

P1-87-71

В.Н.Батурин¹, Т.Д.Блохинцева, А.В.Кравцов¹, А.В.Купцов, В.П.Курочкин², Л.Лучан, Л.Л.Неменов, Ж.П.Пустыльник

ОПРЕДЕЛЕНИЕ НУКЛОННОГО ФОРМФАКТОРА ИЗ ДАННЫХ ПО РЕАКЦИИ $\pi^{+}_{+}{}^{7}$ Li — e^{+} + e^{-} +X ПРИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ПИОНОВ 380 МэВ

Направлено в журнал "Ядерная физика"

¹ Ленинградский институт ядерной физики АН СССР ² Научно-исследовательский институт ядерной физики Московского государственного университета им. М.В. Ломоносова Исследование обратного электророждения пионов (ОЭП) на ядрах представляет несомненный интерес с точки зрения получения данных об электромагнитном формфакторе ядра во времениподобной области переданных импульсов, где такого рода данных нет. С другой стороны, если процесс рассматривать как сумму реакций на квазисвободных нуклонах, то представляется возможность получить информацию об электромагнитном формфакторе нуклона в той области значений квадрата переданного импульса κ^2 , которая недоступна встрачным е⁺ е⁻ и рр -пучкам, т.е. до $\kappa^2 \approx 3.5$ (ГэВ/с)².

Исследования ОЭП на свободном протоне были проведены в рабо-/I+4/ тах , и на основе анализа дифференциальных сечений в рамках дисперсионной модели получены значения изовекторного формфактора нуклона F_1^{\vee} в области κ^2 от 0,054 (ГэВ/с)² до 0,119 (ГэВ/с)².

Переход к подобным исследованиям на ядре особенно интересен тем, что позволяет исследовать ОЭП на нейтроне. В принципе именно совместный анализ данных ОЭП на протоне и нейтроне позволяет /6/ получить наиболее точную информацию о нуклонном формфакторе .

Реакция обратного электророждения П⁺ -мезонов на ядре 'Li

$$\pi^+ + {}^{\dagger}L_i \rightarrow e^+ + e^- + X \tag{I}$$

была впервые зарегистрирована в эксперименте⁷⁷⁷. Было показано, что хорошее описание данных возможно только в предположении,что процесс может идти как с образованием ядра ³Ве (реакция без развала ядра)

$$\hat{n}^{+} + \hat{L}_{i} \rightarrow e^{+} + e^{-} + \hat{B}e, \qquad (2)$$

так и с выбиванием протона

 $\pi^{+} + {}^{*} L_{i} \rightarrow e^{+} + e^{-} + {}^{*} L_{i} + P \qquad (3)$

или нескольких нуклонов (реакция с развалом яцра).

I

В работе ^{/8/} приведены результаты обработки нового статисти-/7/ ческого материала и на основе данных этой работы и работы определен изовекторный нуклонный формфактор F_{\pm}^{\vee} при значении квадрата времениподобного переданного импульса $\overline{k} = 0.13$ (ГэВ/с)². Для определения формфактора использовались только те события ОЭП, которые принадлекат процессам с развалом ядра. Полагали, что среди них доминирующей является реакция (3) и что она описывается диаграммой, приведенной на рис. I.

В этих предположениях и при использовании дисперсионной модели для нуклонной вершины и двух различных моделей цля описания ядерной вершины получили следующий результат:

> $F_{4}^{V} = 1,63 \pm 0,22$ (модель нуклонных ассоциаций), $F_{4}^{V} = 1,46 + 0,22$ (модель оболочек).

В настоящей работе из анализа всех событий ОЭП на Li(как с развалом, так и без развала ядра), зарегистрированных в экспе-/7,8/, определен нуклонный формфактор F_1^{\vee} при трех значениях квадрата переданного импульса $\widetilde{\kappa^{\circ}} = 0,09; 0,15$ и $0,22(\Gamma_{3}B/c)^{2}$.

Экспериментальные данные получены на установке , работавшей на П-мезонном пучке синхроциклотрона ЛИНФ АН СССР. Электроны и позитроны процесса (I) регистрировались двумя телескопами, состоящими из дрейфовых камер, сцинтилляционных счетчиков, водяных черенковских счетчиков к стеклянных спектрометров. Телескопы с апертурой 50х50 см были расположены под углами 65⁰ к пучку П-мезонов. Телесный угол установки - 0,2 ср².

Критерии отбора, анализ фоновых событий, определение сечений /7,8/ на с подробно рассмотрены в работах краткое описание процедуры выделения процесса ОЭП.

Во время обработки восстанавливалась пространственная картина событий, вводились критерии на амплитуды импульсов в сцинтилляционных и черенковских счетчиках, отбирались события с энерговыделением в каждом спектрометре больше 70 МэВ и суммарным энерговыделением больше 200 МэВ.

Рис.І. Диаграмма, описывающая процесс x⁺+⁺Li→ e⁺+ e⁻⁺Li+p в полюсном приближении.

Среди отобранных событий имелись фоновые события, обусловленные процессами с образованием нейтральных и заряженных II-мезонов. Первые из них являются источником электрон-позитронных пар с малым углом разлета. Эти события характеризуются большими амплитудами импульсов в сцинтилляционных счетчиках. События с заряженными II-мезонами характеризуются малыми амплитудами импульсов в черенковских счетчиках. Поэтому для дальнейшего анализа отбирались события, у которых амплитуды импульсов в сцинтилляционных и черенковских счетчиках одновременно удовлетворяют критериям $A_{\zeta} \leq I, 6 A_{\zeta \ {eep}}$ и $A_{\xi} \geq 0, 6 A_{\xi \ {eep}}$, где $A_{\ {eep}}$ определялась из калибровочных измерений на пучке электронов.

Для определения количества событий ОЭП использовалось рас-2 пределение отобранных событий по квадрату недостающей масси M_X. Оно аппроксимировалось моделированными распределениями событий без развала и с развалом ядра и двумя экспериментальными фоновыми распределениями. Для построения фоновых распределений использовались события с A₅>I,6 A_{5 вер} и A_č < 0,6 A_{č вер}. Распре-

2

деление событий без развала ядра фактически определяется разрешением спектрометров. При моделировании событий с развалом ядра использовался матричный элемент цля реакции (3), гце ядер-/10/ ная вершина рассматривалась в модели нуклонных ассоциаций.

Заметим, что форма распрецелений с развалом ядра практически не зависит от модели, описывающей ядерную вершину.

В работе на основе всего статистического материала было определено количество событий ОЭП без развала и с развалом ядра и полное число событий ОЭП (регистрируемых установкой с порогами в спектрометрах 70 МэВ), а также соответствующие им сечения:

$$\Delta G_{1} = (3,9 \pm 0,6) \cdot 10^{-33} \text{ cm}^{2},$$

$$\Delta G_{2} = (2,6 \pm 0,7) \cdot 10^{-33} \text{ cm}^{2},$$

$$\Delta G_{1} = (6,5 \pm 0,7) \cdot 10^{-33} \text{ cm}^{2}.$$

отметим, что экспериментальные данные работы были обработаны заново в соответствии с описанной в работе процедурой выделения ОЭП, что привело к изменению сечения по этой части статистического материала:

 $\Delta G_{t} = (6.9 \pm 1.2) \cdot 10^{-33} \text{ см}^{2}$ еместо опубликованного в работе/7/

 $\Delta G_{t} = (5,5 \pm 1,4) \cdot 10^{-33} \text{ cm}^{2}$.

В настояцей работе все события ОЭП на Li (с развалом и без развала ядра) использовались для определения формфактора нуклона. Они группировались в три интервала по квадрату переданного импульса K^2 (таблица) таким образом, чтобы количество событий во всех интервалах было приблизительно одинаковым. Во втором и третьем интервалах по K^2 примесь фоновых событий не превышала 7% и учитывалась. Однако в первом интервале фоновые события составляли значительную часть, так что оказалось целесообразным определить число событий ОЭП в этом интервале путем вычитания из полного числа случаев ОЭП тех событий, которые принадлежат второму и третьему интервалам. Величины интервалов, средние значения K^2 , количество зарегистрированных событий N и экспериментальные сечения $\Delta G_{3\kappa_{CR}}$ приведены в таблице.

При вичислении соответствующих теоретических сечений полагали, что сечение на ядре складывается из сечений на отдельных нуклонах. Поглощение первичных П⁺-мезонов в ядре³ Li приводит к уменьшению числа нейтронов, участвующих в процессе ОЭП. Эффективное число ней-// тронов для рассматриваемого процесса было определено в работе . Оно составляет 3,6 ± 0,1. Тогда теоретическое сечение для каждого интервала ^{K²} можно записать в виде:

$$\Delta G_{reop}^{i} = 3.6 \Delta G_{\pi+n}^{i}, \quad i = 1,2,3.$$

Вцесь $\Delta G_{\pi+n}^{i} -$ сечение реакции
 $\pi^{+} + n \rightarrow \ell^{+} + \ell^{-} + \rho,$ (4)

рассчитанное по дисперсионной модели с учетом движения нейтрона (полагали, что распределение нейтронов по импульсу изотропно и равномерно в интервале от 0 до 250 MaB/c).

Ецинственным параметром модели является изовекторный формфактор F_{Λ}^{\vee} ; электромагнитный формфактор пиона использовался в виде: $F_{\pi} = F_{\Lambda}^{\vee} - \delta$, гце δ рассчитывалось в соответствии с работами

Приравнивая экспериментальные сечения соответствующим теоретическим значениям

 $\Delta \sigma_{3\kappa cn}^{i} = \Delta \sigma_{\tau e \sigma p}^{i} \left(F_{\Delta}^{\prime}(\kappa^{2}) \right), \quad i = 1, 2, 3,$

получим величины нуклонных формфакторов F_{L3KCR}^{\prime} , которые приведе-

Tad	лица
-----	------

	Интервал к²(ГэВ/с) ²	^{κt} (ΓəΒ/c) ²	N эксп.	<u>асэксп</u> x10 ⁻³³ см ²	<i>F</i> √ <i>F</i> Эксп. те	òp.
I	0,02+0,12	0,09	93 <u>+</u> 26	2,43 <u>+</u> 0,70	160 +0,18 -0,21	1,38
2	0,12+0,18	0,15	85 <u>+</u> 10	2,14 <u>+</u> 0,29	1,53+0,08 - 0.09	I,60
3	0,18 ÷ 0,40	0,22	84 <u>+</u> 10	2,05 <u>+</u> 0,27	I,88 +0,10 -0,10	1,92

На рис.2 приведены все имеющиеся данные по F_1^{\vee} , полученные в экспериментах по ОЭП на протонах и ядрах. Величины $F_{4, TEOP}^{\vee}$ в таблице и сплошная кривая на рис.2 рассчитывались в соответ-/I2/ стеми с работами . Расчеты, приведенные в дают практически такие же результаты в исследуемой области переданных импульсов.

Рис.2. Результаты измерений формфактора F_1^{\vee} в экспериментах по обратному электроровдению П-мезонор на протонах: • - /I,3/. • - /2,4/; на ядрах ⁺L[:] : □ - /8/, • - настоящая работа; на ядрах ^{*C} : ○ - /I4/. /I2/ Спложная крирая - результаты расчетов в модели.

ЛИТЕРАТУРА

- 1. Акимов Ю.К. и др.-НФ, 1971, 13. с.748.
- 2. Бережнев С.Ф. и цр.-НФ, 1973, 17, с.85.
- 3. Бережнев С.Ф. и пр.-ЯФ, 1977, 26, с.547.
- 4. Ализаде В.В. и пр.-ЯФ, 1981, 33, с.357.
- 5. Блохинцева Т.Д., Суровцев Ю.С., Ткебучава Ф.Р.-ЯФ, 1975, 21, с.850.

- 6. Блохинцева Т.Д., Неменов Л.Д.-ЯФ, 1982, 35, с.971.
- 7. Алексеев Г.Д. и цр.-ЯФ, 1982, 36, с.322.
- 8. Алексеев Г.Д. и цр. Сообщение ОИЯИ, РІ-86-300, Дубна, 1986.
- 9. Алексеев Г.Д. и цр. Сообщение ОИЯИ, РІЗ-8І-848, Дубна, 1981.
- IO. Аваков Г.В. и цр. ОИЯИ, Р4-85-950, Дубна, I985.
- II. Курочкин В.П., Кущов А.В. Сообщение ОИЯИ, Р4-87-70, Дубна, 1987.
- 12. Höhler G., Pietarinen E. Nucl. Phys., 1975, B95, p.210.
- I3. Budnev N.M., Budnev V.M., Serebryakov V.V. Phys.Lett., 1976, 64B, p. 307.
- І4. Алексеев Г.Д. и пр. ОИЯИ, РІ-87-72, Дубна, 1987.

Рукопись поступыла в издательский отдел 9 февраля 1987 года.

6

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам амалитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 p. 50 ĸ.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 p. 55 ĸ.
A2,13-83-689	Труды рабочего совещания по проблежам малучения и детектирования гравитационных волн. Дубиа, 1983.	2 р. 0 0 к.
Д13-84-63	Труды XI Международного симпознума по ядерной электронике. Братислава,	
	Чехословакия, 1983.	4 p. 50 ĸ.
д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30 ĸ.
д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
Д10,11-84-818	Труды V Международного совещания по про- Блемам математического моделирования, про- грамнированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
д4-85-851	Труды Международной школы по структуре [*] ядра, Алушта, 1985.	3 р. 75 к.
Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 р.
д13-85-793	Труды ХП Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
ДЗ,4,17-86-747	Труды У Международной школы по нейтронной физике. Алушта,1986.	4 р. 50 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Батурин В.Н. и др. Определение нуклонного формфактора из данных по реакции $\pi^+ + ^7 Li \rightarrow e^+ + e^- + Х при кинетической энергии пионов 380 Мэв$

Проведен анализ экспериментальных данных по обратному электророждению пионов /03П/ на ядрах ${}^{7}Li(\pi^{+},{}^{7}Li \rightarrow e^{+} + e^{-} + X)$ при кинетической энергии пионов 380 мэВ. Зарегистрированные ранее = 260 событий 03П группировались в три интервала по квадрату эффективной массы $e^{+}e^{-}$ —пары k^{2} со средними значениями: $k_{1}^{2} = 0,09$ (ГэВ/с)²; $k_{2}^{2} = 0,15$ (ГэВ/с)²; $k_{3}^{2} = 0,22$ (ГэВ/с)². Для каждого интервала k^{2} определено число событий 03П с энергией электрона и позитрона больше 70 МэВ, вылетающих под углами -65° к пучку пионов, и вычислены соответствующие сечения: $\Delta \sigma(k_{2}^{2}) = /2,4340,70/\cdot 10^{-33}$ см²; $\Delta \sigma(k_{2}^{2}) = /2,14\pm0,29/\cdot 10^{-33}$ см²; $\Delta \sigma(k_{3}^{2}) = /2,05\pm0,27/\cdot 10^{-33}$ см². Телесный угол установки 0,2 ср². После учета эффективного числа нейтронов в ядре 7Li, которое составляет 3,6\pm0,1, для каждого интервала k^{2} был определен изовекторный форму фактор нуклона F_{1}^{V} :

$$F_{1}^{V}(\overline{k}_{1}^{2}) = 1, 6 + 0, 18, F_{1}^{V}(\overline{k}_{2}^{2}) = 1, 53 + 0, 08, F_{1}^{V}(\overline{k}_{3}^{2}) = 1, 88 + 0, 10, -0, 10.$$

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Baturin V.N. et al.	P1-87-71
Determination of Nucleon Form Factor on the Basis of Data from $\pi^+ + {}^7\text{Li} \rightarrow e^+ + e^- + X$ Reaction at 380 MeV Kinetic Pion Energy	

Experimental data on inverse electroproduction of pions on ⁷Li nuclei $(\pi^+ + {}^{2}\text{Li} \rightarrow e^+ + e^- + X)$ at the kinetic pion energy 380 MeV have been analysed. Earlier detected ~ 260 events were grouped into three intervals in the squared effective mass k^2 of the $e^+ e^-$ pair, with mean values being $\bar{k}_{\perp}^2 =$ $= 0.09 (\text{GeV/c})^2$; $\bar{k}_{\perp}^2 = 0.15 (\text{GeV/c})^2$; $\bar{k}_{\perp}^2 = 0.22 (\text{GeV/c})^2$. For each k^2 interval the number of the events with the electron and positron energy over 70 MeV (those electrons and positrons emitted at angles -65° with respect to the pion beam) is determined, and the corresponding cross sections calculated: $\Delta\sigma(\bar{k}_{\perp}^2) = (2.43+0.70) \cdot 10^{-33} \text{ cm}^2$; $\Delta\sigma(\bar{k}_{\perp}^2) = (2.14\pm0.29) \cdot 10^{-33} \text{ cm}^2$; $\Delta\sigma(\bar{k}_{\perp}^2) = (2.05\pm0.27) \cdot 10^{-33} \text{ cm}^2$. The solid angle of the set-up is 0.2 sr². The isovector formfactor of the nucleon F_1 is determined for each k^2 interval to taking into account the effective number of neutrons in the ⁷Li nucleus (3.6\pm0.1):

 $\mathbf{F}_{1}^{\mathbf{V}}(\overline{\mathbf{k}_{1}^{2}}) = 1.6^{+0.18}_{-0.21}; \ \mathbf{F}_{1}^{\mathbf{V}}(\overline{\mathbf{k}_{2}^{2}}) = 1.53^{+0.08}_{-0.09}; \ \mathbf{F}_{1}^{\mathbf{V}}(\overline{\mathbf{k}_{3}^{2}}) = 1.88^{+0.10}_{-0.10}.$

The investigation has been performed at the Laboratory of Nuclear Problems, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna 1987

P1-87-71