}(\epsilon)] \Psi(\epsilon) d\epsilon d\mathbf{x}, \qquad /8/$$

где W(є)dє - энергетический спектр у-квантов, излучаемых электроном на единице пути.

Величины n_i ((, x) определяются из уравнения:

$$\frac{\partial \mathbf{n}_{\gamma}}{\partial \mathbf{x}} = -\mathbf{n}_{\gamma} \mu + \mathbf{W}; \quad \mathbf{n}_{p} = \int_{0}^{\mathbf{x}} \mathbf{W} \, d\mathbf{x} - \mathbf{n}_{\gamma}; \quad \mathbf{n}_{j} |_{\mathbf{x}=0} = 0, \qquad (91)$$

где μ - полный коэффициент поглощения фотонов в веществе.

В предположении о постоянстве величины W при фиксированном значении 6, из уравнения /9/ получаем

$$n_{\gamma}(\epsilon, x) = W(\epsilon) \frac{1 - e^{-\mu x}}{\mu}$$
, /10/

$$n_{p}(\epsilon, \mathbf{x}) = W(\epsilon)(\mathbf{x} - \frac{1 - e^{-\mu \mathbf{x}}}{\mu}). \qquad (11)$$

Таким образом, задача сводится к определению коэффициентов ξ_i (E_i) во всей области значений E_i > 0. Коэффициенты ξ_i можно представить в виде функции:

$$\xi_{i}(E_{i}) = \begin{cases} 1, E_{i} > E_{ai}, \\ \\ \frac{\bar{N}_{i}(E_{i})}{E_{i}} & \frac{E_{ae}}{\bar{N}_{e}(E_{ae})}, E_{i} < E_{ai}, \end{cases}$$
(12/

где E _{di} - значения энергии электрона /i = e / или у-кванта (і = у), при котором доля ливня, покидающего радиатор, ~ 0,5% Уоценка получена на основании работ ^{/6,7}//. Величина N₁, согласно ^{/5/}, пропорциональна

$$\bar{N}_{i}(E_{i}) \sim \alpha_{i}(E_{i})g_{i}(\lambda_{m}, t_{mi})P_{i}(E_{i}), \qquad (13)$$

где a₁ - эффективность поглощения ливня в радиаторе, g₁ - эффективность собирания света на фотокатод ФЭУ, λ_{m} - длина волны, соответствующая положению максимума спектральной чувствительности фотокатода ФЭУ, t_{mi} – глубина слоя вещества в радиаторе, на котором число электронов ливня достигает максимума, P_i – суммарный пробег ливневых заряженных частиц с энергией выше порога черенковского излучения. Величина P_i является практически линейной функцией от энергии / $P_i \cong E_i/E_k$ /рад.ед./, где E_k – критическая энергия/ для области $E_i > eE_k^{-8/}$. Тогда, принимая во внимание формулу /13/, для ξ_i имеем

$$\xi_{i}(E_{i}) \stackrel{\sim}{=} \frac{g_{i}(E_{i})}{g_{e}(E_{ae})} \cdot \frac{E_{k}}{E_{i}} \cdot P_{i}(E_{i}), E_{i} < E_{ai} \cdot /14/$$

В области ${\rm E}_{i} \stackrel{<}{_\sim} {\rm e}\, {\rm E}_{k}$ величины ${\rm P}_{i}\, ({\rm E}_{i})$ определялись с помощью формул

$$P_{\gamma}(E_{\gamma}) \simeq 2P_{e}(E_{\gamma}/2),$$
 /15/

$$P_{e}(E_{e}) = t_{1}(E_{e}, E_{\pi}) + \int_{0}^{t_{1}(E_{e}, 2E_{\pi} + m)} \frac{E_{t} - m}{2E_{\pi}}$$

$$P_{e}(E_{e}) = t_{1}(E_{e}, E_{\pi}) + \int_{0}^{t_{1}(E_{e}, 2E_{\pi} + m)} \frac{dt}{2} \int_{0}^{t_{1}(E_{e}, 2E_{\pi} + m)} \frac{dt}{\epsilon}, \quad /16/$$

где

$$t_1(E_1, E_2) \simeq \ln \frac{E_1 + E_k}{E_2 + E_k}$$
 (p.eq.) /17/

- средняя длина пробега электрона от значения энергии E_1 до значения E_2 , E_{π} - пороговая энергия черенковского излучения, m - масса электрона, $E_t \simeq (E_e + E_k) e^{-t} - E_k$ - средняя энергия электрона на глубине t.

Пробег вторичных электронов оценивался по формуле

$$t_1(\frac{\epsilon}{2}, E_{\pi}) \simeq \frac{0.526}{t_p} (\frac{\epsilon}{2} - E_{\pi}) / pag.eg./,$$
 /18/

где t – радиационная длина вещества в г.см⁻².

формула /18/ получена с помощью эмпирической закономерности для максимального пробега электрона:

$$R_{max} = 0,526 E - 0,24 / r \cdot cm^{-2} / \sqrt{9},$$
 (19)

где Е - энергия электрона в МэВ.

Расчеты по формуле /16/ приводят к следующему выражению для $\mathbf{P}_{\mathbf{e}}$ ($\mathbf{E}_{\mathbf{e}}$):

$$P_{e}(E_{e}) = t_{1}(E_{e}, E_{\pi}) + \frac{0.526}{t_{o}} \{ [(E_{e} + E_{k})(1 - e^{-t_{1}}) - (E_{e} + E_{k})e^{t_{1}} - (E_{e} + E$$

где $t'_1 = t_1 (E_e, 2E_{\pi} + m), t_1$ определяется формулой /17/. Коэффициенты g_1 определялись с помощью формулы

$$g_i(E_i) \simeq const \cdot e^{Knt_{mi}(E_i)},$$
 /21/

где К - коэффициент поглощения света с длиной волны λ_m в радиаторе, n - коэффициент предомления радиатора.

Согласно теории ливней^{/8/} величина t_{me} равна

$$t_{me} = K_1(\frac{E_e}{E_k}) \ln \frac{E_e}{E_k}, E_e > eE_k,$$
 /22/

где $K_1(\frac{E_e}{E_k})$ учитывает зависимость коэффициента поглощения фото-

нов в тяжелых элементах от энергии.

Выражение для $t_{me}(E_e)$ в области $E_e \leq eE_k$ получилось громоздким. Ниже приводится аппроксимирующая функция, которая хорошо описывает $t_{me}(E_e)$ во всей области $E_e > 0,7E_k$:

$$t_{me} = K_1 \left(\frac{E_e}{E_k}\right) \left[\ln \frac{E_e}{E_k} + \frac{2.4}{(E_e/E_k)} - \frac{1.3}{(E_e/E_k)^2} \right].$$
 /23/

На основании данных, полученных в работе $^{/8/}$ для свинца, сделана оценка величины $K_1(\frac{E_e}{E_k})$ для свинцовых стекол /Рв0 около 50%; критическая энергия $E_k \sim 15$ МэВ/. Результаты приведены в табл.1.

Для области $E_{\mu} < E_{\mu} < 0,7E_{\mu}$

$$t_{me} \simeq \frac{1}{2} t_1 (E_e, E_\pi) + \frac{1}{\mu} [1 - K_2 (E_e)],$$
 /24/

где $\tilde{\mu}$ - среднее значение полного коэффициента поглощения фотонов для интервала ($2E_{n} \div E_{e}$), $K_{2}(E_{e}) = t_{1}(E_{e}, E_{\pi}) / P_{e}(E_{e})$.

4

5

/28/

Таблица l

Е _е /Е _к / Вещество	1	10	20	30	50	71,5	143
Свинец	1,90	1,76	1,66	1,59	1,47	1,40	1,33
Св.стекло	1,75	1,56	1,44	1,37	1,30	1,28	1,26

Значения
$$K_1$$
 при $E_e/E_k = 1$ определены по формуле

$$K_1 = t_{me}(E_k)/t_{me}(E_k);$$
 $t_{me} = t_{me}|\bar{\mu}=0.773'$

где t_{me} определяется соотношением /24/.

Величина
$$t_{my}$$
 определялась формулой
 $t_{my}(E_{\gamma}) \simeq \frac{1}{\mu(E_{\gamma})} + t_{me}(\frac{E_{\gamma}}{2}).$ /25/

На рис.1 показана зависимость $\xi_i(\mathbf{E}_i)$ для у-спектрометра из свинцового стекла марки ТФ-1 толщиной 14 рад.ед. '2' /n = = 1,65; К = 0,015; $\mathbf{E}_k \simeq 15$ МэВ, $\mathbf{E}_{ae} \simeq 0,6$ ГэВ/.

В области энергий $\epsilon_i > E_n$ величины $a_i \equiv \epsilon_i [1 - \xi_i(\epsilon_i)]$ являются функциями, слабо зависящими от ϵ_i , что позволяет использовать в расчетах по формуле /7/ следующую аппроксимацию:

$$a_{i}(\epsilon_{i}) \simeq \begin{cases} a_{i}(E_{e}), & a_{i} \leq \epsilon \leq E_{e} \\ \epsilon_{i}, & \epsilon_{i} \leq \overline{a}_{i}, \end{cases}$$

$$(26)$$

где $\bar{a}_i(E_{\theta})$ - табулируемые функции, не зависящие от ϵ_i . В случае, представленном на рис.1, для области $E_{\theta} \geq 2$ ≥ 50 МэВ величина \bar{a}_{γ} приблизительно постоянна: $\bar{a}_{\gamma} \approx 1,3$ МэВ.

Рис.1. Зависимость ξ_i(E_i) для ^γ-спектрометра с радиатором из стекла ТΦ-1 длиной 14 рад.ед.

Значения 🚡 для раз'личных Е

приведены в табл.2.

	, МэВ	50	100	150	· ≳ 200
а _е , МэВ 1,5 2,2 2,7 ~3	, МэВ	1,5	2,2	2,7	~ 3

Расчеты по формуле /7/ с использованием аппроксимации /26/ приводят к следующим выражениям для ΔE_y и ΔE_p :

$$\Delta E_{\gamma} (E_{e}, t) = \frac{\bar{a}_{\gamma}}{\mu} [(1 - e^{-\mu t})(1 + \ln \frac{E_{e}}{\bar{a}_{\gamma}} - \frac{1}{\mu}) + t e^{-\mu t}];$$

$$\Delta E_{p} (E_{e}, t) = 2\bar{a}_{e} (\frac{\mu}{\mu + 1} e^{t} + \frac{e}{\mu + 1} - 1) + [\ln (E_{e}/2\bar{a}_{e}) - t] \times /27/$$

$$\times [\frac{2}{3} F t^{3} + H \frac{t^{2}}{2} + (2\bar{a}_{e} - \frac{H}{\mu})(t - \frac{1 - e^{-\mu t}}{\mu})],$$

$$F = Lt_{o} + \bar{a}_{\gamma}, \qquad /29/$$

$$H = F[\ln(2E_{e}\bar{a}_{e}) - t - \frac{4}{\mu}] + 2Lt_{o}(B - C - 1, 26) + 2\bar{a}_{\gamma}(1 - \ln 2\bar{a}_{\gamma}), \qquad /30/$$

 t_0 - радиационная длина вещества в г/см 2 , величины \bar{s}_{θ} , \bar{a}_y и E_{θ} измеряются в МэВ, t - в рад.ед.

Для легких элементов формулы /27/, /28/ справедливы во всей рабочей области энергий для данного спектрометра. Для тяжелых элементов коэффициент поглощения фотонов $\mu(\epsilon)$ может существенно отличаться от предельного значения $\mu \simeq 0,773$. В этом случае величина μ заменяется приближенным выражением:

$$\langle \mu \rangle = \mu / [2K_1(E_p) - 1],$$
 /31/

где К₁ определена в формуле /22/ /см.также табл.1/.

3. СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

На рис.2 показана зависимость амплитуды сигнала $A = 1 - \Delta E_{e}^{3\phi\phi}$ (E_{e},t)/ E_{e} от толщины t медного /рис.2а/ и свинцового /рис.2б/ конвертора. Расчеты производились для γ -спектрометра из свинцового стекла марки ТФ-1 с длиной радиатора 14 рад.ед/2/

 $(\bar{a}_e \approx 3 \text{ МэВ}; \bar{a}_\gamma \approx 1,3 \text{ МэВ}; рис.2а/ и для <u>с</u>пектрометра_из стек$ $ла SF -5 с длиной радиатора 15 рад.ед. <math>^{/3/}/a_e \approx 9 \text{ МэВ}; a_\gamma \approx 4 \text{ МэВ};$ рис.2б/. Из сравнения с экспериментальными данными, представленными на том же рисунке, видно согласие расчета с экспериментом.

На рис.3 представлены спектры эффективных масс двух У-квантов до /рис.3а/ и после /рис.3б/ введения поправок на энергетические потери. Гамма-кванты, образованные в реакции π^- + + $C^{12} \rightarrow \pi^{\circ}/180^{\circ}/$ + X при P_{π^-} = 3,81 ГэВ/с регистрировались с помощью 90-канального масс-спектрометра ЛВЭ ОИЯИ /установка "Фотон" /2//.

Суммарная толщина медных конверторов, расположенных перед спектрометрами, t \simeq 1,2 рад.ед. Из рисунка видно, что после введения поправок среднее значение эффективной массы довольно хорошо согласуется с табличным значением массы: π° -мезона.

Приведем в заключение формулы, описывающие эффективные потери энергии электронов и у-квантов, регистрируемых у-спектрометрами полного поглощения:

$$\Delta E_{\gamma}^{\vartheta \varphi \varphi}(E_{\gamma}, t) \approx 2 \Delta E_{e}^{\vartheta \varphi \varphi}(\frac{E_{\gamma}}{2}, t - t_{x}); \qquad /32/$$

$$\Delta E_{e}^{\phi\phi} (E_{e}, t) = \Delta E_{HOH} + \Delta E_{\gamma} + \Delta E_{p} + \overline{a}_{e} (E_{t}), \qquad /33/$$

где $E_{e(\gamma)}$ - энергия регистрируемого электрона /у-кванта/ в МэВ, t - толщина вещества в рад.ед., t_x - координата точки конверсии у-кванта,

$$\Delta E_{\text{NOH}} \simeq L t_{o} t (B - C - 0.57 + \ln E_{e})$$
 /34/

- ионизационные потери электрона, L , B и C - постоянные для $_{_2}$ данного вещества $^{/4/}$, t $_{_0}$ - радиационная длина вещества в г.см ,

$$\Delta E_{\gamma} = \frac{a_{\gamma}}{\mu} [(1 - e^{\mu t})(1 + \ln \frac{E_{e}}{\bar{a}_{\gamma}} - \frac{1}{\mu}) + t e^{\mu t}]; \qquad (35)$$

$$\Delta E_{p} \approx 2\bar{a}_{e} \left(\frac{\mu}{\mu+1}e^{t} + \frac{e^{-\mu t}}{\mu+1} - 1\right) + \left[\ln(E_{e}/2\bar{a}_{e}) - t\right]\left[\frac{2}{3}Ft^{3} + \frac{1}{\mu}+1\right] + \left[\frac{1}{2}e^{-\mu t} + \frac{1}{\mu}e^{-\mu t}\right]\left(2\bar{a}_{e} - \frac{1}{\mu}\right)];$$

8

µ - полный коэффициент поглощения фотонов в веществе /рад.ед.⁻¹ /, величины a_e и a_γ /формула /26// учитывают нелинейность У-спектрометра из-за поглощения света в радиаторе, $E_t \simeq E_e e^{-t}$ - энергия электрона на глубине t. Для тяжелых элементов величина µ ≈ 0,773 заменяется выражением µ/[2K₁(E_e) -1], где K₁ определена в формуле /22/. Значения K₁(E_e) для различных E_e приведены в табл.1.

ЛИТЕРАТУРА

- 1. Зрелов В.П. Излучение Вавилова-Черенкова и его применение в физике высоких энергий. М.: Атомиздат, ч.2, 1968.
- Astvatsaturov R.G. et al. Nucl.Inst.Meth., 1979, 163, p.343.
- 3. Holder M. et al. Nucl.Inst.Meth., 1973, 108, p.541.
- 4. Хаякава С. Физика космических лучей. М.: Мир, ч.1, 1973.
- 5. Grushin V.F., Leikin E.M. Nucl.Inst.Meth., 1964, 30, p.341.
- 6. Azimov M.A., Pantuev V.S., Khachaturian M.N. Nucl.Inst. Meth., 1966, 39, p.325.
- 7. Прокошкин Ю.Д., Тан-Сяо-вэй. ЖЭТФ, 1959, 36, з.10.
- 8. Беленький С.З. Лавинные процессыты космических лучах. М.: Гостехиздат, 1948.
- 9. Широков Ю.М., Юдин Н.П. Ядерная физика. М.: Наука, 1972.

Рукопись поступила в издательский отдел 2 декабря 1987 года. Абраамян Х.У. и др. Восстановление энергии электронов и гамма-квантов в гамма-спектрометре полного поглощения

Получена формула, позволяющая вычислять потери энергии в веществе, расположенном перед гамма-спектрометром полного поглощения при измерении энергий электронов и гаммаквантов. Формула учитывает также нелинейность гамма-спектрометра к низкоэнергетическим электронам и гамма-квантам.

P1-87-853

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Abraamian Kh.U. et al. P1-87-853 Reproduction of Electron and Gamma-Quantum Energy in Total Absorption Gamma-Spectrometer

The formula allowing one to calculate energy losses in the matter, placed in front of a total absorption γ -spectrometer, in the measurement of electron and γ -quantum energies, has been derived. The formula also takes into account nonlinearity of the γ -spectrometer to low-energy electrons and γ -quanta.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987