

A 187

P1-87-830

- В.В.Авдейчиков*, А.И.Богданов*, В.А.Будилов,
- Е.А.Ганза*, Н.Л.Горшкова, К.Г.Денисенко*,
- Н.К.Жидков, О.В.Ложкин*, Ю.А.Мурин*,
- В.А.Никитин, П.В.Номоконов, М.Трайкова

НАБЛЮДЕНИЕ МИНИМУМА В ЭНЕРГЕТИЧЕСКОЙ ЗАВИСИМОСТИ

ПАРАМЕТРА *т* ЗАРЯДОВОГО ВЫХОДА ФРАГМЕНТОВ ПРИ ВЗАИМОДЕЙСТВИИ РЕЛЯТИВИСТСКИХ ЯДЕР ⁴ Не С ЯДРАМИ ЗОЛОТА

Направлено в журнал "Письма в ЖЭТФ"

Радиевый институт им.В.Г.Хлопина, Ленинград

1987

Исследование зависимости характеристик образования фрагментов промежуточной массы /ФПМ/ от энергии налетающих частиц имеет большое значение для изучения возможных проявлений нестабильностей и критических явлений в ядерной материи $^{/1/}$. Важнейшим параметром при этом является τ , определяемый по зарядовому выходу фрагментов σ (Z) по формуле

$$\sigma'(Z) \sim Z^{-r}$$
. /1/

Модель образования фрагментов промежуточных масс, предполагающая осуществление фазового перехода "газ-жидкость" /2/, статистическая теория мультифрагментации /3/, модель ядерной решетки /4/ и другие модели, развиваемые в последнее время, предсказывают определенное поведение зарядового выхода в зависимости от энергии возбуждения системы или других параметров, присущих данной модели. Так, теория фазового перехода "газ-жидкость" предсказывает достижение параметром г минимального значения при критическом значении давления и плотности вещества в системе. В экспериментах, посвященных изучению зависимости г от энергии падающих частиц, минимум до сих пор не наблюдался, однако анализ имеющихся данных ^{/5/} указывает на возможность его существования.

В предыдущей работе ${}^{75/}$ рассматривается зависимость r от энергии протонов в реакции 1 H + Au . Было обнаружено насыщение r с ростом энергии пучка. Ниже представлены результаты изучения инклюзивных дифференциальных сечений образования ФПМ в реакции 4 He + Au в диапазоне энергии 4 He 1,3-13,5 ГэВ. Регистрируются фрагменты с зарядами Z = 5-12 в диапазоне кинетической энергии 1-11 МэВ/нуклон под углами 35-135°. Измеренные сечения опубликованы в ${}^{6/}$. Методика эксперимента описана в ${}^{7/}$.

Анализ спектров фрагментов проведен с помощью диаграмм $\frac{1}{p} \frac{d^2 \sigma}{dE_f d\Omega} = f(v_{||}, v_{\perp}), v_{||} u v_{\perp}$ – продольная и поперечная

составляющие скорости данного фрагмента. Обнаружено наличие по крайней мере двух источников, определяющих форму энергетического спектра фрагментов. В области малой кинетической энергии фрагмента E_1 доминирует вклад источника с продольной скоростью $\beta_1 = 0,008$ с...в.области-высокой энергии - источника

но по сполнай институт Елеряна исследования БИБЛИ:СТЕНА

1

с продольной скоростью $\beta_2 = 0,02$ с, где с - скорость света. Указанные значения β_1 и β_2 характерны для всех Z фрагментов и энергий пучка. Экспериментальные данные ^{/8/}, а также ряд теоретических моделей ^{/9,10/} указывают на значительный вклад двухтельного распада высоковозбужденных ядер в сечение образования ФПМ. Поэтому дифференциальное сечение образования фрагмента под определенным углом можно параметризовать в виде

$$d_{\sigma} (Z, E_{f}) = d_{\sigma_{1}}(Z) \cdot f_{1}(\beta_{1}, T_{1}, E_{f}) + d_{\sigma_{2}}(Z) \cdot f_{2}(\beta_{2}, T_{2}, E_{f}), \qquad /2/$$

где f_1 описывает двухтельный статистический распад по формулам теории асимметричного деления высоковозбужденной ядерной системы $^{/10/}$ со скоростью β_1 и температурой T_1 , а f_2 - вклад источника со скоростью β_2 и температурой T_2 . $d\sigma_1$ и $d\sigma_2$ - веса этих источников. f_2 параметризован нами в виде модифицированного максвелл-больцмановского распределения $^{/11, 5/}$, имеющего кулоновский барьер, близкий к нулю. Описание экспериментальных данных зависимостью /2/ дает $T_1 = 9,6$ мэВ, $T_2 = 20$ мэВ. На рис.1 изображено описание дифференциальных спектров фрагментов с Z = 5 и 9 в реакциях 1 H + Au и 4 He + Au в виде /2/, представлены также составляющие f_1 и f_2 .

Параметризация /2/ хорошо описывает данные под различными углами наблюдения и используется для восстановления ненаблю-

части спектров /ее вклад оценивается нами ~ 8%/ и определения полного зарядового выхода фрагментов. На рис.2. представлена зависимость полных зарядовых выходов σ , σ_1 и σ_2 от энергии пучка ⁴ Не. Наблюдается рост сечения σ / Z = 5-7/ при неизмен-

даемой нами низкоэнергетической

Рис.1. Энергетические спектры фрагментов В и F, вылетающих под углом 90° в лаб. системе в реакции p + Au при энергии налетающих протонов 2,55 ГэВ, и для реакции ⁴He + Au при энергии ⁴ He 13,48 ГэВ. Сплошными линиями представлено описание формулой /2/. Пунктирной и штрихпунктирной линиями показаны составляющие f_1 и f_2 .

Рис.2. Выходы фрагментов с Z = = 5-9 в реакции ⁴He + Au , проинтегрированные по углу наблюдения: a/ полные выходы /2/; б/ выходы для компоненты f_1 ; в/ выходы для компоненты f_2 .

ном сечении σ / Z = 8-9/. При этом рост полного сечения выхода фрагментов определяется компонентой σ_2 .

Анализ зарядового выхода по формуле /1/ /рис.3/ приводит к следующим результатам. Параметр τ / E4_{He} / имеет минимум при E4_{He} ~ 6 ГэВ. При этом последующий рост τ обусловлен быстрой компонентой σ_{2} .

Полученный результат не может быть однозначно связан с фазовым переходом типа "газжидкость" в ядерной материи из-

за отсутствия данных по множественности образования фрагментов. Не вполне ясна и физическая природа быстрой компоненты сечения, характеристики которой можно, однако, рассматривать как проявление мультифрагментационного механизма $^{/3/}$ /близкий к нулю барьер взаимодействия и температура T ~ 20 МэВ, возможно, отражающая импульсное распределение нуклонов в ядре/.

Рис.3. Зависимость τ от энергии пучка ⁴Не для реакции ⁴Не + Au. • – параметр τ , определенный по полным выходам /2/; О – параметр τ , определенный по выходам компоненты ^f1; = – параметр τ , определенный по выходам компоненты ^f2.

2

3

ЛИТЕРАТУРА

- Авдейчиков В.В. и др. P1-87-830 1. Finn J.E. et al. Phys.Rev.Lett., 1982, 49, p.1321. Наблюдение минимума в энергетической зависимости 2. Minich R.W. et al. Phys.Lett., 1982, v.B118, p.458. параметра 7 зарядового выхода фрагментов 3. Mishustin I.N. Nucl. Phys., 1985, v.A447, p.67. при взаимодействии релятивистских ядер 4 Не 4. Bauer W. et al. Nucl.Phys., 1986, v.A452, p.699. с ядрами золота 5. Авдейчиков В.В. и др. Письма в ЖЭТФ, 1987, т.46. с.141. 6. Авдейчиков В.В. и др. Сообщение ОИЯИ Р1-87-609, Измерены зарядовые выходы фрагментов /5 < Z < 12/ в ре-Р1-87-709. Дубна. 1987. 7. Авдейчиков В.В. и др. Сообщение ОИЯИ Р1-87-509, Дубна, 1987. 8. Bougault R. et al. Phys.Rev., 1987, v.C36, p.830. 9. Friedman W.A., Lynch W.G. Phys.Rev., 1983, v.C28, p.16. **=** 6 Γ∍Β. 10. Moretto L.G. Nucl. Phys., 1975, v.A247, p.211.
 - 11. Poskanzer A.M., Butler G.W., Hyde E.K. Phys.Rev., 1971, v.C3, p.882.

акции ⁴He + Au в диапазоне кинетических энергий Е_{4_и} = = 1,3-13,5 под углами 35-135°. Сечения выхода параметризованы зависимостью $\sigma / Z / - Z^{-r}$. Обсуждается природа обнаруженного минимума параметра $\tau / E 4_{He} / при E 4_{He} =$

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой.

P1-87-830 Avdeichikov V.V. et al. Observation of Minimum in Energy Dependence of 7 Parameter of Charge Fragment Yield in Interaction of ⁴He Relativistic Nuclei with Gold Nuclei

Charge yields for the formation of fragments with Z = = 5-12 charges in the laboratory angle range of $35-135^{\circ}$ in collisions of ⁴He particles with gold at the kinetic energies $E_{4\mu_e} = 1.3-13.5$ GeV have been measured. Charge yields are approximated by $\sigma(Z) \sim Z^{-\tau}$ dependence. The nature of minimum in τ (E_{4_{He})-dependence at E_{4_{He}} $\stackrel{\simeq}{=}$ 6 GeV is discussed.}

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

.

Рукопись поступила в издательский отдел 24 ноября 1987 года.