

A 154

P1-87-374

В.Г.Аблеев, Х.Димитров¹, С.М.Елисеев, С.А.Запорожец, В.И.Иноземцев, А.Г.Малинин,² Б.Науманн, Л.Науманн, В.Нойберт,³А.А.Номофилов, Л.Пенчев,¹ Н.М.Пискунов; И.М.Ситник, Е.А.Строковский, Л.Н.Струнов, В.И.Шаров

ПЕРЕЗАРЯДКА РЕЛЯТИВИСТСКИХ ЯДЕР ГЕЛИЯ-З В ТРИТОНЫ НА УГЛЕРОДЕ

С ВОЗБУЖДЕНИЕМ Д-ИЗОБАР В ЯДРЕ-МИШЕНИ

Направлено в журнал "Ядерная физика"

¹ Центральная лаборатория автоматизации и научного приборостроения БАН, София

² Институт теоретической и экспериментальной физики, Москва

⁸ Центральный институт ядерных исследований АН ГДР, Россендорф

I. BBEIIEHNE

В наших предндущих работах/1,2/ показано, что в перезарядке ядер гелия-З в тритоны при высоких энергиях основной вклад в сечение реакции дают процессы спин-изоспиновых возбуждений ядерного или нуклонного вещества мишени с передачей ему энергии ~ 300 МаВ, характерной для перехода нуклона в Δ - изобару. Наш интерес к этой реакции овязан прежде всего с тем, что свойства изобар в ядрах могут ока заться отличными от свойств свободных из-за влияния ядра/3/; могут проявиться и другие эффекты колдективной природы/4/- вплоть до образования систем изоядерного типа/5/. Постановка наших опытов - регистрация тритонов под малыми углами (Ø ≤ 0,4⁰) при высоких энергиях пучка - обеспечивала благоприятные условия для взаимодействия воз никшей в ядре Δ - изобары с нуклонами ядра, т.к. переданный ей импульс был мал (~ 200+400 МэВ/с) и сравним с фермиевским импульсом внутриядерных нуклонов. Это позволило нам впервые обнаружить, что при высоких энергиях для возбуждения Δ - резонанса в ядре требуются меньшие передачи энергии, а ширина резонансного пика больше, чем в реакции на свободном протоне; отношение выходов тритонов в резо нансной области в реакциях на ядре и протоне существенно (~2 раза) выше, чем ожидается на основе глауберовских расчётов. Анализ же перезарядки p(³He, t), проведённый нами ранее^{/6/}, показал, что эта реакция идёт через возбуждение протонов мишени в Δ^{++} – изобары и экспериментальные данные хорошо согласуются с расчётами по модели Глаубера-Ситенко и модели одномезонного обмена с использованием табличных 77 значений параметров Δ - изобары.

Особенности Δ - изобарных возбуждений в ядре углерода по сравнению с протоном позволили нам сделать вывод о существенной роли эффектов коллективной природы при высоких спин-изоспиновых возбуждениях ядерного вещества^(1,2). В настоящей работе мы приводим оконча – тельные результаты и более полный анализ эксперимента по реакции перезарядки ¹²С(³He, t) при импульсах $\rho_{o} = 4,40$; 6,81 и 10,79 ГэВ/с и новые данные при 18,3 ГэВ/с.

Учтены эффекты импульсного разрешения установки. Подробно рассмотрено влияние ферми-движения нуклонов в углероде на форму и положение

 Δ - пика и представлены расчёты дийференциальных сечений реакции перезарядки (³He, ζ) на углероде в рамках модели Глаубера-Ситенко.

2. ИНВАРИАНТНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ СЕЧЕНИЯ

Эксперимент был выполнен на пучке ядер гелия. З синхрофазотрона ОИЯЙ с помощых магнитного спектрометра "Альфа"/8, импульсное разрешение которого составляло $\Delta P/\rho \sim 0.5\%$. Угловой аксептанс спектрометра обеспечивал регистрацию тритонов, испущенных из мишени под уг-

овъсяностина киститут Пасрянах исследованей 645 NHOTEHA

лом $\theta \leq 0,4^{\circ}$. Подробное описание характеристик установки, процедуры накопления данных и их обработки содержится в работе⁶.

Измеренные дифференциальные сечения представлены на рис. І и в табл. І в зависимости от переданной мишени энергии $Q = E_o - E_c$. Точности абсолютной нормировки сечений для импульсов пучка от 4,40 до 10,79 ГэВ/с приведены в табл. І; представленные на рис. І предварительные данные при 18,3 ГэВ/с имеют точность абсолютной нормировки не хуже 20%.

Для корректного анализа сечений, измеренных при разных энергиях первичного пучка, необходимо учесть их искажения, связанные с им – пульсным разрешением спектрометра. Для этого, как и в работе^{/6/}, использовалась следующая процедура. Не искажённые импульсным разреше – нием дифференциальные сечения находились согласно соотношению

$$\left(\frac{dG}{\rho \, dQ \, d\Omega}\right)_{nonp.} = \frac{F(\{A\}, Q)}{F(\{A\}, Q)} \left(\frac{dG}{\rho \, dQ \, d\Omega}\right)_{u_{2}M.} , \qquad (2.1)$$

где $F(\{A\}, \varphi)$ - некоторая пробная функция, аппроксимирующая не искажённые разрешением сечения, а $\widehat{F}(\{A\}, \varphi)$ - её свёртка с функцией разрешения спектрометра, взятой в гауссовой форме:

$$\widehat{E}(\{A\},Q) = \frac{1}{\sqrt{2\pi}} \int_{Q}^{Q} \frac{1}{\sqrt{2\pi}} \int_{Q}^{Q} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \int_{Q}^{Q} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \int_{Q}^{Q} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{$$

Параметры {A} находились из условия наидучшего согласия свёртки (2.2) с измеренными (непоправленными) сечениями. Данные о разрешении установки \mathcal{S}_{ρ} приведены в табл I. Функция $F(\{A\}, \varphi)$ бралась в форме

$$F({A}, Q) = \left[W({A_1}, Q) + R({A_2}, Q) \right] f(t) , \qquad (2.3)$$

учитывающей наличие двух пиков в дифференциальных сечениях. Функция

 $W(\{A_i\}, Q)$ аппроксимировала пик низколекащих ($Q \sim 20$ МэВ) ядерних возбуждений от реакции перезарядки ${}^{12}C({}^{3}\text{He}, t){}^{12}N^{\pm}$ (далее называемой "квазиупругой"), а функция $R(\{A_2\}, Q)$ - пик в области $Q \sim 300$ МэВ (далее называемый ядерным Δ - пиком). Множитель $f(t) = \exp(R^2 t/3)$ магнитный формфактор ядра ${}^{3}\text{He}$, в котором $R^2 - \int_{N}^{2} - \int_{N}^{2} - \int_{N}^{2} = 1,935 \ \text{фм}^{/9/}$, $\int_{N}^{2} = 0,8 \ \text{фм}, t = Q^2 - (\overline{\rho_0} - \overline{\rho_2})^2$.

Функция $W(\{A_i\}, Q)$ строилась на основе данных^{/10/}, полученных с высоким импульсным разрешением при р₀ = 3,9 ГэВ/с. На рис. 2 приве – дены эти данные и показано поведение функции $W(\{A_i\}, Q)$, найденное при подгонке соответствующей части свёртки $\hat{F}(\{A\}, Q)$ к нашим данным при разных импульсах пучка.

Внбор функции $\mathcal{R}(\{A_{2}\}, \varphi)$, как и ранее^{/6/}, основывался на предположении, что основной вклад в сечение реакции даёт верхняя часть

	. .	**		de		$I_{2\alpha}/3\pi$. <i>+</i> \		·							
Tao	(• I•	Инвариантные	od ENHOROD E	1900	рөа		B, C),		<u> I </u>	2	3	4	I	2	3	4
		$p_0 = 4,40 T_0$	ЭВ/С (ТОЧНОСТ)	ь ассол	IIOTHOP	нормировки	13%,		31	675	20,8±I,6	20,3±1,5	42	950	5,9±1,3	5,5±I,
<u>~</u>		разрешение и	10 переданной	энергі	MI OQ	_ = 19 MƏB)			32	700	I6,9±I,4	I6,5±I,4	43	975	2,5±1,2	2,4±I,
жњ,		Сечения, м	5/ <u>(cp•F3B²/c</u>)	Nene		Сечения, мо	/(cp.F9B ² /c)		33	725	I2,8±I,5	I2,5±I,5	44	I000	3,8±I,5	3,7±I,
п/п	мэв	не поправ.	поправлен.	п/п	M 9 R	не поправ.	поправлен.		34	750	IO,7±I,4	I0,4±I,3	45	I025	7,2 ± 2,0	6,9±I,
T	2	.3	4	т	2	.3	4		35	775	II,2 ± I,4	10,9 ± 1,4	46	I050	0,6±0,6	0,6±0,
 T	-75	0.5 ± 0.4		<u> </u>	325	T45.7±5.4	T46.6±5.4		36	800	9,5 ± I,3	9,2 ± I,3	47	I075	5,5±I,8	5,2±I,
2	-50	0.0±0.2	_	TR	350	125.5±5.0	T24.8±5.0		37	825	6,4 <u>†</u> I,I	6,2±I,0	48	II 00	5,6±1,8	5,3±I,
3	-25	4.8±T.0	_	19 19	375	88.6±4.3	87.3±4.3		38	850	7,2 ± I,3	7,0±1,3	49	II25	6,6 ± I,9	6,2±I,
4	0	72.8±4.2	_	20	400	63,6±3,7	62, 2±3, 6		39	875	6,0±I,2	5,8±I,2	50	II50	7,5±2,1	7,I±2,
5	25	272.5±8.T	448.7 [±] T3.3	21	425	42.8 ± 3.9	4T.6±3.8	•	40	900	6,3 ± I,2	6,I±I,2	5I	II75	7,7±2,I	7,2±2,
6	50	228.3±7.4	213.2 ± 7.0	22	450	34,2±3,5	33.0±3.4		4 I	925	4,0±I,2	3,8±1,1				
7	75	147.5±5.0	136.I± 4.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	475	25.6±3.I	24.7±3.0		·			p = T0.79	TaB/c	(8%	6 - 52 MaB)	_
8	100	106.7±4.3	102.1 ± 4.1	24	500	14.6 ± 2.6	T4.0±2.5	•				P0 - 20,10	102,0	(0,0,	-Q - 0~ MOD)	
9	125	92.5±4.I	87.9± 3.8	25	525	13.6 ± 2.4	13.0 ± 2.3	\$	Ī	2	3	4	т	2	3	A
IO	I50	87.3±3.9	66.I± 3.0	26	550	12.8±2.5	12.2 [±] 2.4		I	-90	5.I±0.8	·	27	560	T07 8±3 4	T03 9±3
II	I75	105.7±4.4	106.2±4.4	27	575	6.I±2.9	5.8±2.8	•	2	-65	13.6±1.2	-	28	585	95.T±3 2	9T 7±3
12	200	134.0±4.9	I34.7±5.0	28	600	14.5±3.3	13.7±3.1		3	-40	28.0±1.7	_	29	6T0	85.6±3.0	82 7±2
13	250	I59.0±5.4	I6I.6±5.5	29	625	9.6±2.9	9.0±2.8		4	- I5	45,0 ± 2,I	-	30	535	8T.5±3.3	78 6±3
I4	250	186.7±5.0	I9I.5± 5.2	30	650	15.6±3.5	I4.5±3.3	•	5	IO	6I,3±2,5	27.I [±] I.I	31	660	70.0 ± 3.0	67 6±2
15	275	I84.0±5.0	188.8± 5.1	31	675	15.2±3.6	I4.I±3.3	•	6	35	66,7±2,5	86.I±3.2	32	685	62.8±2.8	60 8±2
16	300	180,7±5,0	I84.0± 5.I	32	700	14.3±3.4	13,2 ±3 ,1	1	7	60	57,I±2,3	44,6±1,8	33	710	65.2±3.T	63.4 ± 3.1
			- C OT TOP/	(TOT	-	- 24 MoR)		l	8	85	47,9±2,I	28,9 ± 1,3	34	735	55.8 ± 2.9	54 5±2
		P.	0 = 0.01 1.00	C (10/0	, ^v q	= ~4 M8D)		1	9	IIO	49,8 1 2,0	23,I±0,9	35	760	50.6 ± 2.6	49.9±2.
	2						A	ŧ	10	I35	64,0±2,3	21,2±0,8	36	785	4T.J±2.3	40.9±2.3
	75	<u> </u>	4	<u></u>	300	307 015 9	321 0±6 0	i	II	I60	90,9±2,8	54,I ± I,6	37	810	40.0±2.5	40.T±2.
2	-70	τ 2±0 Λ	`_	10 T7	325	292 Tt5 9	300 4±5 9	l	12	I85	I24,5 ± 3,2	I04,8±2,7	38	835	39.0±2.3	39.3±2.3
2		1,~	·	тЯ	350	252.0 ± 5.4	$254,6\pm5,4$		13	2I0	I62,I ±3, 5	I59,4±3,4	39	860	36.7±2.2	37.0±2.3
. 0	~~0			19 19	375	208.5±4.4	$207 9 \pm 4 4$:	I4	235	212,0 ± 4,0	229,8±4,4	40	885	34.9±2.3	35.0±2.
4	0 25	79,5-3,4	200 TTO T	20	400	175.T±4.0	173.T±4.0	•	I5	260	247,5 1 4,3	283,3±5,0	41	910	29.1±2.1	28.9±2.3
0 C	20 50	140,/-4,4	$725 0^{+2} 0,1$	2T	425	T44.3±3.7	T4T.6 ± 3.6		16	285	277,9±5,3	322,I±6,I	42	935	26.9±1.8	26.4±1.8
0	70	100,1-4,0	120,3-0,3	.22	450	IT5.5±3.3	113,1±3,2		17	3I0	286,5±5,I	325,3±5,8	43	960	25.5±1.8	24.8±1.'
0	70 TOD	cc oto n	73,0-2,0	23	475	92.0±3.0	90 0±2 9	1	18	335	283,4±5,0	309,8±5,5	44	985	20.7±I.7	20.0±1.
0	100	00,0-2,7	52,0-2,0	24	500	72.0±2.6	70.4 ± 2.6	1	19	360	270,7±4,9	284,2±5,2	45	IOIO	20.7±1.7	20.0±I.
9 TO	120	74 420	54,0-2,3	25	525	59.4±2.4	58.T±2.3	3	20	385	248,5 ± 4,7	252,2±4,8	46	I035	21.2±1.7	20.4±I.6
10 TT	100	(4, 4-2, 3)	44,0-1,7 ot 1+2 t	26	550	50.3 ± 2.2	49.2 ± 2.2	i i	_ 2I	4I0	22I,9 ± 4,2	219,8±4,2	47	I060	I4.5±I.5	I4.0±I.5
11 TO	200	50,0-0,0	JI,4-0,1	27	575	38.9±T.9	38.0±T.9		22	435	199,7 ± 4,2	I94,8 ± 4,I	48	I085	I4.5±I.5	I4.0±I.5
то 74	205	20c 2t/ 0	140,~~0,9 2017 17t1 0	28	600	35,6±2,0	34.8±2.0		23	460	172,9±4,2 ·	I67,2 ± 4,I	49	IIIO	I3.5±I.5	I3.I±I.4
T N	250	253 275 3	263 075 5	29	625	23.0±T.6	22.4 ± T.6		24	485	I52,8 ± 4,0	I47,2±3,8	50	II35	I3.5±I.3	13.1±1.2
14 TE	275	203,0-0,0 203 ats 7	308 740	30	650	25.9±1.7	25.3 ± I.7	ž	25	5I 0	I 33,2±3, 7	128,2 ± 3,6	51	II6 0	II,9 [±] I.3	II.6±I.
TO .	~10	200 , 0 - 0,1	000,7-0,0		200	,•,		•	26	535	I20,2 ±3, 5	II5,7 ± 3,4	52	II85	12,8±1,4	I2.5±I.3

I	2	3	4	I	2	3 '	4
53	1210	I0,4±1,2	I0,2±1,2	65	1510	3,I±0,4	3 ,0± 0,4
54	I235	8,6±0,9	8,4 ± 0,8	66	I535	2,2±0,4	2,I±0,4
55	I260	7,0±0,8	6,9±0,8	67	I560	2,4±0,4	2,2±0,4
56	I285	7,7 <u>+</u> 0,8	7,6±0,8	68	I585	3,4±0,5	3,2±0,5
57	1310	5,7±0,7	5,7±0,7	69	1610	I,8±0,4	I,6 1 0,4
58	I335	7.6±0.8	7,6±0,8	. 70	I63 5	I ,3± 0,4	I,2±0,3
59	I360	6.I±0.7	6,1±0,7	7I	I660	I,5 1 0,4	I,3±0,4
60	1385	5.8±0.7	5,8±0,7	72	I685	2,0±0,4	I,8±0,4
6I	I4I0	4.5±0.6	4,6±0,6	73	1710	I,4 * 0,4	I,2±0,4
62	1435	3,2±0,5	3,3±0,5	74	I735	2,I ± 0,5	I,8±0,4
63	I460	4.3±0.5	4,3±0,5	75	I760	0,6 ± 0,4	0,5±0,3
64	I485	3,4±0,5	3,4±0,5	76	I785	I,0±0,4	0,8±0,4

Рис. 2.

Гистограмма – данные работы/10/. Сплошные линии – поведение функции W($\{A_i\}, Q$) полученное в результате подгонки свертки $\tilde{F}(\{A\}, Q)$ (см. текст) к нашем дан – ным. 1

ļl

Рис. 3. Диаграмма импульсного приближения для процесса квазисвободного рождения Δ - изобары на нуклоне ядра. диаграммы рис. З. Ферми-движением нуклона в ядре и его связыю пренебрегалось, учитывались липь главные факторы, определяющие форму Δ пика:

$$R(\{A_2\},Q) = \varphi(\omega) \cdot \Delta(\omega,t) , \qquad (2.4)$$

где $\varphi(\omega)$ – брейт-вигнеровская функция, а функция $\Delta(\omega, t)$ учитивает внемассовые поправки в форме Джексона/II/. Величина $\omega^2 (\varphi + m)^2 (\rho_{\bullet}^2 - \rho_{\bullet}^2)^2$, где m – масса мишени, вычислялась в соответствии с кинематикой столкновения ядра ³Не с покоящимся свободным нуклоном. Параметры брейт – вигнеровской функции, найденные при подгонке свёртки $\hat{F}(\{A\}, \varphi)$ к данным в области Q < 600 МэВ, согласуются между собой при всех энергиях; их средние значения $\overline{\omega}_{o} = (1300^{\pm}10)$ МэВ и $\overline{\Gamma}_{o} = (330^{\pm}20)$ МэВ существенно отличаются от полученных ранее/I, 6 для реакции перезарядки на водороде. Эти параметры не следует интерпретировать как значения массы и ширины Δ – изобары в ядре, т.к. ядерный Δ – пик молет возникнуть в результате действия различных механизмов; параметры характеризуют пик в целом. Здесь важен сам факт их существенного отличия от параметров Δ – пика в реакции $p({}^{3}\text{He}, t) \Delta^{++}$.

Как и для реакции р(³He, t) Δ⁺⁺, в области Q > 600 МэВ при р₀ ≥ 10,79 ГэВ/с, результат подгонки с учётом только одного брейтвигнеровского пика при ‰ ~ 1300 МэВ идёт систематически ниже экспе – риментальных точек. Хорошей аппроксимации данных до значений Q~1,5 ГэВ удаётся достичь добавлением в пробную функцию вкладов высших изобар с изоспином 3/2: семейства Δ (1600) и семейства Δ (1900) с табличными⁷⁷ параметрами. При импульсе 18,3 ГэВ/с величина этого вклада достигает ~ 40%.

Инвариантные дифференциальные сечения ¹²С(³Не, t) перезарядки, поправленные на эффекты разрешения, представлены на рис. 4 и в таблице 1. Относительная статистическая ошибка поправленных сечений принята такой же, как у исходных (не поправленных) сечений.

3. Анализ дифференциальных сечений 12 с(3 не, t) реакции

3.1. Главные особенности реакции (³He, t) перезарядки на ядре углерода, проявляющиеся в энергетической зависимости её сечений и форме ядерного Δ – пика, состоят в следущем.

Относительный вклад от "квазиупрутой" перезарядки в сечение ""(AR (°) по сравнению с вкладом от перезарядки с Δ - возбуждением ядра быстро падает с ростом энергия (см. табл. 2 и рис. I). Таким образом, при высоких энергиях сечение реакции $I^2C({}^{3}\text{He}, \pm)$ под нулевым углом в основном определяется процессом возбуждения Δ - изобарных степеней свободы ядра-мишени. Из рис. 4 и табл. 2 видно, что ядерный

6

Рис. 4. Инвариантные сечения реакций ^{I2}С(³не, *t*) и р(³не, *t*) $\Delta^{++/6/}$ после учёта эффектов энергетического разрешения. Пунктиром показан ожидаемый вклад от "хвоста" пика квазиупругой перезарядки. Сплошная линия – результат аппроксимации сечений пробной функцией (2.3). Δ - пик сдвинут к меньшим переданным энергиям, чем Δ - пик в сечениях реакции $p({}^{3}\text{He}, t) \Delta^{++}$, а его ширина существенно больше. Это отражается и в отмеченном выше отличии брейт-вигнеровских параметров ядерного Δ - пика от параметров свободной Δ (1232)-изобары.

Таблица	2
T CAO PLIMACA	~

Импульс пучка,	Относ. вклад в de/d 2 (09)	Положение Δ - пика.	макс. МэВ	Ширина <i>FWHM</i>	∆ – пика . МэЕ	<u>de</u> (0)				
ГэВ/с	от области <i>Q</i> ≤ 150 МэВ	$p(^{3}He,t)'$	C(³ He,t)	p(³ He,≁) ^{′2} C(³ He,	$t) \frac{\partial \mathcal{L}}{\partial \mathcal{A}} (\mathcal{O}_{p})$				
4,40	0,38	322±2,5	274±2,5	138 ± 9	182 ± 16	I,82±0,05				
6 , 8I	0,18	327±I,5	295±I,5	109 ± 5	204 ± 9	I,77±0,03				
IO,79	0,08	327 ± 2	305±2	129 ± 7	257 ± I4	I,95±0,03				
18,3	-	-	-	-	-	2,14±0,17				

Показанные на рис. 5 данные, а также характеристики ядерного Δ пика и величины отношений сечений $\mathcal{J}_{\mathcal{L}}^{\mathcal{L}}(c) = \int_{\mathcal{Q}} \mathcal{J}_{\mathcal{A}}^{\mathcal{L}} \mathcal{A}^{\mathcal{Q}}$ реакций $^{12}C(^{3}\text{He}, t)$ и р($^{3}\text{He}, t$) $\Delta^{++}(\text{табл. 2})$, получены после вычитания из сечений $\frac{\mathcal{A}^{\mathcal{L}}}{\rho \cdot \mathcal{A}^{\mathcal{Q}} \mathcal{A}^{\mathcal{L}}}$ в области $\mathcal{Q} > 150$ МэВ небольшого вклада от "хвоста" пика "квазиупругой" перезарядки (пунктирная линия на рис. 4). Эта процедура лишь слегка уменьшает отличие параметров ядерного Δ - пика от параметров Δ - пика в сечениях реакции р($^{3}\text{He}, t$), поэтому отмеченные выше сдвиг и уширение Δ - пика не порождаются этим упроцённым способом учёта нерезонансного фона от "квазиупругой" перезарядки.

3.2. Отмеченные выше отличия Q – зависимости сечений ${}^{12}\text{C}({}^{3}\text{He},t)$ реакции в области ядерного Δ – пика от сечений реакции на овободном протоне нельзя объяснить в рамках т.н. "механизма квазиовободного рождения" Δ – изобары с учётом ферми-движения нуклонов в ндре. В этом случае форма ядерного Δ – пика в основном определялась бы (в соответствии с диаграммой на рис. 3) свёрткой сечения ($\int_{\rho} \frac{d^2}{d^2} \frac{d^2}{d^2} \frac{d^2}{d^2}$), "элементарной" $p({}^{3}\text{He},t) \Delta^{++}$ -реакции с импульсным распределением нуклонов в углероде $\rho(\tilde{d})$:

$$\left(\frac{dc}{\rho d q d k}\right) \sim \int d\vec{p} \, \rho(\vec{p}) \, I(\vec{p}) \left(\frac{dc}{\rho d q d k}\right) \left(t(q), \omega'(q, \vec{p})\right) , \quad (3.1)$$

где $I(\vec{p})$ – отношение потоков начальных частиц для реакции на покоящемся и движущемся с импульсом \vec{p} , нуклоне. Использовались наши данные 6^{-6} о сечении $(-\frac{2}{p} \sqrt{2} \sqrt{2})_p$, которое берётоя при $t \cdot (\vec{p} - \vec{p})^2$ и величине $\omega^{2} \cdot (\varphi + E_N)^2 - (\vec{p} - \vec{p} + \vec{p})^2$, вычиоляемой в соответотвии с кинематикой столкновения ядра ³Не с внутриядерным нуклоном, имеющим импульс \vec{p} и энергию

$$E_{N} = M_{A} - M_{A-1} - \frac{T}{A-1} = m_{N} - E - \frac{R^{2}}{N} \left(\frac{2(M_{A} - m_{N} + E)}{2(M_{A} - m_{N} + E)} \right).$$
(3.2)

Рис.5. Инвариантные сечения реакции ^{I2}С(³He, t) с возбуждением Δ – изобар, полученные после вычитания вклада от "хвоста" пика "квазиупругой" перезарядки, и результать анализа эффектов фермидвижения, выделенные штриховкой. Пунктирная линия – результат расчёта для рождения Δ – изобары, остающейся связанной в ядре (см. текст). Для каждого импульса пучка расчёт нормиро – ван на максимум ядерного Δ – пика. Здеоь M_{A} — масса ядра-мишени, M_{A-I} — масса системы из оставшихся (A-I) нуклонов, $T_{A-I} = \rho_{N}^{2}/2M_{A-I}$ — её кинетическая энергия, ε — энергия отделения одного нуклона: $-\varepsilon = M_{A} - M_{A-I} - m_{N}$. Связь нуклона в ядре, приводящая к небольшому сходу его с массовой поверхности ($E_{N}^{2} - \rho_{N}^{2} \neq m_{N}^{2}$), отражена в формуле (3.2). Рассчитывая эффекты ферми-движения, мы использовали импульсные распределения $P(\rho_{N}^{*})$, отвечающие как модели гармонического осциллятора (при этом энергим отделения нуклонов ρ - или S — оболочек равны, соответствен-. но, I7,5 МэВ и 38,I МэВ), так и модели ферми-газа (ε = I6 МэВ либо 22 МэВ, что отвечает минимальной и средней энергиям отделения нуклона для ядра углерода)/I2/.

Результати расчёта показани на рис. 5 заштрихованной областью, границы которой соответствуют крайним случаям образования Δ на нуклонах одной из оболочек (s или p) ядра углерода. Учёт ферми-движения в рамках предположения о квазисвободном механизме рождения Δ - изо бары приводит к уширению Δ - пика и его сдвигу по отношению к положению соответствующего пика на протонах в сторону больших Q, что противоречит эксперименту. Разница между положениями рассчитанного таким способом и наблюдаемого в эксперименте ядерного Δ - пика составляет ~ 60 МэВ (для образования Δ на нуклонах р-оболочки) и~85 МэВ (для 5 - оболочки) независимо от энергии пучка.

Описанный способ учёта эффектов ферми-движения нуклонов в ядремишени подразумевает, что система "виртуальный пион + внутриядерный нуклон" резонирует при полной энергия в системе их центра масс, равной массе свободной изобары. Но т.к. при этом нуклон-мишень связан в ядре и не находится на массовой поверхности, требуемые относительные импульсы резонирующих частиц должны быть больше, чем в случае рассеяния реальных пионов на свободном нуклоне. Можно предположить, однако, что система "виртуальный пион + внутриядерный нуклон" резонирует при таком же их относительном импульсе, как и в рассеянии реальных пионов на свободном нуклоне. Кинематически это соответствует рождению изобары, остающейся связанной в ядре. В таком варианте расчёта Δ – пик уширяется и сдвигается относительно Δ – пика в перезарядке на протоне к меньшим переданным энергиям; правда, этот сдвиг заметно меньше экспериментально наблюдаемого (пунктирная линия на рис. 5).

3.3. Величину измеренных нами сечений мы также пытались воспроизвести расчётом, основанным на картине "квазисвободного рождения" Δ -изобары. Для такого расчёта мы использовали модель Глаубера-Ситенко/13/. Т.к. для нахождения Q - зависимости сечений эта модель требует знания волновых функций конечных состояний ядра, которые неиз вестны, были вычислены лишь сечения $\frac{dG}{dQ}(C^{\circ})$ в приближении, используищем условие "полноты".

Cevenue
$$\frac{d'}{d\mathcal{L}}(o^{\circ})$$
 вычислялось по формуле
 $\left(\frac{d'}{d\mathcal{L}}\right)_{c} = \int_{t}^{-2} \langle i / \sum_{f'} \langle i' / F^{+} / f' \rangle \langle f' / F / i' \rangle \langle i \rangle,$ (3.3)

где (i), (i') - основные состояния ядра ¹²С и ³Не соответственно, F - амплитуда вероятности образования изобары в реакции ¹²С(³He, t) Δ^{++} ,

 $\vec{P_{t}}$ - средний импульс тритона, f' - спиновые состояния тритона, по которым производится суммирование.

Амплитуда F в приближении "жёсткого" ядра ³He^{/14}/ имеет вид

$$F = \frac{i}{2\pi} \int e^{i\vec{p}\cdot\vec{c}} \sqrt{\vec{c}} \frac{\hat{c}}{\hat{c}} \hat{c} \cdot \vec{c} \cdot \vec{s} \cdot \hat{c} = i\rho_{\vec{r}} \frac{\hat{c}}{\hat{c}} \sqrt{\vec{c}} \frac{\hat{c}}{\hat{c}} \frac{\hat{c}}{\hat{c}} \hat{c} \cdot \vec{s} \cdot \hat{c} = i\rho_{\vec{r}} \frac{\hat{c}}{\hat{c}} \frac$$

Здесь $\vec{S_j}, \vec{z_j}$ - поперечная и продольная координаты нуклонов ядра ¹²С, $\vec{r}(\vec{e}\cdot\vec{S_j})$ - профильная функция для рождения изобары на j -м нуклоне в реакции $N(\mathcal{H}e, t)\Delta$, \vec{q} и ρ_{μ} - поперечная и продольная компоненты переданного импульса в лабораторной системе, $\int_{\vec{e}\ell} (\vec{e}\cdot\vec{S_{\kappa}}) - \phi$ ункция профиля упругого рассеяния ядер ³Не и t на нуклонах мишени. С учётом формулы (3.4) выражение (3.3) для сечения реакции ¹²С(³He, t) можно представить в виде

$$\begin{pmatrix} \frac{dd}{d\mathcal{I}_{k}} \end{pmatrix}_{c} = \bar{F}_{c}^{2} / (3\pi)^{2} \int e^{i\vec{q}\cdot(\vec{e}\cdot\vec{e}\cdot)} d\vec{e} d\vec{e}\cdot \times \\ \times \langle i/\sum_{j=i}^{2} \sum_{f'} \langle i'|\hat{F}^{*}(\vec{e}\cdot\vec{s}\cdot\vec{s},)|f'\rangle\langle j'|\hat{F}(\vec{e}\cdot\vec{s},)|i'\rangle \times (3.5) \\ \times \bar{F}_{i} / (1 - \bar{F}_{ee}(\vec{e}\cdot\vec{s}\cdot\vec{s}))(1 - \bar{F}_{ee}^{*}(\vec{e}\cdot\vec{s}\cdot\vec{s},))|i\rangle > .$$

Функции профиля, входящие в (3.5), выражаются через амплитуды элементарных процессов *NN* → *NN*, *NN* → *NA* (при этом удобно использовать преобразование Гартенхауза-Шварца)/¹⁵/:

$$\begin{split} & \int_{e2.} \left(\vec{e}^{3} \right) = \sum_{u=r}^{3} \frac{q}{d_{u}} \exp\left(- \frac{e^{2}}{h_{u}} \right), & (3.6) \\ & h_{r} = 2 \left(\frac{e}{NN} + \frac{R^{2}}{3} \right), \quad h_{2} = \frac{e}{NN} + \frac{R^{2}}{6}, \quad h_{3} = 2 \frac{e}{NN} / 3, \\ & g_{1} = \frac{3}{5} \left(1 + \frac{R^{2}}{3h_{r}} \right), \quad g_{1} = -\frac{3}{5} \frac{e^{2}}{1 + \frac{R^{2}}{3h_{2}}}, \quad g_{3} = \frac{2}{5} \frac{e}{1 + \frac{R^{2}}{3h_{3}}}, \\ & \vec{f} = \frac{e}{NN} \left(r - \frac{i}{d_{NN}} \right) / 2\vec{f} \left(\frac{R^{2}}{4} + 2 \frac{e}{NN} \right), \\ & \vec{f} = \frac{e}{NN} \left(r - \frac{i}{d_{NN}} \right) / 2\vec{f} \left(\frac{R^{2}}{4} + 2 \frac{e}{NN} \right), \\ & = \frac{e}{\sqrt{1 + \frac{R^{2}}{4}}} \left(\frac{e^{2}}{5} - \frac{\vec{f}}{5} \right) / \frac{f'}{5} < \frac{f'}{1} / \frac{r}{6} \left(\vec{e} - \frac{\vec{f}}{5} \right)^{2}} \right) \\ & = \frac{e}{\sqrt{1 + \frac{R^{2}}{4}}} \left(\frac{e^{2}}{4} - \frac{\vec{f}}{5} \right) / \frac{e}{2}} \\ & = \frac{e}{\sqrt{1 + \frac{R^{2}}{4}}} \left(\frac{e^{2}}{4} - \frac{\vec{f}}{5} \right) / \frac{e}{2}} \\ & \times \frac{2}{6} \frac{2}{5} \left(\frac{e}{2} - \frac{\vec{f}}{5} \right)^{2}} - \frac{(\vec{e} - \vec{f})^{2}}{\frac{e}{5}} \right) \\ & \times \frac{e}{\sqrt{p}} \left(- \frac{(\vec{e} - \vec{f})}{\frac{e}{2}} \right)^{2}} - \frac{(\vec{e} - \vec{f})^{2}}{\frac{e}{5}} \right) \\ & (1 - \frac{e}{5})^{2}} \right) \\ & = \frac{e}{\sqrt{1 + \frac{R^{2}}{4}}} \left(\frac{e}{2} - \frac{\vec{f}}{5} \right)^{2}} - \frac{(\vec{e} - \vec{f})^{2}}{\frac{e}{5}} \right) \\ & (1 - \frac{e}{5})^{2}} \left(\frac{e}{2} - \frac{e}{5} \right)^{2}} \right) \\ & (1 - \frac{e}{5})^{2}} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2}} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \left(\frac{e}{5} - \frac{e}{5} \right) \\ & (1 - \frac{e}{5})^{2} \left(\frac{e}{5} - \frac{e}{5} \right)^{2} \left(\frac{e}{5} - \frac{e}{5} \right) \\ & (1 - \frac{e}{5} - \frac{$$

$$C_{1} = 2 \ \delta_{N\Delta} + 2R^{2}/3 , \qquad q_{r} = \bar{\varsigma}' \left(1 + R^{2}/3 \ C_{r}\right) ,$$

$$C_{2} = \frac{\left(2 \ \delta_{N\Delta} + R^{2}\right) \left(2 \ \delta_{NN} + R^{2}\right)}{2\left(6 \ NN} + 6 \ N\Delta} - \frac{R^{2}}{3} , \qquad q_{2} = -2 \ \bar{\varsigma} \ \bar{\varsigma}' \left(1 + R^{2}/3 \ C_{2}\right) ,$$

$$C_{3} = \frac{\left(2 \ \delta_{N\Delta} + R^{2}\right) \left(2 \ \delta_{NN} + R^{2}\right)}{2 \ \delta_{NN} + 4 \ \delta_{N\Delta} + 3R^{2}} - \frac{R^{2}}{3} , \qquad q_{3} = \bar{\varsigma}^{2} \ \bar{\varsigma}' \left(1 + R^{2}/3 \ C_{3}\right) ,$$

$$\bar{\varsigma}' = 2 \ \int \left(R^{2} + 2 \ \delta_{N\Lambda}\right) .$$

Здесь \mathcal{L}_{NN} , \mathcal{L}_{NN} — полное сечение и отношение действительной части амплитудн упругого \mathcal{NN} — рассеяния "вперед" к мнимой, \mathcal{L}_{NN} и \mathcal{L}_{NA} параметры наклона "элементарных" сечений $\mathcal{NN} \rightarrow \mathcal{NN}$ и $\mathcal{NN} \rightarrow \mathcal{NA}$ реакций, \mathcal{P}_{N} — средняя продольная передача импульса в системе покоя ³Не. При получении выражений (3.6), (3.7) предполагалось, что пространотвенная

часть волновых функций ядер ³Не и ^t имеет факторизованный вид $\Psi = \int_{-\pi}^{\pi} (\pi R^2)^{-2/4} \exp(-\frac{\pi}{L^2}/2R^2)$, где $R^2 - R_{\ell}^2 - \frac{\pi}{L^2}$, параметр R_{ℓ} взят равным полусумме элекромагнитных радиусов ядер ³Не и t /16/

Изотопический весовой множитель d_j в формулах (3.7) равен I для рождения Δ - изобарн на протоне и I/3 - для рождения на нейтроне. Волновая функция ядра ¹²С также бралась в факторизованном виде: $/\Psi(\vec{r_r}, \vec{r_a}, \dots, \vec{r_m})/^2 = \int_{T}^{T} \mathcal{P}(\vec{r_j})$. Одночастичная плотность $\rho(r)$ бралась в форме, соответствущей оболочечной модели: $\rho(r) * (A + Br^2) \exp(-r^2/R_a^2)$. Параметр $R_A^2 = \langle R_c \rangle^2 - \int_{T}^{2}$ вноирался так, чтобы среднеквадратичный

электромагнитный радиус совпадал с экспериментальным значением $\langle \mathcal{R}_c \rangle = 2,38$ (м/17).

При указанных выше предположениях большая часть интегралов в формулах (3.4), (3.5) внчисляется аналитически и окончательное выражение иля лийференциального сечения

$$\frac{dd}{dR} = \frac{8\bar{r}^{2}}{2\pi} \int \mathcal{C} \mathcal{C}' d\mathcal{B} d\mathcal{C}' \int^{2\pi} d\mathcal{J} \mathcal{J}_{0} \left(q \sqrt{\ell^{2} + \ell^{2} - 2\mathcal{C}} \mathcal{C}' \mathcal{C}_{0} \mathcal{L} \right) \mathcal{J} \left(\mathcal{C}_{0}^{2} \mathcal{C}_{0}^{2} \mathcal{L} \right) \mathcal{J} \left(\mathcal{C}_{0}^{2} \mathcal{L} \right) \mathcal{J} \right) \mathcal{J} \left(\mathcal{C}_{0}^{2} \mathcal{L} \right) \mathcal{J} \left($$

Цийференциальное сечение образования Δ^{++} – изобары в реакции $p({}^{3}\text{He}, \textbf{z}')$ было рассчитано нами ранее в работе 6 . Отношение сечений $\binom{\mathcal{AR}}{\mathcal{AR}} \binom{\mathcal{AR}}{\mathcal{AR}}$, вычисленное описанным выше способом, составляет 0,8 при $p_0 = 6,81$ ГэВ/с, что примерно вдвое меньше измеренного. Это отношение слабо зависит от начальной энергии, т.к. в интервале импульсов 2+6 ГэВ/с сечение $\overset{\mathcal{AR}}{\mathcal{AR}}$ практически постоянно.

Таким образом, учёт только "квазисвободного" механизма возбуждения Δ - изобары в ядре недостаточен для описания сечений реакции 12 С(3 Не, \pm) и не позволяет объяснить наблюдаемые в эксперименте особенности их поведения.

4. ОСНОВНЫЕ ИТОГИ ЭКСПЕРИМЕНТА И ИХ ОБСУЖЛЕНИЕ

Анализ измеренных нами при импульсах от 4,40 до 18,3 ГэВ/с дифференциальных сечений реакции $^{12}C(^{3}\text{He}, t)$ показал, что при энергиях, заметно больших порога рождения Δ – изобар, перезарядка ядер гелия-3 в тритий, вылетающих под нулевым углом, идёт в основном через возбуждение Δ – изобар в ядре-мишени: вклад "квазиупругой" перезарядки с возбуждением низколежащих ядерных уровней быстро падает с ростом энергии и, начиная с $p_0 = 6,81$ ГэВ/с, он не превышает 20%. При им – пульсах выше 10 ГэВ/с заметен вклад в сечение реакции $^{12}C(^{3}\text{He}, t)$ от процессов с возбуждением в ядре тяжелых изобар с изоспином 3/2.

Детальный анализ эффектов ферми-движения нуклонов в углероде и глауберовские расчёты, выполненные на основе предположения о "квазисвободном" механизме возбуждения изобар в ядрах, подтвердили сделанный нами ранее $^{/1,2/}$ вывод о том, что качественные различия между ядерным Δ - пиком и Δ - пиком в сечениях перезарядки на свободных протонах нельзя объяснить в рамках картины "квазисвободного" рождения изобар в ядрах. К этому же выводу пришли в последнее время и авторы работ $^{/18/}$, изучавшие перезарядку (³He, t) при $p_{0} = 3.9$ ГэВ/с.

Таким образом, для объяснения причин сдвига и уширения ядерного 🛆 - пика, а также расхождения более чем вдвое между измеренными и вычисленными сечениями $\frac{\partial \mathcal{E}}{\partial \mathcal{R}}(\circ)$ реакции ^{I2}C(³He, t), необходим учёт других механизмов, например, имеищих коллективный характер. Теоретическая разработка моделей, учитывающих такие механизмы, началась в последнее время. Так, например, в работе/19/сдвиг ядерного Δ - пика объясняется на основе предположения об образовании изоядра углерода в реакции ¹²C(³He, t). Однако, в этой работе игнорируется факт уширения ядерного Δ - пика, что может повлиять на полученные в ней количественные результаты. В работах /4/ рассматривается альтернативный подход а именно: возможность возбуждения в ядре-мишени коллективных степеней плонных

опосоди ядра. Однако результати^{/4/}пока находятся лишь в качественном соотпототнии о экспериментальными данными ^(1,2,18/). В работе^{/2/} мн отмочдом, что наблюдаемые в реакции перезарядки (³He, t) на ядре осо – бонности ядерного Δ – пика похожи на известные аномалии в энергоза-, висимости полных $\mathcal{F}A$ -сечений^{/20/}, где также наблюдён сдвиг резонансного Δ – пика к меньшим энергиям и его уширение по сравнению с Δ – пиком в полных сечениях $\mathcal{T}^{//}$ -рассеяния. Это даёт основание предполокить, что причины сдвига и уширения ядерного Δ – пика являются общими для этих реакций, а результаты теоретических попыток^{/21/}объяс – нить энергозависимость сечения $\mathcal{F}A$ – рассеяния могут быть использованы и для понимания данных о сечениях (³He, t) перезарядки на ядрах.

Авторы благодарны сотрудникам Лаборатории высоких энергий ОИЯИ за поддержку и интерес к этим исследованиям. Мы выражаем признательность за полезные обсуждения полученных результатов А.М.Балдину, Ю.В.Гапонову, В.Ф.Дмитриеву и И.А.Савину. Большую помощь при выпол нении этой работы оказали нам З.П.Мотина и Р.Н.Петрова.

Литература

- І. Воробьёв Г.Г. и др. Труды Ш Всесоюзного семинара "Программа экспериментальных исследований на мезонной фабрике ИЯИ АН СССР", 23-27 апр. 1983 г. (Звенигород), с.313, М.: ИЯИ АН СССР, 1984; Ableev V.G. et al. JINR, E1-83-486, Dubna, 1983; Аблеев В.Г. и др. -"Письма в ЖЭТФ", 1984, 40, с.35.
- 2. Елисеев С.М., Запорожец С.А. и др. В кн. "Труды УШ Международного семинара по проблемам физики высоких энергий", ДІ,2-86-668, Т.П. с. 308, Дубна. ОИЯИ, 1986. Ableev V.G. et al. JINR, E1-87-246, Dubna, 1987.
- 3. CM., HANDPIMEP: Dover C.B., Lemmer R.H. Phys.Rev., 1973, C7, p.2312; Barschay S., Rostokin V., Vagradov G. - Phys.Lett., 1973, 43B, p.271; Freedman R.A. et al. - Phys.Lett., 1981, 103B, p.397; Karaoglu B., Moniz E.J. - Phys.Rev., 1986, C33, p.974.
- 4. См. например: Dmitriev V.F., Suzuki T. Nucl. Phys., 1985, A438, p.697; Дмитриев В.Ф., Судзуки Т. В кн. "Нуклон-нуклонные и адрон-ядерные взаимодействия при промежуточных энергиях", Труды симпозиума.23-25 апр. 1984 г., Л.: ЛИЯФ, 1984 г., с.301; Dmitriev V.F. INPh preprint 86-118, Novosibirsk, INPh., 1986; Chanfrey G., Ericson M. Phys.Lett., 1984, 141B, p.163.

 Гришин В.Г., Подгорецкий М.И. Р-1508, ОИЯИ, Дубна, 1964; Лексин Г.А. В сб.: "Проблемы современной ядерной физики", М., "Наука", 1972, с.511.

6. Аблеев В.Г. и др. PI-86-435, ОИЯИ, Дубна, 1986. 7. "Review of Particle Properties", 1982 ed. p.217, CERN, Geneva, 1982. 8. Аблеев В.Г. и др. - ПТЭ, 1983, №1, с.33. 9. Dunn P.S. et al. - Phys.Rev., 1983, C27, p.71. IO.Contardo D., Ph.D. Thesis, Saclay, 1984. II.Jackson J.D. Nuovo Cim., 1964, 34, p.1344. 12.Азнаурян И.Г., Трошенкова И.А. - ЯФ, 1986, 43, с. 342 и ссылки к этой работе; Falk W.R. et al. - Phys.Rev., 1986, СЗЗ, р.989; Mougey J. - Nucl. Phys., 1980, A335, p.35. ІЗ.Ситенко А.Г. -Укр.Физ.Журн., 1959, 4, с.159; Glauber R.J. In: "Lectures in Theor. Phys.", Wiley-Inter-Sci. I4. Tekou A. - Nucl. Phys., 1972, B46, p.152; Trefil J.S. - Nucl. Phys., 1969, B11, p.330. I5.Bassel R.H., Wilkin C. - Phys.Rev. , 1968, 174, p.1179; Gartenhaus S., Schearz C.L. - Phys.Rev., 1957, 108, p.482. 16.Hadjimichael E., Conlard B., Bornais R. - Phys.Rev., 1983,C27p.831. 17.Reuter W. et al. - Phys.Rev., 1982, C26, p.806. 18.Gaarde C. In: "Nuclear Structure 1985" ed. by R. Broglia, B. Hagemann & B. Herskind Elsevier Sci.Publ., B.V. 1985, p.449; Contardo D. et al. - Phys.Lett., 1986, 168B, p.331. I9. Jain B.K. -Phys.Rev., 1985, C32, p.1253. 20.Полные сечения ЯС -рассеяния опубликованы в работах: Игнатенко А.Е. и др. - БЭТФ, 1956, 31, с.844; ДАН, 1959, 103, с.395; Binon F. et al. - Nucl. Phys., 1970, B17, p.168; - Nucl. Phys., 1971, B33, p.421; 1972, B40, 608(E); Marshall J.F. et al. - Phys.Rev., 1970, C1, p.1685; Wilkin C. et al. - Nucl. Phys., 1973, B62, p.61; Caris J.C. et al. - Phys.Rev., 1969, 126, p.295; Crozon M. et al. Nucl.Phys. -1965, B64, p.567. 21.Ранние работы, в которых обсуждались данные по т а -сечениям : Ericson T.E.O., Hüfner J. - Phys.Lett., 1970, B33, p.601; Locher M.P. et al. - Nucl. Phys., 1971, B27, p.598; Bethe H.A. - Phys.Rev.Lett., 1973, 30, p.105.

> Рукопись поступила в издательский отдел I иння 1987 года.

Аблеев В.Г. и др.

P1-87-374

Перезарядка релятивистских ядер гелия-3 в тритоны на углероде с возбуждением Δ -изобар в ядре-мишени

Представлены инвариантные дифференциальные сечения реакции перезарядки ядер гелия-3 в тритоны на ядрах углерода, измеренные под малыми ($\theta \leq 0,4^{\circ}$) углами с погрешностью абсолютной нормировки около 10% при импульсах от 4,4 до 10,8 ГэВ/с и не выше 20% при 18,3 ГэВ/с. Сечения поправлены на эффекты импульсного разрешения спектрометра. Обнаружено, что главный вклад в сечение исследуемой реакции дает процесс Δ -изобарного возбуждения ядра-мишени, имеющий признаки коллективности. К этому заключению приводят результаты сравнения полученных сечений с сечениями $P({}^{3}H_{\Theta}, t) \Delta^{++}$ -реакции, а также анализа эффектов ферми-движения нуклонов в ядре и расчетов сечений $d\sigma/d\Omega(0^{\circ})$ образования Δ -изобар в реакциях ах перезарядки на ядре и свободном протоне.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод Л.Н.Барабаці

Ableev V.G. et al.

P1-87-374

Charge-Exchange of Helium-3 Relativistic Nuclei to Tritons on Carbon with Δ -Isobar Excitation in the Target-Nucleus

The invariant differential cross sections of a helium-3 to triton charge-exchange reaction on carbon nuclei measured at small ($\theta \leq 0.4^{\circ}$) angles with an absolute normalization uncertainty of about 10% at momenta from 4.4 GeV/c up to 10.8 GeV/c and no more than 20% at 18.3 GeV/c are presented. The cross sections are corrected for the spectrometer momentum resolution effects. It is found that a main contribution to the reaction cross section is made by the process of Δ -isobar excitation of the target-nucleus which has signs of collectivity. This conclusion is based (i) on the results of comparison of these data with those on a $p({}^{3}\text{He}, t) \Delta^{++}$ reaction, (ii) on the analysis of the Fermi-motion effects and (iii) on the calculations of Δ -isobar production cross sections $d\sigma/d\Omega(0^{\circ})$ for charge-exchange reactions on the nucleus and a free proton.

The investigation has been performed at the Laboratory of High Energies, JINR.