ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

9/11-75 P1 - 8677

A-646

2082/2-75

Н.Ангелов, Л.Анёла, И.А.Ивановская, Е.Н.Кладницкая, Н.Н.Мельникова, А.Михул, Н.Г. Фадеев

ЗАРЯДОВЫЙ ОБМЕН В π - ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 40 ГЭВ/С

P1 - 8677

Н.Ангелов, Л.Анёла; И.А.Ивановская, Е.Н.Кладницкая, Н.Н.Мельникова, А.Михул, Н.Г. Фадеев

ЗАРЯДОВЫЙ ОБМЕН В π - ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 40 ГЭВ/С

Направлено в ЯФ

Объздавенала инстратут
KAUPRINK LLOLOLOBAHIN
GHEJINOTEKA

* Институт ядерной физики, Краков

Введение

Теоретические работы Чу и Янга /1/, а также Квига и Томаса /2/ стимулировали исследование зарядового обмена в различных процессах с целью выяснения механизма взаимодействия частиц при высоких энергиях. Экспериментально зарядовый обмен изучался в инклюзивных реакциях для π^{\pm} р /3/, $k^{-}p/4/$ и pp -взаимодействий /5-8/.

В настоящей работе исследуется зарядовый обмен в π^{-} п -взаимодействиях при 40 $\Gamma \beta B/c$.

Для определения зарядового обмена в каждом событии использовалась величина

 $\Delta Q = \sum_{i=0}^{\Sigma} Q_i - Q_a ,$

где Q і - заряд і -ой частицы, п - число частиц в событии с продольной быстротой в с.ц.м. у*> 0, Q_a - заряд налетающей частицы. В нашем случае Q_a = -1, и величина

 $\Delta \mathbf{Q} = \sum_{i=0}^{n} \mathbf{Q}_{i} + 1 \ .$

. 6

Напомним, что существенным свойством фрагментационной модели Чу и Янга /1/ является отсутствие зарядового обмена ($\Delta Q=0$) для большинства взаимодействий частиц при бесконечно большой энергии. В этой модели сечение процессов с $\Delta Q \neq 0$ должно стремиться к нулю с увеличением энергии налетающей частицы. Предсказания мультипериферической модели Квига и Томаса /2/ сводятся к тому, что с ростом энергии должно стремиться к нулю среднее значение ΔQ . Для квадрата дисперсии распределения по $\Delta Q - D^2$ - ожидается рост с энергией во фрагментационной модели /1/ и стремление к постоянной, не равной нулю, величине, в мультиперифери-

3

ческой /2/. Экспериментальные данные, полученные в настоящей работе, сравниваются с результатами других исследований /3-8/.

1. Экспериментальный материал

В работе использовались снимки с двухметровой пропановой пузырьковой камеры, облученной в пучке π^- -мезонов с импульсом 40 $\Gamma_{\mathcal{B}\mathcal{B}/c}$ на ускорителе ИФВЭ в Серпухове. При отборе π^- п - взаимодействий использовались критерии, изложенные в работе $^{/9/}$. Кроме того, из 3и 5-лучевых событий с $\Delta Q = 0$ была исключена примесь событий, связанная с когерентным рождением пионов на углероде. При этом использованы следующие значения сечений $\sigma_3^{KO\Gamma} = 4.4 \ M6 \ /10/* \ H \ \sigma_5^{KO\Gamma} = 0.3 \ M6 \ /10/.$ Из однолучевых событий примесь упругих π^- п - взан-

Из однолучевых событий примесь упругих π^- п - взанмодействий и событий когерентного рождения по реакции $\pi^- c \rightarrow \pi^- \pi^0 \pi^0 c$ полностью не исключена, т.к. невозможно точно определить эту примесь в условиях нашего эксперимента. После удаления когерентных событий осталось 14ОЗ события, которые мы отнесли к неупругим взаимодействиям π^- -мезонов на квазисвободных нейтронах ядра углерода. Все вторичные отрицательные частицы в этих взаимодействиях считались π^- -мезонами. Из положительных частиц по ионизации выделялись протоны с импульсом до 8ОО *МэВ/с*. Они составляют ~ 20% от полного числа вторичных протонов *, т.е. в среднем на одно взаимодействие приходится 0,07 идентнфицированных протона. Остальные положительные частицы принимались за π^+ -мезоны.

Быстрота неидентифицированных протонов / Р $\geq 800 \ M_{3}B/c/$, принятых при переходе в с.ц.м. за π^{+P} -ме-

*
$$\sigma(\pi^{-}c \rightarrow \pi^{+}\pi^{-}\pi^{-}c) = 3,7 \text{ MG}$$

 $\sigma(\pi^{-}c \rightarrow \pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}c) = 0,7 \text{ MG}.$

** В предположении, что коэффициент перезарядки нейтрона в протон равен коэффициенту перезарядки протоиа в нейтрон $a_n \rightarrow p = a_{p \rightarrow n} = 0.36\pm0.04$ /11/. зоны, будет смещаться по оси быстрот в сторону больших значений вплоть до изменения знака быстроты /переход протона в переднюю полусферу/. В событиях с такими протонами значение ΔQ будет на единицу больше по сравнению с истинным. Доля таких событий невелика, но связанную с ними погрешность в определении $<\Delta Q >$ слелует иметь в виду.

2. Распределение π^{-} п - событий по ΔQ

Распределение π^{-} п - событий по $\Delta 0$ приведено в *табл. 1*. Из этой таблицы можно видеть относительные вклады сечений с различными ΔQ в сечение неупругих π^{-n} -взаимодействий. Как и для π^- р-взаимодействий /3/, среднее значение $\Delta Q (y^* \ge 0)$ не равно нулю, а смещено в сторону положительных значений, < ΔQ > = 0,23±0,03, и наибольший вклад в неупругое сечение дают события с $\Delta Q=0$ и $\Delta Q = 1 / \approx 75\%/.$ Однако в случае π^{-n} -взаимодействий << Q> в два раза меньше, чем для *п*-р -столкновений. Сравнение распределений по ΔQ для π п и π р - событий показывает увеличение доли событий с $\Delta Q = -1$ и уменьшение доли событий с положительными значениями ΔQ в *п* - событиях по сравнению с *п* р - событиями. Вклад событий с $\Delta Q = 0$ примерно одинаков в обоих типах дисперсии распределения по взаимодействий. Квадрат ΔQ (у* > 0) равен О,87±О,ОЗ и совпадает в пределах ошнбок с D^2 для $\pi^- p$ -взанмодействий (у* > 0).

Если сместить границу раздела двух областей по у* с нуля на +1 или -1, то получим новые распределения событий по ΔQ , которые различаются между собой и отличаются от распределения по ΔQ (у* ≥ 0).

По мере смещения границы раздела от $y^* = -1$ до $y^* = +1$ увеличивается доля событий с положительными значениями ΔQ и уменьшается вклад событий с нулевыми и отрицательными значениями ΔQ . Данное обстоятельство приводит к изменению средних значений ΔQ от O,O7±O,O2 ($y^* \ge -1$) до O,51±O,O3 ($y^*\ge1$). Это говорит о том, что суммарный заряд частиц, имеющих быстроты в центральной области ($-1 \le y^* \le 1$), не равен нулю. В этой области число отрицательных частиц превышает число

Таблица

•	y*≥ + 1	,25 0,07 ± 0,07	,4 0,72 <u>+</u> 0,24	,0 <u>11,6 +</u> 0,9	,7 38,0 ± 1,5	,4 36,8 <u>+</u> 1,7	,7 11,2 <u>+</u> 0,9	,3 1,5 ± 0,4	,07 0,07 ± 0,07	,03 0,51 <u>+</u> 0,03	.03 0,87 ± 0,04
	y.*≥ 0	0,67 ± 0	2,2 ± 0	13,9 ± 1,	49,0 ± 1,	26,6 ± 1,	6,3 ± 0,	1,3 ± 0,	0,07 ± 0,	0,23 ± 0,	0,87 ± 0,
	y * <u>></u> - 1	0,14 ± 0,10	2,1 <u>+</u> 0,4	15,5 + 1,1	58,1 ± 1,8	20,9 ± 1,4	3,1 ± 0,5	$0,21 \pm 0,12$	1	$0,07 \pm 0,02$	0,60 ± 0,02
	δΔ	m I	7	Ч Т	0	-1 +	+2	с +	+4	< \alpha \color	Dz

% неупругих событий с данными ∆**0**

положительных. Для $\pi^- p$ -взаимодействий при нашей энергии наблюдается равенство числа положительных и отрицательных частиц в центральной области /3, 12 / Здесь, по-видимому, имеет место компенсация влияния зарядов сталкивающихся частиц на центральную область.

В работах /3,8/ было показано, что распределения событий по ($\Delta Q - \langle \Delta Q \rangle$) для $\pi^- p, k^- p$ и рр-взаимодействий в интервале импульсов от 10 до 205 ГэВ практически не зависят от типа сталкивающихся частиц и их энергии. Распределение по ($\Delta Q - \langle \Delta Q \rangle$) $\pi^- n$ -взаимодействий при 40 ГэВ/с хорошо вписывается в полученное ранее /3,8/ распределение, указывая тем самым на его универсальность / рис. 1/.

¥

Рис. 1. Распределение событий от $\pi^- n$, $\pi^- p$, $k^- p$ и pp-взаимодействий по величине ($\Delta Q = < \Delta Q >$).

7

3. Зависимость зарядового обмена от множественности вторичных заряженных частии

Рассмотрим, как изменяется среднее значение ΔQ , квадрат дисперсии распределения по ΔQ , а также вклад событий с различными ΔQ в зависимости от числа заряженных частиц в событии (n+).

Рис. 2 показывает, что $<\Delta Q >$ растет линейно с увеличением п ±, причем скорость роста примерно такая же, как для πp -взаимодействий /3/. Если аппроксимировать эту зависимость функцией вида $<\Delta Q > = a + bn \pm$, то для πn -событий получим $b^{\pi n} = 0.027 \pm 0.07$, а для $\pi p - b^{\pi p} = 0.040 \pm 0.05$. Относительный вклад

событий с различными ΔQ в каждую топологию ($\frac{\sigma_{\Delta} Q}{\sigma_n}$)

показан на рис. З вместе с данными для $\pi^- p$ -взаимодействий. Для обоих типов взаимодействий события с $\Delta Q = 0$ составляют наибольшую долю среди малолучевых событий, с увеличением множественности $n\pm$ доля таких событий убывает. Вклад событий с $\Delta Q = +1$ наименьший в однолучевых событиях / $\approx 12\%$ /, далее он возрастает с увеличением $n\pm$ н для $n\pm >5$ не зависит от множественности, оставаясь на уровне 30%. Похожая картина наблюдается для событий с $\Delta Q = +2$, только независимость

 $\frac{\sigma_{\Delta Q}}{\sigma_{n}}$ от n_{\pm} наступает при бо́льших n_{\pm} . Мало меняется с числом заряженных частиц $\frac{\sigma_{\Delta Q}}{\sigma_{n}}$ для событий с $\Delta Q = -1$.

Выше было отмечено, что для π^{-n} -взаимодействий наблюдается увеличение доли событий с $\Delta Q = -1$ и уменьшение доли событий с $\Delta Q = 1$ и 2 по сравнению с π^{-p} взаимодействиями. Посмотрим, как эти изменения в распределении по ΔQ связаны с числом заряженных частиц в событии. Из *рис.* 3 видно, что наибольшее различие

в распределениях $\frac{\sigma_{\Delta Q}}{\sigma_{n}}$ для π^{-} п и π^{-} р - взаимодействий

наблюдается при малых $n\pm$ /до 6/. Для больших $n\pm$ распределения в пределах ошибок совпадают, и можно сказать, что в многолучевых событиях влияние типа нуклона мишени практически не сказывается на распределениях по $\Delta Q (\Delta Q = 0, \pm 1, \pm 2)$.Различие в средних значениях ΔQ для многолучевых π^- п и π^- р событий обусловлено в основном событнями с $\Delta Q = 2, \pm 3, 4$.

Квадрат дисперсии распределения по ΔQ растет линейно с увеличением $n \pm / puc.$ 4/. Аналогичная зависимость наблюдается для D2 в π^- р-взаимодействиях.

Распределения $\pi^- n$ событий с $\Delta Q = 0$ и $|\Delta Q| = 1$ по множественности заряженных частиц в переменных

 $\frac{\langle n_{\pm} \rangle \sigma_{\Delta} Q}{\sigma_{in}}$ и n_{\pm} /< n_{\pm} > показаны на *рис*. 5 вместе с

Рис. 4. Зависимость квадрата дисперсии распределений по ∆Q для π⁻п и π⁻р-взаимодействийот числа заряженных частиц в событии.

данными для $\pi^- p^{/3/}$ и pp-взаимодействий $^{/5,7/}$. Наблюдается общий характер функций $\frac{\langle n \rangle \sigma_{\Delta Q=0}}{\sigma_{in}} = \psi_{\Delta Q=0 < n_{\pm} >} (\frac{n_{\pm}}{\Delta Q=0 < n_{\pm} >})$ для $\pi^- n$, $\pi^- p$ и pp -взаимодействий. То же самое можно сказать о $\psi_{|\Delta Q|=1}$ $(\frac{n_{\pm}}{\langle n\pm >})$.

H

Данные по средней множественности заряженных четиц < n_+>,топологическим сечениям σ_n , а также значения сечения неупругого π -n -взаимодействия σ_{in} взяты из работы /13/

Заключение

Анализ зарядового обмена в π п -взаимодействиях при 40 ГэВ/с и сравнение с результатами, полученными для π -р -взаимодействий при той же энергии, показали:

1/ доля событий с $\Delta Q = 0$ примерно одинакова среди π^{-n} и π^{-p} -взаимодействий;

2/ распределення событий с $\Delta Q \neq 0$ различны для π^{-n} и π^{-p} -взаимодействий, что приводит к различным средним значениям $\langle \Delta Q \rangle^{\pi^{-n}} = 0.23 \pm 0.03$, $\langle \Delta Q \rangle^{\pi^{-p}} = 0.490 \pm 0.015$;

3/ существенный вклад событий с ∆Q ≠ 0 в рассматриваемые взаимодействия указывает на преимущественную роль в них процессов недифракционного типа:

4/ среднее значение ΔQ имеет наименьшую величину в однолучевых событиях и линейно растет с увеличением числа заряженных частиц в событии;

5/ квадрат дисперсии распределения по Δ Q линейно растет с увеличением множественности заряженных частиц.

6/ распределение π^{-n} -событий по ($\Delta Q = <\Delta Q >$) хорошо вписывается в распределение, полученное для $\pi^{-}p$, $k^{-}p$ -и pp -взаимодействий в интервале импульсов от 12 до 205 ГэВ/с.

Авторы выражают благодарность К.П.Вишневской, В.Г.Гришину, С.В.Джмухадзе, Л.А.Диденко, Т. Канареку, Т.Я.Иногамовой, В.Б.Любимову, В.Ф.Никитиной, В.М.Поповой, М.Сабзу, Х.И.Семерджиеву, М.И.Соловьеву, А.Н. Соломину, М.М.Суд, Э.Т.Цивцивадзе, Л.М.Щегловой, Г.Янчо за участие в обработке событий, полезные обсуждения и советы.

Авторы благодарны лаборантам ЛВЭ и ЛВТА за просмотр и измерения событий, а также Н. Матасовой за помощь в оформлении рисунков.

12

13

Литература

- 1. Т.Т.Сhou, С.N.Yang. Phys.Rev., D7, 1425 (1973). 2. С.Guigg, G.H.Thomas. Phys.Rev., D7, 2752 (1973). 3. Н.Ангелов, И.А.Ивановская, Е.Н.Кладницкая и др. ОИЯИ, P1-8036, Дубна, 1974; ЯФ, m. 21, в. 2. 321. 1975.
- 4. Aachen-Berlin-CERN-London-Vienna Collaboration. et al. Nucl. M.Deutschmann, H.Kirt P.Bosetti. Phys., B62, 46 (1973).
- 5. Bonn-Hamburg-Munchen Collaboration. U.Idschok, P.Kobe, F.Selonke et al. MPI-PAE/EXP., EI29(1973).
- 6. C.M.Bromberg, D.Chaney, D.Cohen et al. Phys. Rev., D9, 1864 (1974).
- 7. J. Whitmore. Phys. Rep., 10C, 273 (1974).
- 8. H. Wahl. Aix-en-Provence Conf., p. 373 (1973).
- 9. А.У.Абдурахимов, Н.Ангелов, В.А.Беляков и др. ОИЯИ, РІ-6326, Дубна, 1972.
- 10. А.У.Абдурахимов, Н.Ангелов, В.А.Беляков и др. ОИЯИ, P1-6491, Дубна, 1972. ЯФ, т. 16, в. 5, 989, 1972.
- 11. V.G.Grishin, G.Jancso, S.P.Kuleshov, V.A.Matveev, A.N.Sissakian. JINR, E2-6596, Dubna, 1972. Lett. Nuovo Cim., 8, 590 (1973).
- 12. А.У.Абдурахимов, Н.Ангелов, К.П.Вишневская и др. ОИЯИ, РІ-7103, Дубна. 1973. ЯФ, т. 18, в. 3, 545, 1974. Nucl.Phys., B72, 189 (1974). 13. O.Balea, V.Boldea, S.Felea et al. Nucl.Phys., B52,
- *414 (1973)*.

Рукопись поступила в издательский отдел 11 марта 1975 года.