

ОбЪЕДИНЕННЫЙ Институт ядерных исследований дубна

P1-87-67

ИЗУЧЕНИЕ ПРОЦЕССОВ ОБРАЗОВАНИЯ РЕЗОНАНСОВ В пр-взаимодействиях ПРИ Импульсе 12,2 Гэв/с

Сотрудничество: Дубна - Москва - Бухарест -Кошице - София

Направлено в журнал "Ядерная физика"

Батюня Б.В., Богуславский И.В., Брунцко Д., Врба В., Граменицкий И.М., Ледницки Р., Медведь К.С. Объединенный институт ядерных исследований, Дубна

Левонян С.В. Физический институт им. П.Н.Лебедева АН СССР. Москва

Гладилин Л.К., Дементьев Р.К., Лейкин Е.М., Новокшанов Н.П., Пожидаева Н.А., Рудь В.И., Тихонова Л.А. Научно-исследовательский институт ядерной физики МГУ, Москва

Кока К. Центральный институт физики, Бухарест

Муринь П., Шандор Л. Институт экспериментальной физики САН, Кошице

Златанов З., Каназирски Х. Высший химико-технологический институт, София

- .

I. BBEAFHNE

Значительный прогресс, достигнутий в понимании структуры адронов и закономерностей их взаимодействий, во многом обусловлен успехами экспериментального изучения множественных процессов при высоких энергиях. Важной частью таких исследований является изучение инклюзивного образования резонансов, которые дают более непосредственную и богатую информацию о механизме образования вторичных адронов, нежели "стабильные" частицы.

В этой работе представлены результаты анализа инклюзивного образования мезонных и барионных резонансов $\rho^{\circ}(770)$, $\omega^{\circ}(780)$, $\int_{0}^{0}(1270)$ и $\Delta(1232)$ в \bar{n} p-взаимодействиях при импульсе 6,1 ГэВ/с.

Следует отметить, что дополнительный интерес к антинуклон-нуклонным взаимодействиям вызван возможностью изучения аннигиляционных процессов. Несмотря на то, что к настоящему времени получены данные по образованию различных резонансов в \vec{p} р-взаимодействиях в интервале импульсов от 0,7 до IOO ГэВ/с [I], достаточно полной и достоверной является лишь информация о $\rho^{\circ}(770)$. Данные же по образованию ω° , $\int_{-\infty}^{\infty} \Delta^{**}$ и Δ° все еще весьма фрагментарны, а иногда и противоречивы. Что касается $\vec{p}n$ -взаимодействий, то в них резонансы изучались лишь в отдельных эксклюзивных каналах. Опубликованные недавно сечения образования ρ° - и $\int_{-\infty}^{\circ}$ -мезонов в $\vec{n}p$ -взаимодействиях при импульсе < I ГэВ/с [2] более чем в два раза отличаются от сечений, полученных в $\vec{p}p$ -соударениях при той же энергии [Ia]. Поэтому любая новая информация об инклюзивном образовании резонансов в $\vec{n}p$ -взаимодействиях является весьма актуальной.

Настоящая работа продолжает систематический анализ процессов множественного образования частиц в неупругих Пр -взаимодействиях при 6,I ГэВ/с, начатий в работах [3-4]. Экспериментальный материал

извлекался с помощью выделения антипротонов-спектаторов из ~11000 dp -событий, полученных при облучении жидководородной пузырьковой камеры "Людмила" сепарированным пучком антидейтронов с импульсом 12,2 ГэВ/с [5]. Нормировка проводилась на полное неупругое сечение $\sigma_{in}(\bar{n}p) = 43.7^{\pm}2.3$ мб [3], определенное интерполяцией $\bar{p}n$ -данных. Миллибарн-эквивалент составил ~62 соб/мб. Более подробно методические вопросы настоящего эксперимента изложены в работе [6].

2. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОЦЕДУРА

Информация об образовании мезонных резонансов извлекалась из анализа спектров эффективных масс $\pi^{+}\pi^{-}$ -комбинаций, а Δ (1232) из $p^{\pm}\pi^{\pm}$ -комбинаций.

Следует отметить, что ~ 85% всех заряженных частиц в данном эксперименте однозначно идентифицированы либо по плотности ионизации, либо на основании кинематического анализа [3]. Остальные частицы разделялись на π^{\pm} -мезоны и р(\bar{p}) с помощью весовой процедуры, основанной на использовании G-инвариантности \bar{n} р-взаимодействий [3]. Поэтому в приведенных спектрах эффективных масс практически этсутствуют отражения, связанные с неправильным присвоением масс (вклад заряженных К-мезонов невелик и при имеющейся статистике им можно пренебречь).

Для определения сечений ρ° , ω° -и \int° -мезонов спектр эффективных масс $\pi^{*}\pi^{-}$ -комбинаций аппроксимировался в интервале 0,28 – - 1,6 ГэВ/с² выражением

$$\frac{d\sigma}{dm} = BG(m) \left[\frac{\sigma_{e_1}}{I_{e_1}} + \sigma_p \frac{BW_p(m)}{I_p} + \sigma_f \frac{BW_f(m)}{I_f} \right] + \sigma_\omega \frac{R_\omega(m)}{I_\omega}, (1)$$

где Б. и I. - соответствующие сечения и нормировочные интегралы, ВW_p(m), ВW₁(m) - релятивистские функции Брейта-Вигнера:

$$BW(m) = \frac{(m/4) \cdot \Gamma(m)}{(m^{2} - m_{o}^{2})^{2} + m_{o}^{2} \Gamma^{2}(m)},$$

с ширинами $\Gamma(m) = \Gamma_0 \cdot (9/4)^{2j+4} (m_0/m), (j = I для p^o, j = 2 для f^o),$ $R_{\omega}(m) - функция, описывающая отражение распада <math>\omega^0 \to \pi^+\pi^-\pi^0$ в спектр эффективных масс $\pi^+\pi^-$ -пар [7]. Фон параметризовался в виде

$$BG(m) = q^{*} \exp(-\beta m), \qquad (2)$$

где $q_{\rho} = q(m)$ – импульс распада $m \rightarrow \pi^{+}\pi^{-}$ ($q_{\rho} = q(m_{\rho})$), $\ll \mu$ β – свободные параметры.

Поскольку хорошее описание фонового распределения в широком интервале масс является сложной задачей, для определения топологических и дифференциальных сечений р°-и f°-мезонов использовался фит выражением

$$\frac{d\Theta}{dm} = BG(m) \cdot \left[\frac{\Theta_{B_{1}}}{I_{e_{1}}} + \Theta_{R} \frac{BW_{R}(m)}{I_{R}} \right]$$
(3)

в области масс 0,58-0,94 ГэВ/с² для ρ° и 0,97-I,50 ГэВ/с² для \int° ; при этом в фоновой функции (2) полагалось $\mathcal{A} = I$. Отметим, что отличия в полных инклюзивных сечениях ρ° - и \int° -мезонов, полученных с помощью подгонок (I) и (3), не превышают 5%, что существенно меньше статистических погрешностей.

Спектр масс р[±] I[±]-пар аппроксимировался в интервале I,08 -- 2,0 ГэВ/с² выражением (3) с шириной $\lceil (m) = \lceil_o (\frac{q}{q_o})^3 (\frac{m_m^2 + q_o^2}{m_m^2 + q_o^2}) \frac{m}{m}$. Все приведенние в настоящей работе сечения поправлены на нерегистрируемые моды распада.

Из-за ограниченной статистики при определении сечений массы и ширины всех резонансов фиксировались на табличных значениях. Фит с распущенными массами ρ° , f° и Δ^{++} дал следующие значения: $m_{\rho^{\circ}} = =769^{\pm}15$ МэВ/с², $m_{f^{\circ}} = 1271^{\pm}37$ МэВ/с², $m_{\Delta^{++}} = 1235^{\pm}7$ МэВ/с².

Анализ экспериментального разрешения по эффективным массам 2-частичных комбинаций Γ_{R} , проведенный по методике, описанной в работе [8], показал, что в данном эксперименте $\Gamma_{R}(p^{\circ}) = 9$ МэВ/с², $\Gamma_{R}(p^{\circ}) = =$ =16,5 МэВ/с², $\Gamma_{R}(\Delta^{++}) = 4$ МэВ/с². Поскольку во всех случаях $\Gamma_{R}/\Gamma_{0} < 10\%$, в дальнейшем величина Г_R не учитывалась для удобства сравнения с <u>pp-данными</u>, в большинстве из которых при определении сечений резонансов использовались значения Г без учета экспериментального разрешения.

З. ПОЛНЫЕ И ТОПОЛОГИЧЕСКИЕ СЕЧЕНИЯ

На рис.І приведено распределение по эффективным массам $\pi^+\pi^-$ пар для всех $\tilde{n}\rho$ -собитий с $n_{ch} > 3$, аппроксимированное выражением (I) с 5 свободными параметрами: $\mathfrak{S}_{\rho^{\circ}}$, $\mathfrak{S}_{\downarrow^{\circ}}$, $\mathfrak{S}_{\omega^{\circ}}$, \checkmark , β ($\chi^{\prime}/\mu_{J}=I,2$). На вставках показано описание этого распределения в области $\rho^{\circ}(a)$ и $\xi^{\circ}(b)$ резонансов выражением (3).

Топологические и полные инклюзивные сечения образования $\rho^{\circ}(770)$; $\omega^{\circ}(780)-и \int^{\circ}(1270)$ -мезонов в аннигиляционных и всех неупругих $\overline{n}\rho$ взаимодействиях при 6, I ГэВ/с приведены в таблице I. Доля изучаемых мезонных резонансов, рождающихся в процессах аннигиляции, составляет ~82, 75 и 53% для ρ° , ω° - и \int° -мезонов соответственно.

<u>Рис.І.</u> Распределение эффективных масс $\pi^+\pi^-$ пар в h_p -взаимодействиях при 6, I ГэВ/с. Сплошная кривая – фит выражением (I), пунктирфон (2). Внизу показан вклад от ω° , ρ° - и \int° -мезонов. На вставках – фит массовых спектров $\pi^+\pi^-$ -комбинаций в области ρ° (а) и f° (б) резонансов.

Таблица I. Полные и топологические сечения образования мезонных резонансов в неупругих и аннигиляционных пр-взаимодействиях при 6, I ГэВ/с (мб)

n _{ch}	٥(p°)	O _a (p°)	ნ (ω°)	٥ _α (ω°)	Q(t _o)	Ő _a (f°)	
3	I,7±0,8	I,7±0,6	I,6±I,0	I,6±0,9	I,0±0,7	-	
5	3,0±1,2	2,3±1,0	2,7±2,2	I,9 [±] I,5	2,3±1,0	2,0±0,9	
7	4,2±1,2	3,2±I,I	I,5±I,3	1,3±1,3	I,4 [±] I,I	I,0±0,8	
9	0,4 [±] 0,4	0,4+0,4	0,6 1 0,6	0,6 ± 0,6	-	-	
∑ ≥3	9,3 [±] 2,1 9,1 [±] 2,0	7,6±1,6 7,5±1,6	6,4±2,7 8,5±3,0	5,4±2,2 6,3±2,5	4,7±1,7 3,0±1,3	3,0 [±] 1,2 1,6 [±] 1,1	

Таблица 2. Полное и топологические сечения (мб), среднее число и доля протонов от их распада в неаннигиляционных првзаимодействиях при 6,1 ГэВ/с

n _{ch}	б(<u></u> 4++)	^{(n} ۵++) _{NA}	Ø(p)	<u>σ(Δ++)</u> ,%
3	3,I ± 0,4	0,23 ± 0,03	9,56 ± 0,69	32 ± 5
5	I,3 ± 0,3	0,37 ± 0,09	2,17 ± 0,23	60 ± 15
7	0 ,IO±0, 05	0,32 ± 0,19	0,I0 ± 0,05	100
Σ	4,5 ± 0,6			<u></u>
>3	4,2 ± 0,6	0,25 ± 0,04	II,83 ± 0,75	36 ± 6

Распределения по эффективным массам различных зарядовых комбинаций $\rho^{t} u^{t}$ -пар, аппроксимированные выражением (3), изображены на рис.2. Поскольку в $\bar{p}p$ -экспериментах при высоких энергиях часто приводятся данные по сечениям Δ^{++} в ограниченном фазовом объеме $|t_{pa^{++}}| < < 0,7+I,0$ (ГэВ/с)², для сравнения с ними в настоящей работе также определены сечения Δ^{++} и Δ° -изобар в области $|t_{pa}| < I$ (ГэВ/с)² (рис.26,г): $\mathfrak{S}_{|t|<4}(\Delta^{++}) = 4,0^{\pm}0,5$ мб , $\mathfrak{S}_{|t|<4}(\Delta^{\circ}) = I,3^{\pm}0,9$ мб.

Из всех регистрируемых изотопических состояний Δ (1232) наиболее четко виден сигнал от Δ^{++} . Топологические сечения и среднее

число Δ^{++} в неаннигиляционных $\bar{n} p$ -взаимодействиях, а также доля протонов от их расцада приведены в табл.2. Видно, что примерно I/3 всех протонов в событиях с $n_{ch} > 3$ происходит от распада Δ^{++} .

<u>Рис. 2.</u> Распределение эффективных масс различных зарядовых состояний $p^{\pm}\mathfrak{H}_{\mathfrak{H}}^{\pm}$ -комбинаций: а) $p\mathfrak{H}_{\mathfrak{H}}^{\dagger}$, б) $p\mathfrak{H}_{\mathfrak{H}}^{\dagger}(!t_{pA}+!k')$ <I (ГэВ/с)²), в) $p\mathfrak{H}_{\mathfrak{H}}^{\dagger}$, г) $p\mathfrak{H}_{\mathfrak{H}}^{\dagger}$ ($!t_{pA}\bullet! <$ I (ГэВ/с)²), д) $p\mathfrak{H}_{\mathfrak{H}}^{\dagger}$, е) $p\mathfrak{H}_{\mathfrak{H}}^{\bullet}$. Сплощными линиями на всех рисунках показаны результаты аппроксимации экспериментальных распределений выражением (3), пунк- $\mathfrak{g}|\mathfrak{g}$ тиром – вклад фона.

откуда

Свойство G-инвариантности \bar{n} р-взаимодействий дает уникальную возможность оценить полное сечение образования Δ (I232) + $\bar{\Delta}$ (I232). Действительно, ненаблюдаемые изотопические состояния Δ ($\bar{\Delta}$) в \bar{n} р взаимодействиях выражаются через наблюдаемые:

$$\sigma_{\bar{k}p}(\Delta^{-}) = \sigma_{\bar{k}p}(\overline{\Delta^{+}}); \quad \sigma_{\bar{k}p}(\overline{\Delta^{-}}) = \sigma_{\bar{k}p}(\Delta^{++}),$$

$$\sigma_{\bar{k}p}(\Delta^{+}) = \sigma_{\bar{k}p}(\overline{\Delta^{+}}); \quad \sigma_{\bar{k}p}(\overline{\Delta^{+}}) = \sigma_{\bar{k}p}(\Delta^{+}),$$

 $\mathfrak{S}_{\overline{\mathbf{k}}_{p}}(\Delta+\overline{\Delta})=\mathfrak{Z}\left\{\mathfrak{S}_{\overline{\mathbf{k}}_{p}}(\Delta^{*+})+\mathfrak{S}_{\overline{\mathbf{k}}_{p}}(\Delta^{\bullet})+\mathfrak{S}_{\overline{\mathbf{k}}_{p}}(\overline{\Delta^{*+}})+\mathfrak{S}_{\overline{\mathbf{k}}_{p}}(\overline{\Delta^{\bullet}})\right\}.$

6

Таблица З.	Экспериментальные сечения (мб) всех наблюдаемых изо-
	спиновых состояний $\Delta/\overline{\Delta}$ (I232) в \overline{n} р-взаимодействиях
	а также доля p(p) от расцада 🛆 ($\overline{\Delta}$)

Вели- чина	Q(7++)	Ο (Δ°)	$\tilde{O}(\overline{\Delta^{++}})$	Q(<u>v</u>)	Ō(∆+⊼)	$\frac{O(\Delta)}{O(P)}$	$\frac{\overline{o}(\overline{\Delta})}{\overline{o}(\overline{p})}$ %
Зна- чение	4,2±0,6	I,7±I,2	0,2±0,2	3,5±1,3	19 , 2±3,7	44±7	27±II

Все экспериментально определенные сечения Δ ($\overline{\Delta}$), поправленные на нерегистрируемые моды распада, полное сечение $\mathfrak{S}(\Delta + \overline{\Delta})$, а также доля всех протонов (антипротонов) от их распада приведены в таблице 3. Среднее число $\Delta/\overline{\Delta}$ -изобар, приходящееся на одно неаннигиляционное событие, равно

$$\langle n_{\Delta/\bar{\Delta}} \rangle_{NA} = \frac{G(\Delta + \bar{\Delta})}{G_{NA}(\bar{h}p)} = 0,74 \pm 0,15$$

Полученное отношение сечений $\mathfrak{S}_{\kappa_{p}}(\Delta^{*}):\mathfrak{S}_{\kappa_{p}}(\Delta^{*}):\mathfrak{S}_{\kappa_{p}}(\Delta^{*+})$ оказалось близким к I:2:3, которое вытекает из предположения об изовекторном обмене в процессах образования Δ -изобар.

Энергетические зависимости сечений рождения $\rho^{\circ}(770)$; $f^{\circ}(1270)$ и $\Delta^{++}(1232)$ -резонансов в $\overline{p}p$ - и $\overline{n}p$ -взаимодействиях изображены на рис.3 *). Данные по выходу ρ° -мезонов демонстрируют четкий минимум в районе $\rho_{AAE} \lesssim 8$ ГэВ/с, разделяющий две области: область малых энергий, где ρ° рождается преимущественно в аннигиляции, и область больших энергий, где существенным становится вклад неаннигиляционных каналов. Анпроксимация зависимости сечения образования ρ° -мезонов от лабораторного импульса в $\overline{p}p$ -аннигиляции выражением [IB]

$$\bar{D}_{a}(p^{\bullet}) = A \cdot p_{AAB}^{-0,47}$$

приведена на рис.За пунктиром. Штрихпунктирной линией показан расчет [9] по модели слияния кварков [10], которая хорошо описывает выход и спектры векторных мезонов в pp- и pp-взаимодействиях при достаточно высоких энергиях. Сплошная линия представляет расчет по

^{*)} Точки при 22,4 ГэВ/с - сечения, полученные методикой [Ix] на увеличенной в ~3 раза статистике.

8

модификации этой модели [II]. Продвижение в область более низких энергий требует корректного учета вкладов диаграмм с аннигиляцией конституентов.

Из-за больших ошибок и малого числа точек трудно сделать определенное заключение о поведении $\mathfrak{S}_{\overline{N}_{0}}(\mathfrak{f}^{\circ})$.

Весьма противоречивы и данные по выходу $\Delta^{++}(1232)$ в $\overline{p}p$ -взаимодействиях (рис.3в). В рамках модели кварк-глюонных струн [12], основанной на I/N --разложении [13] и модели струны [14], можно сравнить инклюзивные сечения образования Δ^{++} в $\overline{p}p$ - и $\overline{h}p$ -взаимодействиях при одинаковой энергии. Поскольку при относительно невысоких энергиях в обоих этих процессах Δ^{++} образуется в области фрагментации протона, вклад в сечение ее образования дают диаграммы, изображенные на рис.4. При этом вклад от цилиндрических диаграмми (а) и диаграмм недоразвитого цилиндра (б) одинаков, и $\Delta^{6_16}_{\mu\rho}(\Delta^{++}) = = \mathfrak{T}_0/(2+\lambda)$, где \mathfrak{T}_0 - сечение одной планарной диаграммы (в), а $1/(2+\lambda)$ - вероятность того, что и и -дикварк подхватит морской и -кварк и образует Δ^{++} (λ - фактор подавления странного кварка). Таким образом, модель [12] предсказывает, что $\mathfrak{T}_{\mu}(\Delta^{++}) > \mathfrak{T}_{\mu}(\Delta^{++})$. Для количественного сравнения необходимо знать величину \mathfrak{T}_0 . В нашем случае \mathfrak{T}_0 можно оценить из разности полных сечений [3]:

Принимая $\lambda \simeq 0,3$, получим $\Delta \mathfrak{S}(a^{**}) = 1,7^{\pm}0,1$ мб, что согласуется с экспериментальной оценкой $\Delta \mathfrak{S}(a^{**}) = 1,1^{\pm}0,6$ мб **).

4. ДИФФЕРЕНЦИАЛЬНЫЕ СЕЧЕНИЯ И

ОЦЕНКА ДОЛИ Л - МЕЗОНОВ ОТ РАСПАДА РЕЗОНАНСОВ

Для определения дифференциальных сечений ρ' - и Δ^{++} -резонансов распределения эффективных масс T^+T^- и ρT^+ -пар, полученные в вы-

*) В качестве $\mathfrak{S}_{pp}(\Delta^{**})$ использовалось значение 3, I[±]0, I мо [IB].

Таблица 4. Сечения образования заряженных *Т* -мезонов в п̄р-взаимодействиях от различных источников. Приведены только статистические ошибки. (*) модельно-зависилие значения (см. тект)

Источник п-мезонов	0 _{л+} (мб)	0 ₁₇ -(мб)
$ \overline{n} p_{in} [4] $ $ \Delta(1232) + \overline{\Delta}(1232) $ $ \rho^{\circ} + \omega^{\circ} $ $ f^{\circ}(1270) $ $ \rho^{*} + \rho^{-} (*) $	79,2 ± 2,2 10,8 ± 1,5 17,6 ± 3,6 1,9 ± 0,9 12,7 ± 2,9	$42,4 \pm 1,3$ 1,5 \pm 0.8 17,6 \pm 3,6 1,9 \pm 0,9 5,5 \pm 1,7
∑ всех легких резонансов	43,0 ± 5,0 ·	26,5 ± 4,1
"Прямне" 77 —мезоны	36,2 ± 5,4	15,9 ± 4,3

деленных интервалах данной переменной, аппроксимировались выражением (3).

На рис.5 приведены $d \sigma/d \rho_{\tau}^2$ -распределения для ρ° -мезонов и Δ^{++} -изобар из $\bar{n} \rho$ -взаимодействий, профитированные в области $p_{\tau}^2 < < 1.2 (\Gamma_{2}B/c)^2$ экспоненциальной зависимостью

$$\frac{d\Theta}{dp_1^2} = C \cdot e^{-\frac{\beta}{\beta}p_1^2}$$

Полученные параметры наклона $\mathbf{b}_{p^{\circ}} = 3,2^{\pm}0,6 (\Gamma_{9}B/c)^{-2}$ м $\mathbf{b}_{\Delta^{++}} = = 6,8^{\pm}I.2 (\Gamma_{9}B/c)^{-2}$ соответствуют следукцим значениям $\langle p_{\tau} \rangle$ и $\langle p_{\tau}^{2} \rangle$ ($\langle p_{\tau}^{2} \rangle = I/6$, $\langle p_{\tau} \rangle = I/2 \sqrt{\pi/e}$): $\langle p_{\tau} \rangle_{p^{\circ}} = 0,50^{\pm}0.05 \Gamma_{9}B/c$, $\langle p_{\tau}^{2} \rangle_{p^{\circ}} = 0,3I^{\pm}0.06 (\Gamma_{9}B/c)^{2}$, $\langle p_{\tau} \rangle_{\Delta^{++}} = 0,34^{\pm}0.03 \Gamma_{9}B/c$, $\langle p_{\tau}^{2} \rangle_{\Delta^{++}} = 0,15^{\pm}0.03 (\Gamma_{9}B/c)^{2}$. Эти величины хорошо согласуются с p_{τ} -данными при 7,3 $\Gamma_{9}B/c$ [IB], хотя в последних для Δ^{++} -изобары было получено два различных наклона в $d6/dp_{\tau}^{2}$ -распределении: $4,3^{\pm}0.2 (\Gamma_{9}B/c)^{-2}$ при $p_{\tau}^{2} > 0.2 (\Gamma_{9}B/c)^{2}$.

Дифференциальные сечения $d\mathfrak{T}/dy^*$ для Δ^{++} и ρ° вместе с такими же распределениями в $\overline{p}p$ (7,3 ГэВ/с) изображены на рис.6. Видно, что формы обоих распределений в $\overline{n}p$ - и $\overline{p}p$ -взаимодействиях близки между собой. Как и ожидалось, образование Δ^{++} -изобар происходит в основном в области фрагментации протона, в то время как ρ° -мезон образуется преимущественно в центральной области.

В табл.4 приведены значения сечений заряженных \overline{T} -мезонов от распада всех изученных в данной работе резонансов. При этом для оценки сечений образования ρ^{\pm} -мезонов считалось, что $\mathfrak{C}(\mathfrak{g}^{*}):\mathfrak{C}(\mathfrak{g}):\mathfrak{C}(\mathfrak{g}^{*})=$ = $\mathfrak{C}(\mathfrak{n}_{\mathfrak{p}}^{*}):\mathfrak{C}(\mathfrak{n}_{\mathfrak{p}}^{*}):\mathfrak{C}(\mathfrak{r}_{\mathfrak{p}}^{*})$, где $\overline{T}_{\mathfrak{p}}$ – пряморожденные \overline{T} -мезоны, и что образованием других, более редких резонансов (К^{*}, \mathfrak{g} , ...) можно пренеобречь. В этих предположениях доля заряженных \overline{T} -мезонов от распада ρ -, ω -, $\frac{1}{2}$ -, Δ - и $\overline{\Delta}$ -резонансов составила (59±6) \mathfrak{K} , а отношение $\mathfrak{R}(\mathfrak{k}^{*}/\mathfrak{n}^{-})_{\mathfrak{p}}$ = 2,3±0,5. Напомним, что для всех \overline{T} -мезонов это отношение $\mathfrak{R}(\mathfrak{k}^{*}/\mathfrak{n}^{-})$ = 1,87±0,08 [4].

10

5. ЗАКЛЮЧЕНИЕ

I. В результате проведенного исследования на статистике 62 соб/мо определены сечения инклюзивного образования $p^{\circ}(770)$, $\omega^{\circ}(780)$; $\int^{\circ}(1270)$ -и $\Delta^{++}(1232)$ -резонансов в $\overline{h}p$ -взаимодействиях при 6, I ГэВ/с:

$$\begin{split} \mathfrak{S}(p^\circ) &= 9, \mathrm{I} \stackrel{+}{=} 2, 0 \ \mathrm{MO} \ , & \mathfrak{S}(\omega^\circ) &= 8, 5 \stackrel{+}{=} 3, 0 \ \mathrm{MO} \ , \\ \mathfrak{S}(\mathfrak{f}^\circ) &= 3, 0 \stackrel{+}{=} \mathrm{I}, 3 \ \mathrm{MO} \ , & \mathfrak{S}(\Delta^{**}) &= 4, 2 \stackrel{+}{=} 0, 6 \ \mathrm{MO} \ . \end{split}$$

2. Показано, что ~80% $\rho^{\circ}\text{-}$ и \sim 55% \int° -мезонов образуются в аннигиляционных процессах.

3. На основании G-инвариантности $\bar{n}p$ -взаимодействий получена оценка полного инклюзивного сечения рождения $\Delta + \bar{\Delta}$ (1232)-изобар: $\mathfrak{S}(\Delta + \bar{\Delta}) = 19,2^{\pm}3,7$ мб, и среднего числа $\Delta(\bar{\Delta})$ в неаннигиляционных процессах: $\langle n_{\Delta/\bar{\Delta}} \rangle_{MA} = 0,74^{\pm}0,15$.

4. Экспериментальное отношение выходов $\mathfrak{S}(\Delta^{\bullet}):\mathfrak{S}(\Delta^{\bullet}):\mathfrak{S}(\Delta^{\bullet+})$ оказалось близким к соотношению, вытекающему из предположения о доминирукщей роли изовекторного обмена в процессах образования Δ -изобар. Оценка разности полных инклюзивных сечений рождения Δ^{++} в $\overline{n}p - u \,\overline{p}p$ -взаимодействиях при нашей энергии согласуется с предсказанием модели кварк-глюонных струн.

5. Показано, что ~ 60% заряженных π -мезонов в $\overline{h}p$ -взаимодействиях при 6, I ГзВ/с происходят от распада легких ($\rho, \omega, f, \Delta, \overline{\Delta}$) резонансов. Доля протонов и антипротонов от распада Δ (I232) и $\overline{\Delta}$ (I232) составляет соответственно (44[±]7)% и (27[±]II)%.

ЛИТЕРАТУРА

- I.a) Hamatsu R. et al. Nucl. Phys., 1977, B123, 189.
 - O) Chen C.K. et al. Phys. Rev., 1978, D17, 42.
- B) Whyman B.M. et al. Z. Phys., 1982, C12, 203.
- r) Booth C.N. et al. Phys. Rev., 1983, D27, 2018.
- A) Gregory P.S. et al. Nucl. Phys., 1977, B119, 60;
 Markytan M. et al. Nucl. Phys., 1978, B143, 263.

e) Johnson P. et al. - Nucl. Phys., 1980, B173, 77. x) Ermilova D.I. et al. - Nucl. Phys., 1978, B137, 29; Boos E.S. et al. - Nucl. Phys., 1979, B151, 193. з) Бабинцев В.В. и др. - ЯФ, 1985, т.42, 1157: Козловский Е.А. и др. - ЯФ, 1986, т.44, 968. M) Raja R. et al. - Phys. Rev., 1977, D16, 2733; Ward D.R. et al. - Nucl. Phys., 1978, B141, 203. 2. Banerjee S. et al. - Z. Phys., 1986, C32, 163. 3. Батюня Б.В. и др. - Препринт ОИЯИ. РІ-86-839. Дубна. 1986. 4. Батюня Б.В. и др. - Препринт ОИЯИ, РІ-87-22. Дубна, 1987. 5. Васильев В.В. и др. - Препринт ИФВЭ, 80-66. Серпухов, 1980. 6. Граменицкий И.М. и др. - Сообщение ОИЯИ, I-84-788, Дубна, 1984. 7. Ледницки Р. - ЭЧАЯ, 1984, т.15, 617. 8. Granet P. et al. - Nucl. Phys., 1978, B140, 389. 9. Kinnunen R. - Preprint HU-P-178. Helsinki. 1980. IO. Картвелишвили В.Г., Лиходед А.К., Пронько Г.П. - Препринт ИФВЭ. 76-38. Cednyxob. 1976: Kniazev V.V. et al. - Preprint IHEP.77-106. Serpukhov, 1977 ; Князев В.В. и др.-Препринт WDB3, 77-107. Серпухов, I977; Chliapnikov P.V. et al. - Nucl. Phys., I979, BI48, 400. II. Амаглобели Н.С. и др. - ЯФ. 1986. т.44. 1533. I2. Кайдалов А.Б. - ЯФ, 1981, т.33, I369; Элементарные частицы. М.: Энергоатомиздат, 1983, T.2, 3; Kaidelov A.B. - Phys. Lett., 1982, 116B. 459; Kaidalov A.B., Ter-Martirosyan K.A. - Phys. Lett., 1982, 117B, 247.

- 13. Veneziano G. Nucl. Phys., 1976, B117, 519.
- 14. Artru X. Phys. Rep., 1983, 97, 147.

Рукопись поступила в издательский отдел 9 февраля 1987 года. Батюня Б.В. и др. Изучение процессов образования резонансов в пр-взаимодействиях при импульсе 12,2 ГэВ/с P1-87-67

P1-87-67

На материалах, полученных при облучении жидководородной пузырьковой камеры "Людмила" сепарированным пучком антидейтронов с импульсом 12,2 Гэв/с, исследуются процессы инклюзивного образования ρ° /770/-, ω° /780/-, Γ° /1270/и Λ /1232/-резонансов в пр-взаимодействиях при 6,1 Гзв/с. События пр-взаимодействий извлекались из dp-данных с помощью выделения антипротоновспектаторов. Приводятся полные и топологические сечения Λ^{++} в неупругих, а также $\rho^{\circ}, \omega^{\circ}$ и f° во всех неупругих и аннигиляционных взаимодействиях. На основании свойства G-инвариантности реакции пр оценено полное сечение $\sigma (\Lambda + \Lambda) = 19, 2+3, 7$ мб и $< n_{\Lambda/3} >_{N,\Lambda^{=}} \sigma (\Lambda + \Lambda)/q_{N}$ (пр)= 0,74+0,15. Получены также распределения по поперечному импульсу и быстроте ρ° - и Λ^{++} -резонансов. Показано, что - 60% заряженных π -мезонов в пр -взаимодействиях при 6,1 Гзв/с происходят от распада $\Lambda /1232/$ и $\Lambda /1232/$ составляет соответственно /44+7/% и /27+11/%. Полученые результаты сравниваются с \overline{p} -данными

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод 0.С.Виноградовой

Batyunya B.V. et al. Study of the Resonance Production in np-Interactions at 6.1 GeV/c

Inclusive production of $\rho^{\alpha}(770)$ -, $\omega^{\alpha}(780)$ -, $t^{\alpha}(1270)$ -, and Λ (1232)-resonances is studied in interactions at 6.1 GeV/c. The data are from the 2m HBC "Ludmila" exposed by separated antideuteron beam with 12.2 GeV/c momentum. The $\bar{n}p$ -events were extracted from $\bar{d}p$ -data using the \bar{p} -spectator determination. Total and topological cross sections of $\rho^{\alpha}, \omega^{\alpha}, t^{\alpha}$ and Λ^{++} production are presented. Based on the G-invariance of $\bar{n}P$ -interactions the total production cross section of $(\Lambda + \bar{\Lambda})$ and average ($\Lambda / \bar{\Lambda}$) multiplicity were estimated: $\sigma(\Lambda + \bar{\Lambda}) = 19.2 \pm 3.7$ mb, $\langle n \sqrt{\Lambda} + N_{A} = 0.74 \pm 0.15$. The p_{T}^{2} and y*-distributions for ρ^{α} and $\bar{\Lambda}^{++}$ are also presented. It is shown that about 60% of charged pions in interactions at 6.1 GeV/c arise from the decay of the light resonances: $\rho^{\bar{\alpha}}$, ω^{α} , t^{α} , $\bar{\Lambda}$. The fractions of $p(\bar{p})$ coming from $\Lambda(\bar{\Lambda})$ decay are (44 ± 7) ; and (27 ± 11) ; respectively. The results obtained are compared with $\bar{p}\bar{p}$ -data and discussed in terms of the quark-parton model.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987