

P1-87-3

Л.В.Сильвестров

АНАЛИЗ ОБРАЗОВАНИЯ $\mu^+\mu^-$ ПАР

В ЭКСПЕРИМЕНТАХ

đ:

С НЕЙТРАЛЬНЫМИ КАОНАМИ

Как было показано ранее $^{/1,2/B}$ результате анализа информации, записанной в экспериментах по регенерации $K_L - K_S - мезонов$ на дейтерии на установке БИС $^{/3/}$,получено указание на аномальное образование e^+e^- пар вне мишени, не объясняющееся известными фоновыми процессами. Ниже приведены результаты анализа $\mu^+\mu^-$ пар (в дальнейшем будем просто писать $\mu - \mu$ пары), зарегистрированных в этих же экспериментах.

Подробное описание установки, канала нейтральных частиц, детектора электронов (ДЭ) и мюонов (ДМ), программы геометрической реконструкции и процедуры идентификации мюонов содержится в работах ^{/4-8/}. Регистрировались пары заряженных частиц, выходящих из одной точки распадного объема, в частности, распады К_{S,L}-мезонов с двумя заряженными частицами в конечном состоянии.

Для целей данного анализа была заново обработана информация, записанная на лентах суммарных результатов. Отбирались события, в которых либо одна, либо обе заряженные частицы идентифицировались как мюоны. При отборе накладывались ограничения на геометрические размеры элементов установки, в частности ДМ, и на импульсы частиц (от 6 до 26 ГэВ/с). Аанализ включал следующие этапы.

1. Изучались процессы, которые составляют основной фон при регистрации $\mu-\mu$ пар. К ним относятся пары с одним мюоном, в которых вторая частица неправильно идентифицируется тоже как мюон. Большая часть событий с одним мюоном относится к распадам $K_{\mu3} \rightarrow \pi^{\pm} \mu^{\pm} \nu$. Критерии выделения этих распадов, сравнение с моделированными событиями и результаты исследования матричного элемента приведены в $^{9,10/}$. Остальная часть одномюонных событий возникает за счет адронных пар h^+h^- , рождающихся в неупругих взаимодействиях нейтронов пучка с газообразным гелием в распадном объеме: n + He. Один из адронов пары может вызвать срабатывание счетчиков ДМ либо за счет неполного поглощения ядерного ливня в железном фильтре, либо за счет распада пионов, составляющих основную компоненту h^+h^- пар, по схеме $\pi \rightarrow \mu\nu$. Далее будем обозначать события с одним мюоном как $\pi-\mu$ пары.

В экспериментах было зарегистрировано $\approx 78000 \ \pi-\mu$ пар, из них по кинематическим критериям выделено $\approx 67000 \ \text{K}_{\mu3}$ распадов, остальные события относятся к h⁺h⁻ парам. Число событий, в которых обе частицы идентифицированы как мюоны, равно N($\mu\mu$) = 1362, что составляет по отношению к $\pi-\mu$ парам долю Q = (1,74±0,05)%.

Неправильная идентификация второй частицы в $\pi - \mu$ парах как мюона происходит за счет описанных выше процессов: неполного поглощения ливня в железном фильтре и распада на лету $\pi \to \mu\nu$. Первый

1

из этих процессов изучался экспериментально. Для этого использовалась информация от детектора электронов, который состоял из чередующихся слоев свинца и сцинтиллятора и помещался непосредственно перед ДМ. Отбирались события, когда амплитуда сигнала ДЭ соответствовала развитию в нем ядерного ливня и при этом происходило срабатывание счетчиков мюонного годоскопа. Доля таких событий по отношению к полному числу прошедших через ДЭ адронов составила (0,83 + 0,07) %.Второй процесс моделировался по программе ТВИСТ^{/11/} с последующим восстановлением треков по программе геометрической реконструкции, и его вклад найден равным (0,75 \pm 0,02) %. Суммарный вклад обоих процессов составляет (1,68 \pm 0,07) %, что согласуется в пределах ошибок с приведенной выше величиной Q.

Если зарегистрированные установкой $\mu - \mu$ пары целиком обусловлены перечисленными фоновыми процессами, их геометрические и кинематические распределения должны совпадать при одинаковой нормировке с соответствующими распределениями для $\pi - \mu$ пар, в частности, должны совпадать распределения инвариантных масс $M(\mu\mu)$ и $M(\pi\mu)$, в предположении, что пион имеет массу покоя мюона (в дальнейшем, говоря о распределении $M(\pi\mu)$, мы всегда будем иметь в виду это условие).

На рис.1а показаны результаты сравнения распределений М(µµ) (гистограмма) и $M(\pi\mu)$, нормированного на полное число $\mu - \mu$ пар (точки). Видно, что между ними наблюдается расхождение: недостаток *µ*--*µ* пар по отношению к фону в правой части распределения и избыток в левой части. Это можно объяснить либо тем, что имеется механизм. который приводит к поглощению µ-µ пар в области больших масс $M(\mu\mu)$, что трудно обосновать, либо тем, что имеется дополнительный источник $\mu - \mu$ пар в области меньших масс $M(\mu\mu)$. В последнем случае наблюдаемое распределение М(µµ) следует рассматривать как суперпозицию двух разных распределений, одно из которых относится к фону от $\pi - \mu$ пар, а второе имеет нефоновое происхождение. Для того чтобы выделить нефоновые (избыточные) и-и пары, применялась стандартная процедура: фоновая кривая совмещалась методом минимума χ^2 с экспериментальными данными в тех бинах, где наблюдается избыточных пар (см. рисунок), а затем строилась не разность между гистограммой и этой кривой (рис.16). Поскольку в данном случае вид фоновой кривой заранее известен, то свободным параметром при аппроксимации являлся коэффициент нормировки. Если при нормировке на полное число $\mu - \mu$ пар обозначить его как К о, тогда приведенная кривая соответствует значению К = 0,9 К о (практически это соответствует нормировке фоновой кривой по правой части гистограммы, считая от максимума). Значения χ^2 /ст.св. для приведенных коэффициентов нормировки составляют 1,5 и 0,56, что дает уровень достоверности (у.д.) соответствующих гипотез 15% и 80%. Заметим, что термин "уровень достоверности" имеет различный смысл для разных распределений случайных величин и носит характер соглашения.

Рис.1. а) Гистограмма — распределение инвариантных масс $\mu^+\mu^$ пар (эксперимент). Точками обозначено распределение инвариантных масс π - μ пар (в предположении, что пион имеет массу покоя мюона), нормированное на полное число μ - μ пар. Кривая — это же распределение, нормированное по правой части гистограммы. б) Разность между гистограммой и кривой. в) и г) То же для моделированных событий. Ширина бина для б) 0,04 ГэВ/с², в остальных случаях 0,02 ГэВ/с².

Распределение инвариантных масс избыточных $\mu-\mu$ пар ограничено величиной $M(\mu\mu) \leq 0.38 \ \Gamma
m 3B/c^2$ (левая граница массового спектра определяется эффективностью регистрации пар установкой), а их число составляет $N(\Delta\mu\mu) = 109 \pm 28$, то есть соответствует уровню превышения сигнала над фоном на 3.8σ . Приведенные данные можно рассматривать как качественную картину образования избыточных $\mu-\mu$ пар по отношению к фону.

2. С целью проверки того, что наблюдаемое расхождение между инвариантными массами $\mu - \mu$ и $\pi - \mu$ пар не вызывается какой-либо выборкой при регистрации их установкой, было проведено моделирование таких пар в предположении, что все $\mu - \mu$ пары являются результатом неправильной идентификации пионов в $\pi - \mu$ парах. Для этого:

а) моделировались распады $K_{\mu3} \rightarrow \pi^{\pm}\mu^{\pm}\nu$ с учетом реальных условий эксперимента: измеренного импульсного спектра K_L -мезонов, кулоновского рассеяния заряженных частиц в веществе установки, пространственного разрешения и эффективности срабатывания проволочных искровых камер, входящих в установку /9/;

б) определялась экспериментальная зависимость коэффициента неправильной идентификации пионов в *п-µ* парах от их импульса Q(P),

3

Рис.2. Распределение по квадрату попереченого импульса Р² частиц в паре. Обозначения теже. что на рис.1.

и затем пионам от моделированных К_{µ3} распадов присваивалась метка мюона с весом Q(P) *; в) моделированные таким образом µ-µ и п-µ пары обрабатывались по тем же программам, что и экспериментальные события.

На рис.1в приведены распределения М(ии) (ги-

стограмма) и $M(\pi_{\mu})$ (кривая) для моделированных событий. Точки обозначают то же, что на рис.1а — экспериментальное распределение $M(\pi \mu)$, нормированное на число моделированных $\pi - \mu$ пар. Их согласие с кривой свидетельствует о корректности процедуры моделирования. Распределения инвариантных масс моделированных $\mu - \mu$ и $\pi - \mu$ пар согласуются в пределах ошибок. Значение χ^2 /ст.св. = 0,53, что соответствует у.д. 85%. На рис.1г приведено распределение разности между гистограммой и кривой, не показывающее какого-либо избытка моделированных $\mu - \mu$ пар по отношению к фону. Эти результаты свидетельствуют о том, что наблюдаемые в эксперименте избыточные $\mu - \mu$ пары не обуславливаются методическими эффектами.

На рис.2 приведены распределения по квадрату поперечного импульса частиц пары Р² для экспериментальных и моделированных событий. Обозначения, а также процедура нормировки и вычитания фоновой кривой принимались такими же, как и при сравнении инвариантных масс $\mu - \mu$ и $\pi - \mu$ пар. Видно, что имеется избыток $\mu - \mu$ пар в области малых P1 для экспериментальных событий и отсутствует для моделированных. Поскольку существует корреляция между инвариантной массой и величиной P₁², приведенные данные нужно рассматривать как дополнительную проверку того, что наличие избыточных пар не обуславливается какими-либо расчетными ошибками.

3. Использовалась информация о зарегистрировани $e^{\pm}\mu^{\mp}$ парах. Эти пары возникают как фоновый процесс, когда в распадах. К µ3 пион идентифицируется как электрон, а в распадах К _{е3} → → π[±]θ[∓]ν пион идентифицируется как мюон.^{*} Если все зарегистрированные установкой $e^+e^-, \mu^+\mu^-$ и $e^\pm\mu^\mp$ пары относятся к неправильно идентифицированным пионам, тогда расчетное число $e^{\pm} \mu^{\mp}$ пар будет определяться соотношением

(1) $N(e\mu)_{1} = N(\pi\mu) \frac{N(ee)}{N(\pi e)} + N(\pi e) \frac{N(\mu\mu)}{N(\pi\mu)}$

Здесь N обозначает число событий указанного типа.

Отбирались события, в которых каждая частица пары попадала в апертуру ДЭ и ДМ, и для них проводился расчет числа N(еµ) 1. Было найдено, что оно превышает число зарегистрированных пар N(еµ) экс : $N(e_{\mu})_{1} - N(e_{\mu})_{3KC} = 205 \pm 46.$ (Отклонение находится на уровне 4,5 σ , у.д. 1,5 $\cdot 10^{-5}$). Это расхождение можно объяснить тем, что (как и в п.1) часть е-е и $\mu - \mu$ пар не относится к фону от $\pi - \mu$ и $\pi - e$ пар. Тогда соотношение (1) может быть переписано в виде:

$$N(e\mu)_{2} = N(\pi\mu) \frac{N(ee - N(\Delta ee))}{N(\pi e)} + N(\pi e) \frac{N(\mu\mu) - N(\Delta \mu\mu)}{N(\pi\mu)}.$$
 (2)

Подставляя сюда число N(Δee) (см. ^{/1/}) и N($\Delta \mu\mu$) с учетом попадания частиц в ДЭ и ДМ, получим $N(e\mu)_2 - N(e\mu)_{3KC} = 74 \pm 44$ (отклонение на уровне 1,7 σ , у.д. 10%). Расчет числа $\theta - \mu$ пар N($e\mu$)₃, сделанный без поправки на число N($\Delta \mu \mu$), дает разность N(е μ)₃- $N(e\mu)_{3KC} = 125 \pm 50$ (отклонение на 2,5 σ у.д. 1%).

Таким образом, предположение об отсутствии избыточных µ-µ пар в данных расчетах уменьшает у.д. на порядок. Поскольку этот метод дает независимую проверку наблюдаемого эффекта, в итоге у.д. для нулевой гипотезы составит 1,5%.

 Оценивался вклад в наблюдаемый избыток μ-μ пар от других источников фона. К ним относятся:

a) конверсия фотонов в веществе установки с образованием µ-µ пары. В работе /2/ были подробно рассмотрены процессы рождения π° -мезонов с дальнейшей конверсией распадных фотонов на e^+e^- пары, регистрируемые установкой. Вклад таких событий составил <1. Вероятность конверсии фотона в кулоновском поле ядра на е⁺е⁻ или μ⁺μ⁻ пару пропорциональна квадрату отношения масс лептонов $(M_e/M_{\mu})^2$, поэтому вклад конверсионных $\mu - \mu$ пар будет пренебрежимо мал. Заметим, что фотоны от мишени ускорителя убирались из пучка нейтральных частиц с помощью свинцового фильтра и расположен-

ного за ним отклоняющего магнита.

* Сюда относятся также b^+b^- пары, в которых один из адронов идентифици-

руется как электрон, а второй как мюон.

5

^{*} Как показано ниже (см. рис.3), для h⁺h⁻ пар распределение инвариантных масс в предположении, что обе частицы имеют массы покоя мюонов, практически не отличается от аналогичного распределения для Киз распадов, поэтому данная процедура моделирования справедлива и для этих пар.

Рис.3. Гистограмма — распределение инвариантных масс избыточных $\mu - \mu$ пар. Кривые — распределения инвариантных масс пар заряженных частиц в предположении, что они имеют массы покоя мюоонов, для случаев: 1 — К из распадов, 2 — К игг распадов, 3 — К из распадов, 4 — h⁺h⁻ пар от взаимодействий n+He. Все кривые нормированы на максимум гистограммы.

6) Распады К_L -мезонов с образованием $\mu - \mu$ пар и нейтральных частиц в конечном состоянии. Согласно /12/ относительные вероятности распадов В₁ = $\Gamma(K_L \rightarrow \mu^+ \mu^- \gamma) / \Gamma(K_L)_{BCE} = (2.8 \pm 2.8) \cdot 10^{-7}$ и В₂ = $\Gamma(K_L \rightarrow \mu^+ \mu^- \pi^{\circ}) / \Gamma(K_L)_{BCE} < 1,2 \cdot 10^{-6}$. Эффективность регистрации $\mu - \mu$ пар из этих распадов, полученная путем моделирования, составляет $\eta(B_1) = 1,7\%$, $\eta(B_2) = 0,8\%$ и $\eta(K_{\mu3}) = 2,2\%$. Используя приведенное выше число $K_{\mu3}$ распадов, получим вклад $\mu - \mu$ пар N($\mu\mu$) $\leq 0,15$.

в) Распады К $_{\pi 2} \rightarrow \pi^+ \pi^-$ и К $_{\pi 3} \rightarrow \pi^+ \pi^- \pi^\circ$, в которых оба заряженных пиона ошибочно идентифицируются как мюоны.

Исходя из числа зарегистрированных в эксперименте распадов $N(K_{\pi 2}) \approx 10^4$ и $N(K_{\pi 3}) \approx 1,3\cdot10^4$ и приведенной выше величины Q, получим число $\mu - \mu$ пар от этих распадов 3,2 и 4,0 соответственно. На рис.3 показано распределение инвариантных масс заряженных частиц от распадов $K_{\pi 3}$ и $K_{\pi 2}$, в предположении, что они имеют массы покоя мюонов (кривые 1,2), вместе с наблюдаемым распределением $M(\Delta \mu \mu)$ для избыточных пар. Из рисунка видно, что вклад в эту область масс дают только $K_{\pi 3}$ распады.

г) Пары h^+h^- от взаимодействий n + He, в которых оба адрона ошибочно идентифицируются как мюоны. На рис.3 кривые 3 и 4 показывают распределение инвариантных масс пар заряженных частиц от $K_{\mu3}$ распадов и взаимодействий n + He в предположении, что обе частицы имеют массы покоя мюонов. При массах $M(\mu\mu) \leq 0.45$ ГэВ/с² кривые практически не различаются, поэтому в описанной выше процедуре вычитания фоновой кривой из экспериментального распределения $M(\mu\mu)$ вклад h^+h^- пар учитывался вместе с вкладом от $K_{\mu3}$ распадов.

д) Прямое рождение $\mu - \mu$ пар в неупругих взаимодействиях n + He. Из экспериментов известны следующие характеристики рождения прямых $\mu - \mu$ пар ^{/13}.

— распределение инвариантных масс для большей части таких пар лежит в области 0,3-0,6 ГэВ/с² и имеет вид спадающей кривой.

— распределения по продольным и поперечным импульсам $\mu - \mu$ пар не отличаются от аналогичных распределений пар $\pi^+\pi^-$ мезонов из этих же взаимодействий, а отношение числа этих пар составляет $R = N(\mu\mu) / N(\pi^+\pi^-) = (4,4 \pm 1,7) \cdot 10^{-5}$ В это отношение входит также вклад $\mu - \mu$ пар от распадов $\omega \to \mu^+\mu^-\pi^\circ$ и $\eta \to \mu^+\mu^-\gamma$. Исходя из числа

Рис.4. Точки — распределение Z-координат вершин для избыточных $\mu -\mu$ пар. Кривые — те же распределения для моделированных пар от распадов Kg -мезонов (1), K_L -мезонов (3) и h⁺h⁻ пар от взаимодействий \ddot{n} + He (2).

зарегистрированных в эксперименте h^+h^- пар ($\stackrel{\sim}{-}7,6\cdot10^4$) и предполагая, что все они относятся к пионам, получим вклад прямых $\mu - \mu$ пар $N(\mu\mu) \leq 5$. Оценки,

сделанные на основании измеренных сечений рождения прямых $\mu - \mu$ пар, не превышают этой величины.

Суммарный вклад от рассмотренных фоновых процессов в наблюдаемое число избыточных $\mu - \mu$ пар составит $N(\mu \mu)_{\phi} \leq 9$ или 7,4% от наблюдаемого эффекта. За вычетом этого вклада число избыточных $\mu - \mu$ пар будет равно $N(\Delta \mu \mu) = 100 \pm 28$.

5. Строилось распределение Z-координат вершин избыточных пар вдоль распадного объема (рис.4). Оно было получено описанным выше методом сравнения инвариантных масс $M(\mu\mu)$ и $M(\pi\mu)$ для каждого интервала $\Delta Z = 2$ м. Кривые на этом рисунке показывают аналогичные распределения для моделированных $\mu - \mu$ пар, полученные в предположении. что эти пары относятся либо к распадам K₈-мезонов, (кривая 1), либо к распадам К₁-мезонов (кривая 3). Кривая 2 относится к h⁺h⁻ парам от неупругих взаимодействий нейтронов с гелием. Экспериментальные точки в пределах ошибок согласуются с кривыми 2 и 3. Поскольку выше было показано, что вклад μ -- μ пар от неупругих взаимодействий нейтронов не превышает 5 событий, остается предположить, что избыточные $\mu - \mu$ пары относятся либо к распаду новой долгоживущей частицы, либо к не наблюдавшемуся ранее распаду К₁мезонов. Для оценки относительной вероятности последнего проводилось моделирование нескольких схем таких распадов с образованием $\mu - \mu$ пар и нейтральных нерегистрируемых частиц в конечном состоянии. Предполагалось, что в промежуточном состоянии могут возникать как заряженные, так и нейтральные частицы (ненулевой массы), существование которых предсказывается в современных гипотезах

Результаты моделирования для трех предполагаемых схем распадов К _L-мезонов приведены в таблице. В ней символом Х обозначены промежуточные частицы, M(X) - их массы, n_0 - нейтральные безмассовые частицы. При моделировании требовалось, чтобы распределение инвариантных масс $\mu - \mu$ пар согласовывалось с наблюдаемым распределением $M(\mu\mu)$ для избыточных пар. Это достигалось подбором масс M(X). На рис.5 гистограмма показывает распределение масс для избыточных пар, кривые дают аналогичные распределения моделированТаблица

N	Мода	М(Х) ГэВ/с ²	η(μμ) %	B·10 ⁻⁸
1	$\mathbf{K}_{1} \rightarrow \mathbf{X}^{\circ} + \mathbf{n}_{o} \rightarrow (\mu^{+}\mu^{-}\mathbf{n}_{o}) + \mathbf{n}_{o}$	o 0,38	0,9	0,87±0,23
2	$\mathbf{K}_{\mathbf{L}} \rightarrow \mu^{+}\mu^{-} + \mathbf{X}^{\circ} \rightarrow \mu^{+}\mu^{-} + (\mathbf{m} \cdot \mathbf{n})$	o) 0,11	1,2	0,63±0,17
3	$K_{L} \rightarrow X^{+} + X^{-} \rightarrow (\mu^{+} n_{o}) + (\mu^{-} n_{o})$,) 0,20	1,0	0,75± 0,20

Рис.5. Гистограмма — распределение инвариантных масс для избыточных $\mu - \mu$ пар. Кривые — те же распределения для моделированных $\mu - \mu$ пар из распадов (1)-(3) (см.таблицу).

ных $\mu - \mu$ пар от распадов (1)-(3) при значениях M(X), указанных в таблице. В ней также приведена эффективность регистрации $\mu - \mu$ пар установкой $\eta(\mu\mu)$ и относительная вероятность распадов B, которая рассчитывалась из соотношения

$$B(K_{L} \rightarrow \mu^{+}\mu^{-} + ...) = \frac{N(\Delta \mu \mu) \eta(K_{\mu 3}) B(K_{\mu 3})}{N(K_{\mu 3}) \eta(\mu \mu)}.$$

Здесь В(K_{µ3}) — относительная вероятность К_{µ3}-распадов (0,271). Как показано в п.2, б, прямые измерения распадов К_⊥→ μ⁺μ⁻ у и К_⊥→ μ⁺μ⁻π[°] дают их относительную вероятность <10⁻⁶, поэтому обозначение n₀ в таблице должно относиться к частицам неэлектромагнитной природы.

Из таблицы следует, что величина В слабо зависит от конкретной схемы распада и для разных схем различается не больше, чем на одну стандартную ошибку измерения. Приведенные значения В не противоречат имеющейся неопределенности в измерении парциальных ширин основных мод распада K_L -мезона, абсолютная величина которой составляет $\Delta\Gamma(K_L)/\Gamma(K_L)_{BCE} = (2,1 \pm 8,6)\%^{/12/}$.

Распределение инвариантных масс моделированных $\mu - \mu$ пар согласуется также с наблюдаемым распределением $M(\Delta \mu \mu)$ для избыточных пар, если предположить, что их источником является нейтральная долгоживущая частица, распадающаяся на мюонную пару и одну или несколько нерегистрируемых нейтральных безмассовых частиц.

Приведенные аргументы не дают возможности установить конкретный механизм образования нефоновых $\mu - \mu$ пар. Для этого нужно привлекать данные других экспериментальных и теоретических работ, что выходит за рамки этой статьи. В связи с этим укажем на работу ^{/15/},где изучалось прямое рождение $\mu - \mu$ пар в $\pi - p$ взаимодействиях. На основании анализа недостающих масс авторы делают вывод, что аномальное рождение $\mu - \mu$ пар, превышающее фон от распадов известных мезонов, наблюдается только в том случае, если оно сопровождается испусканием двух или больше нейтральных нерегистрируемых частиц. Не исключено, что имеется общий механизм образования аномальных $\mu - \mu$ пар в адронных взаимодействиях и в описанных выше экспериментах.

Результаты вышеизложенного анализа позволяют сделать следующее заключение: в экспериментах по регенерации К $_{\rm L}$ -К $_{\rm S}$ -мезонов на дейтерии на установке БИС получено указание на аномальное рождение $\mu^+\mu^-$ пар вне мишени, не объясняющееся известными фоновыми процессами. Результаты моделирования согласуются с предположением, что при этом образуется одна или больше нейтральных нерегистрируемых частиц. Если считать, что источником таких пар являются распады К $_{\rm L}$ -мезонов, их относительная вероятность имеет величину (0,6÷ ÷1,2)·10⁻⁸.

Автор приносит благодарность А.М.Балдину за полезные обсуждения, Г.Г.Тахтамышеву за помощь в моделировании, а также коллективу сотрудничества БИС за предоставление первичной информации.

ЛИТЕРАТУРА

هر.

- 1. Сильвестров Л.В. В сб. Краткие сообщения ОИЯИ, 14-86. Дубна: ОИЯИ, 1986, с.9.
- 2. Сильвестров Л.В., Тахтамышев Г.Г. ОИЯИ Р1-86-87, Дубна, 1986.
- 3. Альбрехт К.Ф. и др. ЯФ, 1978, 27, с.369.
- Бирулев В.К. и др., ОИЯИ 1-7307, Дубна, 1973.
- 5. Басиладзе С.Г. и др. ОИЯИ Р1-5361, Дубна, 1970.
- 6. Альбрехт К.Ф. н др. ОИЯИ 1-7305, Дубна, 1973.
- 7. Вестергомби Д. и др. ОИЯИ, Р10-7284, Дубна, 1973.
- 8. Вовенко А.С. и др. ОИЯИ 10-9909, Дубна, 1976.
- Генчев В.И. и др. ОИЯИ Р1-9032, Дубна, 1975.
- 10. Бирулев В.К. и др. ОИЯИ Р1-12897, Дубна, 1979; ЯФ, 1980, 31, с.1204.
- 11. Тахтамышев Г.Г. ОИЯИ 1-80-640, Дубна, 1980.

- Rev of Part. Prop., Phys.Lett., 1986, 170B.
 Haber B. et al. Phys.Rev., 1980, D22, p.2107. 14. Jamada S.In: Proc. of the 1983 Intern. Symposium on Lepton and Photon Interactions
- at High Energies. New York, 1983, p.525.
- 15. Bunnell K.et al. Phys.Rev.Lett., 1978, 40, p.136.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

.

.

	д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
•	д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
	ДЗ,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 x.
	Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна. 1982.	2 p. 50 k
	д7-83-644	Труды Международной школы-семинара по физике гяжелых ионов. Алушта, 1983.	бр. 55 к.
	Д2,13-83-689	Труды рабочего совещания по пробленам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
	Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава,	4 р. 50 к.
		чехословакия, 1983.	
	д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30 ĸ
	д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
	Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 k .
	Д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше-	7 - 50
		ния физических задач. Дурна, 1903	э p. эч к.
		Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 p.50 κ.
	Д¥~85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
æ	Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4р.
£	Д13-85-793	Труды XП Международного симпозиума по ядерной злектронике. Дубна 1985.	4 р. 80 к.
-			

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Рукопись поступила в издательский отдел 5 января 1987 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки окопориментальных данных
11.	Вычислительная математика и техника
12.	Химия .
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Сильвестров Л.В. Анализ образования $\mu^+\mu^-$ пар в экспериментах с нейтральными каонами

В результате анализа информации, записанной на установке БИС в экспериментах с нейтральными каонами, получено указание на аномальное рождение $\mu^+\mu^-$ пар вне мишени, не объясняющееся известными фоновыми процессами. Инвариантные массы пар ограничены величиной $M(\mu\mu) \leq 0.38 \ \Gamma \ 3B/c^2$.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Silvestrov L.V. Analysis of $\mu^+\mu^-$ Pair Production in Experiments with Neutral Kaons P1-87-3

The indication on the anomalous production of $\mu^+\mu^-$ pairs beyond the target which could not be explained by the known background processes is obtained as a result of the analysis of the data registered on the BIS spectrometer in the experiment with neutral kaons. The invariant masses of these pairs are limited by the $M(\mu\mu) \leq 0.38 \text{ GeV/c}^2$.

The investigation has been performed at the Laboratoty of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987