

Батюня Б.В. и др. Определение топологических сечений неупругих бовзаимодействий при импульсе 12 ГэВ/с

Сотрудничество: Дубна — Бухарест — Ереван — Кошице — Москва — Прага — София

Направлено в журнал "Ядерная физика"

Б.В.Батюня, И.В.Богуславский, Д.Брунцко, В.Врба, И.М.Граменицкий, Р.Ледницки, К.С.Медведь, В.В.Ужинский, С.Ю.Шмаков Объединенный институт ядерных исследований, Дубна

Е.Балеа, К.Кока Центральный институт физики, Бухарест .

Н.М.Агабабян, Н.Б.Дашьян, А.Р.Канецян, З.А.Киракосян Ереванский физический институт

П.Муринь Институт экспериментальной физики Словацкой академии наук. Кошице

П.С.Баранов, С.В.Левонян Физический институт им. П.Н.Лебедева АН СССР, Москва

Л.К.Гладилин, О.В.Гришина, Р.К.Дементьев. Е.М.Лейкин, Н.П.Новокшанов, Н.А.Пожидаева, В.П.Руковичкин, В.И.Рудь, Л.А.Тихонова Научно-исследовательский институт ядерной физики МГУ, Москва

И.Вавра, И.Геринек, М.Локайчек, П.Староба, В.Шимак Физический институт ЧСАН, Прага

М.Сук, Р.Лейтнер Ядерный центр Карлова университета, Прага

З.Златанов, Х.Каназирски Высший химико-технологический институт, София

I. Введение

В настоящей работе приводятся результаты исследований характеристик неупругих dd -взаимодействий при импульсе 12.2 ГэВ/с.Ранее для такого типа взаимодействий изучались только полные сечения/^{1/}. и более подробная экопериментальная информация в настоящее время отсутствует. Предварительные результаты исследований dd -взаимодействий были представлени на международных конференциях в Брайтоне и Лейшиге^{/2/}. Структура работы следующая: во втором разделе определены топологические сечения неупругих СЛ -взаимодействий. сравнительный анализ с 🛛 🔊 Ли -данными приведён в разделе 3. в заключении сформулированы основные результаты работы.

II. Топологические сечения неупругих Id -взаимодействий

Экспериментальные данные получены при облучении водородной пузырыковой камеры "Людмила" с внутренней трекочувствительной мишенью/3/ сепарированным пучком антидейтронов на ускорителе У-70 ИФВЭ (Серпухов). Схема сепарации антидейтронов и нараметры пучка приведены в работе /4/. В среднем импульс пучка составлял 12.2 ГэВ/с с разбросом $\Delta p/p \simeq \pm I\%$.

При просмотре регистрировались взаимодействия внутри рабочего объёма мишени с произвольным числом вторичных частии. Подробное описание метолики просмотра приведено в работе /5/. Эффективность двойного просмотра составила 67 %, 89 %, 93,7 % и 99 % для 0, I, 2 и »З-лучевых событий соответственно. Было зарегистрировано«10000 dl взаимодействий.

Число событий каждой тополгии, найденное при просмотре, поправленное на эффективность просмотра, приведено во втором столоце таблины І.

Obbernutania RHCTHTV BRANNIX BECREADBADDE **БИБЛИОТЕНА**

Таблица I

Распределение событий по множественности

n _{ch}	Число событий, найденных при просмотре	Число Т. – взаимодейст- вий	Число упругих и квазиупру- гих событий	Число ЛД – событий
0	324 ± 41	59 <u>+</u> 7		265 ± 42
I	1404 <u>+</u> 146	169 <u>+</u> 24	467 ± 40	768 <u>±</u> 153
2	2930 <u>±</u> 83	896 <u>±</u> 86	II90 <u>±</u> 47	844 <u>+</u> I28
3	I397 <u>±</u> 50	636 <u>±</u> 24		76I <u>±</u> 55
4	3770 ± 76	13IO <u>±</u> 69		2460 <u>+</u> 103
5	1037 <u>±</u> 38	426 <u>+</u> 16		611 <u>+</u> 41
6	2105 <u>+</u> 53	672 <u>±</u> 27		I433 <u>+</u> 59
7	354 <u>+</u> 21	. I29 <u>+</u> I6		225 <u>+</u> 26
8	583 <u>+</u> 27	173 <u>±</u> 16		410 <u>±</u> 31
9	50 <u>+</u> 9	I6 <u>+</u> 2		34 <u>+</u> 9
0	124 <u>+</u> 13	23 <u>+</u> 4		IOI <u>+</u> I4
I	6 <u>+</u> 2	I.± I		5 ± 2
2	12 ± 4			I2 <u>+</u> 4
	I4096 <u>+</u> 209			7929 ± 245

Число однолучевых событий было определено с помощью методики, рассмотренной в работе^{/5/}, в которой однолучевые взаимодействия воостанавливаются из известного количества двухлучевых событий с отстанавливающимися треками, вылетающими в задною полусферу в лабораторной системе координат – N_{bu} . Приблизительно половина cld – событий была измерена^{/6/} и реконструирована в пространстве с помощью программы, основанной на системе WYD RA /7/. Измеренные события использовелись для коррекции числа N_{bu} .

Как показано в работе^{/8/}, значение адронного фона в \overline{d} – пучке составляет ~ 32 %. Поскольку выходы вторичных π^- -мезонов, антипротонов и антидейтронов относятся, примерно, как I:10⁻³:10^{-6/9/}, можно предположить, что фоновые адроны в пучке антидейтронов представляют собой π -мезоны. Это подтверждают и результаты работы^{Д)} по упругому π_{ρ} -рассеянию, выделяемому из d_{ρ} -взаимодействий. Поэтому, для введения поправок, учитывающих фон, связанный с наличием в пучке π -мезонов, были использованы данные по rd взаимодействиям при импульсе I2 ГэВ/с, полученные экстраполяцией мировых данных /II/. Эти данные приведены в третьем столоце табл. I.

Для извлечения экспериментальных характеристик неупругих dd вваимодействий, т.е. процессов с образованием новых частиц в конечном состоянии (кроме нуклонов и антинуклонов, входящих в дейтрон и антидейтрон, соответственно) необходимо сделать поправки в сечениях I- и 2-дучевых собнтий на видимую часть упругого и квазиупругих каналов:

dd> dd		tz.	
dd> dpn			, (I)
and -> pad	-		
dd → prpn	,		

Эти поправки были сделаны с помощью методики, описанной в работе^{/5/}. Мы использовали глауберовские расчёты^{/12/} с волновой функцией Франко-Варма^{/13/}. При расчётах сечений, соответствующих процессам (I), применялась одноэкспоненциальная параметризация амплитуд упругого нуклон-антинуклонного рассеяния^{/5/}со значениями параметров, которые приведены в табл. 2.

Таблица 2

Интерполяционные характеристики $\bar{N}N$ -взаимодействий при импульсе 6, I ГзВ/с

Реакция	Gtoi (us)	Gil (MY)	$C = \frac{Ref(0)}{Im I(0)}$	Ь (ГэВ∕с) ⁻²
ppersu	61,5 <u>+</u> 0,04	15,03 <u>+</u> 0,19	0,00 ± 0,05	12,7 ± 0,3
pn⇔ ħp	58,7 <u>+</u> I,0	15,0 <u>+</u> 2,2	0,00 <u>+</u> 0,05	I2,7 ± 0,3

2

3

Таблица З

Полное (С_{ен}), упругое (С_е), неупругое (С_р) сечения и сечение рассеяния (С_{зс}) для ЛА-взаимодействия при 12,2 ГэВ/с, рассчитанное по модели Глаубера

Geor	(мб)	205,4 ± 4,4
Gre	(мб)	59,4 <u>+</u> I,7
Gre	(мб)	28,3 <u>+</u> 0,6
Opr	(мо)	I46,0 <u>+</u> 2,4

В табл. З указаны расчётные значения полных (G'_{i++}), упругих (G'_{i+}), неупругих (G'_{i+-}) и суммарных сечений (G'_{i+-}) упругого и квазиупругого каналов (I). Значения полных сечений отдельных каналов (I) и вкладов этих каналов в I- и 2-лучевые события с учётом потерь представлены в табл. 4. Дифференциальные сечения каналов (I) демонстрируются на рис. I.

Рис. І. Дифференциальные сечения упругого канала (сплошная кривая), квазиупругого канала да» др. (штрих-пунктирная кривая), квазиупругого канала да » джр» (штриховая кривая), суммы упругого и квазиупругого каналов (пунктирная кривая). Расчётные значения сечений упругого и квазиупругих

процессов

сечения (мб) процесс	полные	потери	І-лучевые	2-дучевые видимые
Jd-Jd	28,3 <u>+</u> 0,6	25,8 <u>+</u> 0,7		2,5 <u>+</u> 0,2
ad+gbn	7,8 <u>+</u> 0,3	3,1 <u>+</u> 0,1		4,7 <u>+</u> 0,2
gq - by	7,8 <u>+</u> 0,3		3,I <u>+</u> 0,I	4,7 <u>+</u> 0,2
ad - bebn	15,5 <u>+</u> 1,6		5,5 <u>+</u> 0,5	10,0 <u>+</u> 0,9
Jd -> scatt.	59,4 <u>+</u> I,7	28,9 <u>+</u> 0,7	8,6 <u>+</u> 0,5	21,9 <u>+</u> 1,0

Для определения топологических сечений dd -взаимодействий необходимо знать миллибарн-эквивалент, значение которого находим из формули:

$$f = \frac{Q_{tot} - \Delta G_{t}}{N_{tot}} = 0,0184 \pm 0,0005 , \qquad (2)$$

где ΔG_{ii} - потери упругих и квазиупругих взаимодействий, приведённые в третьей колонке табл. 4, а N_{iii} - все найденные события. Зная значение с и используя сечения, приведённые в 4- й и 5- й колонках таблицы 4, можно определить количество I- и 2-дучевых упругих и квазиупругих видимых событий. Эти количества указаны в 4-й колонке табл. I.

В 5- й колонке табл. І приведены окончательные данные по числу неупругих ЗА -взаимодействий разных топологий, и в I- й строке табл. 5 представлены топологические сечения неупругих ЗА -столкновений при импульсе I2,2 ГэВ/с. Топологические сечения определялись для истинной множественности заряженных частиц, т.е. с учётом невидимого медленного протона -спектатора. В I- й строке табл. 6 представлены основные множественные характеристики неупругих ЗА - столкновений при импульсе I2,2 ГэВ/с.

5

Таблица 5

Топологические сечения неупругих *dd* -взаимодействий при 12,2 ГэВ/с (I-я строка) и разность неупругих сечений $G_{n_{ch}}^{(n_{ch})} = O_{n_{ch}}(dd) - G_{u_{ch}}^{(dd)}(dd)$ (2-я строка)

процессо	0	2	4	Ġ	8	IO	12	суммарные сечения
3d in	4,9 <u>+</u> 0,8	29,7 <u>+</u> 3,7	59,2 <u>+</u> 2,I	37,6 <u>+</u> I,3	11,7 <u>+</u> 0,7	2,6 <u>+</u> 0,3	0,3I <u>+</u> 0,08	146,0+4,6
ddi-ddi	4,9 <u>+</u> 0,8	-3,5 <u>+</u> 4,3	6,2 <u>+</u> 2,3	26,0 <u>+</u> I,3	I0,8 <u>+</u> 0,7	2,5 <u>+</u> 0,3	0,31 <u>+</u> 0,08	47,2 <u>+</u> 5,2

Таблица 6

Средние, дисперсии и моменти распределений по множественности заряженных частиц для неупругих $\mathcal{J}_{\mathcal{A}}$ -взаимодействий при I2,2 ГэВ/с (I-я строка), однократных процессов (2-я строка), разности ($\mathcal{J}_{\mathcal{A}}$ - $\mathcal{J}_{\mathcal{A}}$), сечений (3-я строка), разности однократных процессов (4-я' строка) и однократных процессов, соответствующих $\mathcal{F}_{\mathcal{A}}$ -аннигиляции (5-я строка)

характе- ристики процессы	(Linch)	D	(max/D	(e
* Jdi.	4,42 <u>+</u> 0,07	2,07 <u>+</u> 0,05	2,14 <u>+</u> 0,05	-I,I4 <u>+</u> 0,05
J J ₁	4,15±0,04	2,11 <u>+</u> 0,03	I,97±0,03	-0,96 <u>+</u> 0,03
Jdw-ddiu	6,85 <u>+</u> 0,05	I,29 ±0 ,05		
ddy- dd1	6,77 <u>+</u> 0,05	I,I3±0,04		÷
र्वेद,	6,81 <u>+</u> 0,05	I,I9 <u>+</u> 0,04		, ;

Ш. <u>Сравнение характеристик</u> dA_{-} , TN_{-} <u>и</u> dd_{-} <u>взаимодействий</u>

Расчёты, проделанные в рамках модели Глаубера, показывают/14/, что (80-85)% Да -взаимодействий относятся к классу "однократных", в которых участвует только одна нуклон-антинуклонная пара, а другие нуклон и антинуклон (спектаторы) не взаимодействуют.

Полное неупругое сечение $\mathcal{I}\mathcal{A}$ –взаимодействий в первом приближении можно представить в виде суммы сечений однократных (\mathcal{C}_{i}) и многократных (\mathcal{C}_{h}) взаимодействий / I4/

$$G_{AA} = G_1 + G_H , \quad qe$$

$$G_1 = G [pp (nn)_s] + G [nn(pp)_s] + \qquad (2)$$

$$G [pn (np)_s] + G [np(pn)_s] ,$$

$$G_H = G_2 + G_2 + G_3 + G_4$$

Здесь введены следующие обозначения: pp (мм) -неупругое взаимодействие рр-пары, а ии -пара не участвует во взаимодействии, оставаясь спектатором, и т.д. Сечение Ст является суммой сечений 2-, 3- и 4-кратных взаимодействий, для которых можно ожидать некоторое отличие от однократных процессов, например, повышенную среднюю множественность и т.д. Для выявления особенностей многократных взаимодействий необходимо знать суммарные характеристики. учитывающие все однократные процессы. Такие характеристики для распределений по множественности заряженных частиц были определены на основании известных $\overline{pp}^{/15/}$, $\overline{nn}^{/8/}$ и $\overline{nn}^{/16/}$ данных^{*}. При этом проводилась соответствующая коррекция числа частиц, учитывающая наличие заряженных спектаторов в \mathcal{JU} -взаимодействиях. Во 2-й строке табл. 6 представлены полученные таким образом характеристики по множественности однократных процессов. Из табл. 6 видно, что включение многократных процессов в 21 -взаимолействия действительно увеличивает средною множественность. При этом дисперсия (D) распределения по числу заряженных частиц остаётся практически неизменной. Такое соотношение средней множествен-

Э Предполагалось, что вклад каждого типа NN - взаимодействий составляет 1/4.

ности и дисперсии, приводящее к увеличению отношения < //D (табл. 6), указывает, например, на более узкое КNO -распределение /I7/ для многократных процессов. Действительно, некоторое сужение КNO, -распределения, полученного для -Взаимодействий, по сравнению с однократными процессами, наблюдается на рис. 2.

Особенностью dd -взаимодействий является процесс аннигиляции антинуклон-нуклонных пар, при этом наиболее интересны взаимодействия, в которых аннигилируют обе пары, т.е. в конечном состоянии барионы отсутствуют. Такая аннигиляция относится к классу многократных процессов. Для изучения особенностей многократных аннигиляционных процессов рассматривались разности топологических сечений dd - u dd - 5/взаимодействий при I2 ГэВ/с (вторая строка табл. 5), характеризующие при больших "сь (по аналогии с разностью $\overline{NN} - u$ NN -взаимодействий/I8/) главным образом процессы, в которых хотя бы одна \overline{NN} -пара проаннигилировала.

Лалее были определены суммы разностей топологических сечений соот- $\overline{N}N - \mu$ NN - BSAMMODENCTRUN/8, 15, 16/, KOTOPHE BETCTBVIDUUX характеризуют (при » v > 4) однократные процессы аннигиляции в JJ -взаимодействиях. При этом, как и выше, при определении топоad -событий учитывались заряженные частицы-спектаторы. В **NNTOR** 3-й и 4-й строках табл.6 приведены средние множественности и дисперсии рассматриваемых разностных распределений по множественности для значений n₁ > 6, поскольку только для таких топологий отсутствует вклад О-, I- и 2-лучевых *NN* -взаимодействий, где роль неаннигиляплонных каналов очень существенна /18/. Поиведенные данные показывают. что в пределах статистических ошибок средние множественности и лисперсии однократных и всех процессов dd -аннигиляции совпадают. Это означает. что доля процесса аннигиляции одновременно двух \widetilde{NN} пар достаточно мала. поскольку можно предположить. что для таких процессов средняя множественность увеличивается более чем в 1,5 раза (с учётом присутствия заряженных спектаторов в однократных процессах). Отметим, что имеющиеся теоретические оценки сечения 2-кратной аннигиляции приводят / 17,19/ к величинам $G_{\tau,A} \simeq (0,5+1)$ млон,что составляет долю (0,0I-0,2)% от разности сечений неупругих dd - и dd -взаимодействий. Такой вклад многократных процессов практически (на уровне рассматриваемой статистики) не может заметным образом изменить величину средней множественности заряженных частиц.

IУ. <u>Заключение</u>

В работе получены топологические сечения и характеристики распределения по множественности заряженных частиц для $\sqrt[3]{a}$ -взаимодействий при 12 ГэВ/с.

На основании сравнительного анализа характеристик dd - u dd -соударений показано, что многократные процессы dd -взаимодействий отличаются повышенной средней множественностью заряженных частиц и более узким KNQ -распределением (по сравнению с однократными процессами).

8

9

Определены разности топологических сечений dd - и dd -взаимодействий при I2 ГэВ/с, характеризующие процессы аннигиляции антинуклонов и нуклонов, составляющих взаимодействующие антидейтроны и дейтроны.

Литература

- I. Горин Ю.П. и др., Яф. т. 14, с. 134, /1971/.
- Batyunya B.V. et al., Int.Europ.Conf.on HEP, Brighton, paper No.0296 , (1983).
 Batyunya B.V. et al., XII.Conf.on HEP, Leipzig, paper No.750, (1984).
- 3. Сазонов С.Г., Толмачев В.Т., ОИЛИ, IЗ-80-403, Дубна. / 1980/.
- Богомолов Н.В. и др., ОИЯИ, I3-84-582, Дубна, /1984/.
- 4. Васильев В.В. и др., ИФВЭ, 80-66, Серпухов, /1980/.
- 5. Баткия Б.В. и др., ОИАИ, РІ-87-340, Дубна, /1987/.
- 6. Батюня Б.В. и др., ОИЯИ, PI-85-476, Дубна, /1985/.
- 7. Артенян А.С. и др., ОИЛИ, IO-84-450, Дубна, /1984/.
- Батиня Б.В. и др., ОИНИ, PI-85-864, Дубна, / I985/.
 Batyunya B.V. et al., Czech. J. of Physics <u>B36</u>, No.11, p. 1273 (1986).
- 9. Антипов Ю.М. и др., НФ, т. 13, с. 135 , /1971/.
- 10. Граменицкий И.М. и др., ОИЯИ, I-84-788, Дубна, /1984/.
- II. Compilations of T[±] cross sections, CERN-HERA, 83-01, (1983).
- 12. Задорожный А.М., Ужинский В.В., Шмаков С.Ю., НФ, т. 39, с. 1155, / 1984/.
- I3. Franco V., Varma G.K., Phys. Rev. <u>C12</u>, p. 225, (1975).
- I4. Franco V., Glauber R., Phys. Rev. 142, p. 1195, (1966).
 - Franco V., Phys. Rev. 175, p. 1376, (1968).
- I5. Compilation of p[±]p cross sections, CERN-HERA, 84-03, (1984).
- I6. Батюня Б.В. и др., ОИЯИ, PI-86-839, Дубна, /1986/.
- I7. Simak V., Czech. J. of Physics B31, p. 1341, (1981).
- I8. Lednický R., Czech. J. of Flysics <u>B33</u>, p. 1177, (1983).
- 19. Formanek J., Czech. J. of Physics <u>B31</u>, p. 1256, (1981).

Рукопись поступила в издательский отдел 6 июля 1987 года,

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	ДЗ,4-82-704	Труды IV Международной школы по нейтрон- ной физике. Дубна, 1982.	5	p.00	к.
	Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	p.55	к.
	Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2	p.00	к.
	Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4	p.50	к.
	Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4	p.30	к.
	Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984,	5	p.50	к.
	Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования,про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3	p.50	к.
	Д17-84-850.	Труды III Международного симпозиума по избранным проблемам статистической мехвники. Дубна,1984./2 тома/	7	p.75	к.
	Д11-85 - 791	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	4	p.00	к.
	Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна, 1985.	4	p.80	к.
	Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3	p.75	к.
ļ	3,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4	p.50	к.
		Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13	p.50	к.
	Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна.1986. /2 тома/	7	p.35	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Иэдательский отдел Объединенного института ядерных исследований.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика			
1				
2				
3.	Экспериментальная нейтронная физика			
4.	Теоретическая физика низких энергий			
5.	Математика			
6.	Ядерная спектроскопия и радиохимия			
7.	Физика тяжелых ионов			
8.	Криогеника			
9.	Ускорители			
ίŪ.	Автоматизация обработки экспериментальных данных			
11.	Вычислительная математика и техника			
12.	Химия .			
13.	Техника физического эксперимента			
14.	Исследования твердых тел и жидкостей ядерными методами			
15.	Экспериментальная физика ядерных реакций при низких энергиях			
16.	Дозиметрия и физика защиты			
17.	Теория конденсированного состояния			
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники			
19.	Биофизика			

Батюня Б.В. и др. P1-87-523 Определение сечений топологических сечений неупругих dd-взаимодействий при импульсе 12 ГэВ/с

На статистике ~10000 событий определены топологические сечения, средняя множественность и дисперсия неупругих dd-взаимодействий при импульсе 12,2 ГэВ/с. Получена разность сечений неупругих dd- и dd-соударений. Экспериментальные результаты сравниваются с NN-данными при импульсе, близком к значению 6,1 ГэВ/с.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Batyunya B.V. et al. P1-87-523 Determination_of Topological Cross Sections of Inelastic dd-Interactions at 12 GeV/c

The topological cross sections, mean multiplicity and dispersion of charges secondaries in inelastic dd-interactions at 12 GeV/c on a sample of ~10000 events are determined. The cross sections corresponding to the difference between topological cross sections of the inelastic ddand dd-interactions are determined. The obtained experimental characteristics are compared with the behaviour of the NN-interactions at energies in the neighbourhood of 6.1 GeV.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987