

P1-87-271

1987

В.В.Архипов, П.Ж.Асланян⁷, Р.Г.Аствацатуров, И.Иоан², Е.Кнапик, В.А.Крамаренко, А.И.Малахов, Г.Л.Мелкумов, С.Н.Пляшкевич, Б.М.Старченко, М.Н.Хачатурян, А.Г.Худавердян⁷

ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ РЕАКЦИИ $\pi^- p \longrightarrow \eta \Delta^{\circ}$ (1232) ПРИ ИМПУЛЬСАХ 3,3 И 4,75 ГэВ/с

Направлено в журнал "Ядерная физика"

¹ Ереванский государственный университет ² Институт атомной физики, Бухарест В настоящей работе представлены первые и пока единственные результаты по измерению дифференциальных сечений реакции

$$\Pi^{-}p \rightarrow \eta \Delta^{\circ} (1232) \tag{1}$$

при импульсе 3,3 ^{/I/} и 4,75 ГэВ/с. При энергиях свише 2 ГэВ процесс (I) представляет, с точки зрения теории Редже, особий интерес, т.к. правила отбора допускают в + -канале этой реакции обмен с квантовыми числами только A_2 -мезона. Это позволяет сравнить механизм A_2 -обмена реакции (I) с реакцией

$$\mathbf{\Gamma}\mathbf{p} - \boldsymbol{\eta}\mathbf{n} \,. \tag{2}$$

В ранее опубликованных работах ^{/2-5/} с помощью жидководородных пузырьковых камер исследовалась реакция

$$\Pi^+ p \to \eta \Delta^{++} (I232),$$
 (3)

однако статистика событий в указанных исследованиях, как правило, небольшая.

Эксперимент проводился в 1976-1977 гг. на протонном синхротроне Объединенного института ядерных исследований на энергию 10 ГэВ. В эксперименте П-мезоны генерировались в жидководородной мишени длиной 80 см и регистрировались с помощью 90-канального черенковского масс-спектрометра по распадам П-ТК /6.7/.

Схема геометрии эксперимента, процедура обработки данных и результаты при импульсе 3,3 ГэВ/с приведены в работе /I/.

Экспериментальные события обрабатывались по программе геометрической и энергетической реконструкции ^{/8/}. На первом этапе анализа отбирались уу-события, удовлетворяющие условиям (критерий А):

a) 400 MəB $\leq E_{\delta_1}$ (E_{δ_2}) \leq 4200 MəB, d) 4100 MəB $\leq E_{\delta_1} + E_{\delta_2} \leq$ 5000 MəB, (4) B) $E_{\delta}^{M}/E_{\delta}^{E} \geq 0, I, rge E_{\delta}^{M} \times E_{\delta}^{E}$ - соответственно

Воъсявнечный институр идеуных исследований

меньшая и большая энергии χ -квантов. На рис.І приведены экспериментальные распределения по сумме энергии χ -квантов ($E_{\chi_1} + E_{\chi_2}$) и эффективной массе $M_{\chi\chi}$ для 4630 $\chi\chi$ -событий, полученных после применения критерия А. Рис.2 иллюстрирует полученные моделированием методом Монте-Карло /9/ распределения по энергии η° -мезонов в реакциях (I) и (2). Как видно из рис.2, распределение для реакции (I) имеет максимум при 4320 МэВ, в то время как максимум для реакции (2) равен 4620 МэВ. Указанное отличие в энергетических спектрах для двух процессов, связанное с кинематикой этих реакций, открывает принципиальную возможность их разделения по энергии /10/.

Рис. І. Экспериментальные распределения Ху-событий после

применения критерия А.

- а) распределение суммы энергий χ_{χ} -событий ($E_{\chi_1} + E_{\chi_2}$).
- б) распределение по эффективной массе уу-событий (М_{уу}).

Рис. 2. Моделированные методом Монте-Карло распределения суммы

энергий χ_{δ} -событий (E_{δ} , + E_{δ_2}) для процессов П **р** — ηn (штрихованная гистограмма) и П **р** — $\eta \Delta^{\circ}$ (1232) (сплошная гистограмма). На втором этапе анализа для отбора событий реакции (I) вычисляется эффективная масса (M:) уу-событий по формуле:

$$M_{i} = \chi_{L} (E_{\pi} + m_{p}) - P_{\pi} (\chi_{L}^{2} - I)^{1/2} \cos \theta_{\pi \eta} - \{ [P_{\pi} (\chi_{L}^{2} - I)^{1/2} \cdot \cos \theta_{\pi \eta} - K_{L} (E_{\pi} + m_{p})]^{2} - 2E_{\pi} m_{p} - m_{p}^{2} - m_{\pi}^{2} + m_{i}^{2} \}^{1/2}, \qquad (5)$$

где M_i находится в функциональной зависимости от масси частицы отдачи ($m_i = m_n$ или m_Δ). Разделение реакций (I) и (2) осуществляется с помощью χ^2 -критерия /II/: 55-событие идентифицируется как η -мезон, образовавшийся в реакции (I), если выполняются условия (критерий Б)

(6)
$$\chi_{M_{a}}^{2} < \chi_{M_{n}}^{2}$$
, (6)
(5) $E_{x} + E_{x} \leq 4400 \text{ M} \Rightarrow B$, (7)

o) $E_{\chi_1} + E_{\chi_2} \leq 4400 \text{ MaB},$ rge $\chi^2 = (M_1 - 548, 8)^2 / (\Delta m_{arcm})^2.$

Входящие в формулы (5-7) величины имеют следующий смысл: $\Delta m_{_{
m ЭКСП}}$ - экспериментальная ошибка измерения массы, $m_{\mathfrak{N}}$, P_{Π} , E_{Π} соответственно масса, импульс и полная энергия П-мезона, m_{P} -масса протона, $\theta_{\mathfrak{N}}$ - угол между направлениями П-мезона и η -мезона в л.с.к., χ_{L} - лоренц-фактор

$$\chi_{L} = \left[\left(\mathbb{E}_{\boldsymbol{x}_{i}} / \mathbb{E}_{\boldsymbol{x}_{p}} \right)^{1/2} + \left(\mathbb{E}_{\boldsymbol{x}_{p}} / \mathbb{E}_{\boldsymbol{x}_{p}} \right)^{1/2} \right] \left[2 \left(1 - \cos \theta_{\boldsymbol{x}\boldsymbol{x}} \right) \right]^{-1/2}, \quad (8)$$

Өзү-угол между направлениями вылета ү и ү в л.с.к.

При вычислении дифференциального сечения **уу**-события отбирались в следующих интервалах (критерий В):

$$-t_{\min} \leq -t \leq 0.37 \ (\Gamma \circ B/c)^2, \ II00 \leq m_{\Delta} \leq I400 \ M \circ B,$$
$$I2^0 \leq \theta_{\chi\chi} \leq 2I^0, \ 0 \leq \chi^2_{M_{\Delta}} \leq I.$$
(9)

Экспериментальное распределение ху-событий по эффективной массе после применения указанных выше критериев (А,Б и В) (1060 событий) иллюстрирует рис.3.

Таблица І.

Рис. 3. Экспериментальное распределение по эффективной массе $\delta \delta$ -событий после отбора по критериям $t_{min} \leq t_{\pm 0}, 37 (\Gamma \partial B/c)^2;$ IIOO $\leq m_{\Delta} \leq I4OO$ МоВ; $I2^O \leq \theta_{\delta\delta} \leq 2I^O; O \leq \chi^2_{M_{\Delta}} \leq I.$ Фоновые события (штрихованная гистограмма) получены моделированием методом Монте-Карло.

Применение критериев отбора А-В приводит к потере около 24% событий реакции (I).

Для оценки фона и его влияния на дифференциальное сечение были рассмотрены следующие процессы:

$\Pi p \rightarrow \eta n$	(2)
II-n	

$$T = 0 T (10)$$

$$I p - 2 I R .$$
 (II)

Указанные реакции моделировались методом Монте-Карло. После применения критериев А-В и нормировки на величины сечений вклад всех фоновых процессов от общего числа событий оказался менее 19%. Табл. I иллюстрирует эволюцию относительного вклада процессов (I), (2), (IO, II) после применения каждого из трех критериев отбора. Сечения процессов (2), (IO), (II) взяты из работы^{/12/}.

Ввиду малости фона влияние фоновых событий на зависимость дифференциального сечения от -t не учитывалось.

<u>ММ</u> ПП	Реакция	критерий А отно	критерий Б сительная доля	критерий В в %
I.	$\Pi p - \eta \Delta^{\circ}(1232)$	35	55	81
2.	IFp - ηn	42	18	6
з.	$\Pi^{-}p - \omega^{\circ}n$	18	2 3	II
4.	п ⁻ р – 211 ⁰ п ·	5	4	2

Полученные в эксперименте дифференциальные сечения реакции (I) в зависимости от $|t'| = |t| - |t_{min}|$ при импульсе 4,75 ГэВ/с в 3.3 ГэВ/с /I/ представлены в таблице 2 и на рис.4.

Рис. 4. Дифференциальные сечения dG/dt реакции П р - η Δ⁰(1232) в зависимости от переданного 4-х импульса (-t)

 $(\phi - P_{\pi} = 3,3 \ \Gamma \Rightarrow B/c, \phi - P_{\pi} = 4,75 \ \Gamma \Rightarrow B/c).$

Выбранные интервалы по - t', как правило, больше разрешающей способности аппаратуры. Указанные на рис.4 ошибки - статистические. Абсолютная нормировка сечения реакции (I) производилась с помощью процесса /2/, который измерялся одновременно в том же эксперименте.

Таблица З.

Таблица 2.

(12)

₩₩ 1111	Δt' (Γ∋B/c) ²	dơ/dť mkó/(ГэВ/с) ² 4,75(ГэВ/с)	Δt' (Γ∂B/c) ²	d5/dt' MKO/(ГэВ/с) ² 3,3(ГэВ/с)
I. 0	,000 - 0,0I5	44 ± 8	0,000 - 0,013	82 ± 12
2.0	,015 - 0,025	65 ± II .	0,0I3 - 0, 063	123 ± 10
3.0	,025 - 0,045	88 ± IO	0,063 - 0,0 93	II5 ± 12
4.0	,045 - 0,075	85 ± 10	0,093 - 0,I 33	150 ± 14
5.0,	,075 - 0,105	102 ± 10	0,I33 - 0,I 93	157 ± 16
6.0	,105 - 0,145	98 ± 9	, 0,193 - 0,2 53	I40 ± I8
7.0,	145 - 0,205	94 ± 9	0,253 - 0, 333	100 ± 19
8.0,	,205 - 0,265	88 ± IO	-	-
9.0,	,265 - 0,345	73 ± 10	-	-

Экспериментальные данные параметризовались с помощью формулы:

dG/dt' = A(I - gCt')exp(Ct'),

где g - отношение вкладов амплитуд рассеяния с переворотом и без переворота спина. В соответствии с этой параметризацией для величин А, g и C найдены значения:

р (ГэВ/с)	А мко/(ГэВ/с) ²	g	С(ГэВ/с) ⁻²	ў ²
3,3	76 ± I3	4,0 ± I,0	5,5 ± 1,0	5,4
4,75	40 ± 8	5,8 ± 1,6	6,5±0,8	3,2

В таблице 3 сравниваются значения параметров A, q, C для процессов (I) $_{\rm M}$ (2).

Из таблици З видно, что цараметры *g*, характеризующие отношения вкладов амплитуд рассеяния с переворотом спина и без переворота спина для реакций (I) и (2), в пределах ошибок совпадают.

Полные сечения реакции (1), полученные цутем интегрирования дифференциальных сечений в интервале от $-t_{min}$ до -1 (ГэВ/с)² для импульсов 3,3 и 4,75 ГэВ/с,соответственно равны (64,3±28,7) и (37,2±12,6) мкб.

 Реакция	Р _п (ГэВ/с)	А мкб/(ГэВ/с)2	s 8	С(ГэВ/с) ⁻²
 1 ⁻ p ηn /7/	3,3 4,75	124,9 ± 9,0 88,1 ± 12,4	5,5 ± 0,5 5,0 ± 0,9	5,6 ± 0,2 6,0 ± 0,4
 Π¯p – ηΔ°	3,3 4,75	76 ± 13 40 ± 8	4,0 ± I,0 5,8 ± I,6	5,5 ± 1,0 6,5 ± 0,8

Данные настоящей работы для d6/dt (около IIOO событий) при импульсе 4,75 ГэВ/с вместе с ранее полученными результатами при импульсе 3,3 ГэВ/с /I/, позволяют с помощью формулы (I3) определить эффективную траекторию для реакции (I)

$$d\sigma/dt = F(t) (S/S_{o})^{2} \sim \tilde{\phi}(t) -2$$
(13)

Рис. 5. Эффективные траектории Редже $\mathcal{L}_{\mathfrak{F}}$ для реакции П⁺р — Ц Δ^{++} (I232): штриховая прямая – данные работы /2/, штрих-пунктирная прямая – данные работы /3/, сплошная прямая – настоящая работа.

6

Это значение $\ll_{\Im \Phi \Phi}(t')$ в пределах ошибок совпадает с величиной $\ll_{\Im \Phi \Phi}(t')$, полученной в работе /2,13/ и не согласуется с результатом работы /3/. На рис.5 приведены эффективные траектории Редже, полученные в данной работе и в работах /2,3/.

В заключение авторы благодарят А.М.Балдина за поддержку и внимание к работе, В.И.Иванова, В.И.Прохорова, Г.Г.Тахтамышева и В.И.Изьюрова за помощь.

ЛИТЕРАТУРА

I. Архипов В.В. и др. ЯФ, 1986, 43, 893.

2. Honeker R. et al. Nucl. Phys., 1977, B131, p.189.

3. Grether D.F. et al. Phys. Rev. Lett., 1971, vol.26, p.792.

4. Bloodworth I.J. et al. Nucl. Phys., 1974, B81, p.231.

5. J.P. de Brion, C.Lewin. Nuovo Cim, 1974, 19A, p.225.

- 6. Аверичев С.А. и др. ПТЭ, 1979, 4, 57.
- Arkhipov V.V. et al. JINR, E1-11596, Dubna, 1978. Мелкумов Г.Л. ОИЯИ, I-IЗОІ4, Дубна, 1979.
- 8. Мелкумов Г.Л., Хачатурян М.Н., ОИЯИ, 10-8170, Дубна, 1974.
- 9. Мелкумов Г.Л., Хачатурян М.Н. ОИЯИ, 10-7960, Дубна, 1974.
- 10. Копылов Г.И., Хвастунов М.С. ОИЯИ, РІ-ЗІ64, Дубна, 1967.
- II. Ioan I. et al. Central Institute of Physics, Bucharest, 1984, Progress in Heavy Ion Physics, 1982-83, p.90.
- I2. Будагов Ю.А. и др. ОИЯИ, PI-4993, Дубна, I970, Apel W.D. et al. Phys. Lett., 1975, 55B, p.111.
- I3. Shaevitz M.H. et al. Phys. Rev. Lett., 1976, 36, p.5.

Рукопись поступила в издательский отдел 21 апреля 1987 года. Архипов В.В. и др. Дифференциальное сечение реакции π⁻р → η∆° (1232) при импульсах 3,3 и 4,75 ГэВ/с

Измерено дифференциальное сечение реакции $\pi^- p \to \eta \Delta^0(1232)$ при $P_{\pi^-} = 3,3$ и 4,75 ГэВ/с в области переданных импульсов от $-t_{\min}$ до 0,37 (ГэВ/с)². В дифференциальном сечении обнаружен минимум в переднем направлении, указывающий на существенную роль амплитуды с изменением спиральности. Экспериментальные данные фитировались зависимостью $d\sigma/dt' = A(1 - gCt) \exp(Ct')$, где g отношение амплитуд рассеяния с переворотом и без переворота спина. Для величин A, g и C найдены следующие значения:

(ГэВ/с)	А мкб/(ГэВ/с) ²	g	С(ГэВ/с) ^{—2}
3,3 '	76 ± 13	4,0 ±1,0	5,5 ± 1,0
4,75	40 ± 8	5,8 ± 1,6	6,5 ±0,8.

Рассчитана эффективная траектория Редже для реакции лр→ η∆°(1282):

 $a_{t+}(t') = (0,49 \pm 0,09) + (0,8 \pm 0,5)t'$

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод авторов

Arkhipov V.V. et al. Differential Cross Section of the $\pi^- p \to \eta \Delta^{\circ}(1232)$ Reaction at a Momenta of 3.3 and 4.75 GeV/c P1-87-271

P1-87-271

The differential cross sections of the $\pi^- p \rightarrow \eta \Delta^o(1232)$ reaction at $P_{\pi} = 3.3$ and 4.75 GeV/c has been measured in the region of momentum transfers from t_{min} to 0.37 (GeV/c)². A significant minimum observed in the differential cross section indicates a dominance of the helicity-flip amplitude. The experimental data have been fitted by the formula $d\sigma/dt' = A(1 - gGt) \exp(Ct')$, where g is the ratio of the spin-flip and spin-nonflip amplitudes. The following values have been found for A.g and C:

P (GeV/c)	Α μb/(GeV/c) ⁸	g	C (GeV/c) ⁻²
3.3	76±13	4.0 ± 1.0	5.5 ± 1.0
4.75	40±8	5.8 ±1.6	6.5 ±0.8 ·

The effective Regge trajectory has been calculated for the $\pi^- p \rightarrow \eta \Delta^{\circ}(1232)$ reaction: $a_{\mu\nu}(t') = (0.49 \pm 0.09) + (0.8 \pm 0.5) t'$.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987