ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

26/ -75

T- 521

P1 - 8666

1901/2-75

В.В.Глаголев, А.А.Кузнецов, Г.Д.Пестова, М.Сабэу

ПОЛЯРИЗАЦИЯ ГИПЕРОНОВ В 77 р-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 5 ГЭВ/С

P1 - 8666

В.В.Глаголев, А.А.Кузнецов, Г.Д.Пестова, М.Сабэу

ПОЛЯРИЗАЦИЯ ГИПЕРОНОВ В **п** - р-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 5 ГЭВ/С

Направлено в ЯФ

объодженный енститут перных веслодования БИБЛИСТЕКА

SUMMARY

The experimental results have been presented on hyperon polarization $(\Lambda, \Sigma^-, \Sigma^+)$ for inclusive processes of the type a+b+c++everything in π^-p interactions at $P_{\pi^-}=5$ GeV/c. It is shown that for Λ -hyperon in the region 0 < t' < 1.2 one can observe a similarity with the behaviour of polarization in two- and quasi-two-body reactions. The change of the polarization sign may be explained by changing the slope in the differential cross section in these t regions. The difference of polarization from zero in the region of target fragmentation does not contradict the theoretical predictions of ref./7/.

The values of $\alpha \overline{P}$ calculated for Σ^-, Σ^+ are equal to

 $a \overline{P}_{\Sigma^{-}} = 0.18 \pm 0.12,$ $a P_{\Sigma^{+}} \begin{cases} \Sigma^{+} P \pi^{\circ} = 0.78 \pm 0.27, \\ \Sigma^{+} N \pi^{+} = 0.18 \pm 0.23. \end{cases}$

Поляризация гиперонов систематически изучалась в двух- и квазидвухчастичных реакциях. Этому вопросу посвящено большое число работ в широком диапазоне доступных в настоящее время энергий (например, $^{1-5/}$). В последнее время стали появляться работы как экспериментальные $^{6/}$, так и теоретические $^{7/}$, в которых поляризация изучается в инклюзивных процессах типа $a + b \rightarrow c + все$. Настоящая работа посвящена изучению такого рода процессов в $\pi^- + p$ -взаимодействиях при 5 ГэВ/с. В ней сообщаются результаты измерения поляризации Λ , $-\Sigma^+$, Σ^- -гиперонов в реакциях

$$\overline{}$$
 + p → Λ + BCe,
→ Σ⁺ + BCe,
→ Σ⁻ + BCe.

Данные были получены в процессе обработки 350 тыс. фотографий со 100-сантиметровой жидководородной камеры ОИЯИ^{/8/}, экспонированной в пучке *п*⁻ -мезонов с импульсом 5 ГэВ/с.

Всего было зарегистрировано 973 события с Λ гипероном ($\Lambda \rightarrow p \pi^-$), 285 событий с Σ^- -гипероном ($\Sigma^- \rightarrow N \pi^-$), 98 событий с Σ^+ -гипероном ($\Sigma^+ \rightarrow p \pi^0$), образовавшихся в реакциях типа: $\pi^- + p \rightarrow \Lambda K^0 + m \pi^0$, $\pi^- + p \rightarrow \Sigma^- K^+ + m \pi^0$,

 $\rightarrow \Lambda K^{+}\pi^{-} + m \pi^{0}, \qquad \rightarrow \Sigma^{-}K^{0}\pi^{+} + m \pi^{0},$

3

$$\rightarrow \Lambda K^{0} \pi^{+} \pi^{-} + m \pi^{0}, \qquad \rightarrow \Sigma^{-} K^{+} \pi^{+} \pi^{-} + m \pi^{0}, \\ \rightarrow \Sigma^{-} K^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-} + m \pi^{0}, \qquad \rightarrow \Sigma^{+} K^{0} \pi^{-} + m \pi^{0}, \\ \rightarrow \Sigma^{+} K^{+} \pi^{-} \pi^{-} + m \pi^{0}, \qquad \rightarrow \Sigma^{+} K^{0} \pi^{-} \pi^{-} + m \pi^{0}, \\ \rightarrow \Lambda K^{+} \pi^{+} \pi^{-} \pi^{-} + m \pi^{0}, \qquad \rightarrow \Sigma^{+} K^{0} \pi^{+} \pi^{-} \pi^{-} + m \pi^{0}$$

(где m = 0,1,2. Каждое событие бралось с весом

$$W_i = \frac{1}{\Psi C \Lambda O \Gamma U \Pi O T e S} W \Gamma_Y ,$$

где

$$\mathbb{W}_{\Gamma_{\mathbf{V}}} = \{\exp\left(-\frac{1}{L} \int \left(\frac{1}{L}\right) - \exp\left[-\left(\frac{1}{L} - L\right) \right] \right)^{-1} \right).$$

Значение поляризации определялось по угловому распределению продуктов распада гиперонов относительно нормали к плоскости рождения гиперона $d\sigma/d(\cos\phi) \sim 1 + a_Y < P > \cos\phi$, где a_Y – параметр асимметрии в распаде гиперонов. Для

$$\begin{split} \Lambda^{0} & a_{\Lambda} &= 0,647 \pm 0,013; \\ \Sigma^{-} & a_{\Sigma}^{-} &= 0,069 \pm 0,008; \\ \Sigma^{+} & \begin{cases} a_{\Sigma}^{+} \rightarrow p \pi & 0 &= 0,984 \pm 0,017; \\ a_{\Sigma}^{+} \rightarrow N \pi^{+} &= 0,066 \pm 0,016. \end{split}$$

 ϕ_{π} – угол между направлением вылета распадного π –мезона в системе покоя гиперона и нормалью к плоскости рождения гиперона. Для каждого из событий определялось направление нормали $\vec{n} = \vec{P}_i \times \vec{P}_Y$, где \vec{P}_Y и \vec{P}_i – единичные векторы вдоль направления гиперона и падающего π^- -мезона в системе центра масс реакции. Вычисление значения поляризации производилось по формуле

$$\langle P_{\rm Y} \rangle = \frac{3}{a} \sum_{i=1}^{n} \cos \phi \quad w_i / \Sigma w_i \pm \frac{1}{a} \sqrt{\frac{3 - a P^2}{N}}, \quad (1)$$

где ^wi - вес каждого события.

Характерной особенностью процесса образования гиперонов в двух- и квазидвухчастичных реакциях в πp -взаимодействиях является его периферический характер. При этом гипероны сохраняют направление первоначального движения протона, т.е. вылетают, в основном, в узком конусе в системе центра масс реакции ($\cos \theta_{\mathbf{Y}}^* < -0.8$). Однако в реакциях типа $\pi^- \mathbf{p} \to \mathbf{Y}$ + все суммируются конечные состояния с различной множественностью и становится значительным сечение рождения гиперонов с $\cos \theta_{\mathbf{Y}}^* > 0$. Инклюзивные сечения реакций с образованием гиперонов при $\mathbf{P}_{\pi} - = 5$ ГэВ/с равны:

$\sigma_{\Lambda+BCO}$	= 0,85 <u>+</u> 0,03 мбарн,
$\sigma \mathbf{x} -$	= 0,150 <u>+</u> 0,009 мбарн,
$\sigma = +BCe$	= 0,078 <u>+</u> 0,008 мбарн ^{/10} /, из которых
сечения процессов	с $\cos \theta^* > 0$ составляют

σ_{Λ} +BCE	= 0,148 <u>+</u> 0,010 мбарн,
$\sigma \Sigma^{-} + BC \Theta$	= 0,057 <u>+</u> 0,006 мбарн,
$\sigma \Sigma^+$ + RCO	= 0,010 <u>+</u> 0,002 мбарн.

Особенно велико сечение для событий с соз $\theta_Y^* > 0$ в реакциях с рождением Σ^- гиперонов. Оно составляет больше половины всего инклюзивного сечения Σ^- -гиперонов. На рис. 1 представлены угловые распределения гиперонов. Отношение $\mathbf{R} = \frac{\mathbf{B} - \mathbf{F}}{\mathbf{B} + \mathbf{F}}(2)$, вычисленное для этих распределений, равно:

для	ιΛ	R	=	0,58 <u>+</u> 0,05,	
для	ι Σ ⁺	R	=	0,56 <u>+</u> 0,14,	
для	Ξ Σ –	R		0,09 <u>+</u> 0,08,	где

Таблица I

Рис. 1. Дифференциальное сечение реакций $\pi^- p \rightarrow \Lambda^+ BCe$, $\rightarrow \Sigma^+ + BCe$, $\rightarrow \Sigma^- + BCe$

в зависимости от угла вылета гиперона в с.ц.м.

	<u> </u>			ι.	Σ-
интер- вал	CH9*	б±45 (мкбарн/ср)	интернал	CHLO"	(б ± ∆б (мк барн/ср)
-I -	- 0,9	I600 <u>+</u> 88	- 1,0	-0,9	250+35
-0,9 -	- 0,8	723+60	- 0,9	-0,8	100+25
			- 0,8	-0,6	65 ± I3
-0,8 -	• 0,7	452 <u>+</u> 50	- 0,6	-0,3	43 <u>+</u> 8
-0,7 -	- 0,6	362±46	- 0,3	0,2	26 ± 5
			0,2	0,5	42 <u>+</u> 8
-0,6	- 0,4	172 <u>+</u> 22	0,5	0,8	45 <u>+</u> 9
-0,4	- 0,2	I84 <u>+</u> 23	0,8	0,9	124 <u>+</u> 24
-0,2	- 0	109 <u>+</u> 15	0,9	I	140 <u>+</u> 28
0	0,2	93±15		Ž	, +
		[интервал	CHO*.	б±дб (ыкбарн/ср)
0,2	0,4	9I±I5	-I	-0,9	202 <u>+</u> 34
0,4	0,6	80 <u>+</u> 16	-0,9	-0,7	37±10
0,6	0,8	88 <u>+</u> 14	-0,7	0	I4 <u>+</u> 4
0,8	I	I63 <u>+</u> 20	0	I	10 <u>+</u> 3
~~~~~					

Таблица 2

	< p*>	$< P_{\perp} >$	$< P_{n}^{*} >$	< CH8, >>	< PLAS >	<t'></t'>
Λ	0,791 <u>+</u> 0,010	0,408 <u>+</u> 0,006	-0,46 <u>+</u> 0,01	-0,48 <u>+</u> 0,01	I,405 <u>+</u> 0,02	0,78 <u>+</u> 0.042
Σ+	0,82 <u>+</u> 0,37	0,370 <u>+</u> 0,240	-0,5I <u>+</u> 0,59	-0,46±0,06	I,40 <u>+</u> 0,85	0,91 <u>+</u> 0,10
Σ-	0,79 <u>+</u> 0,02	0,450 <u>+</u> 0,020	-0,08 <u>+</u> 0,04	-0,08 <u>+</u> 0,04	2,18 <u>+</u> 0,07	2,10 <u>+</u> 0,13

- F число событий с соз  $\theta$  * > 0,
- **В** число событий с cos  $\theta^* < 0$ .

Дифференциальные сечения представлены в табл. 1. В табл. 2 даны средние значения<br/><  $\mathbf{P}^*$ >, < $\mathbf{P}_1^*$ >, < $\mathbf{P}_1$ >, <<br/><  $t^*$ >, <  $\mathbf{P}_{\text{лаб}}$ >, < cos  $\theta^*$ > для различных гиперонов.

На рис. 2 приведено дифференциальное сечение по t' для  $\Lambda$  -гиперонов. Кривая, приведенная на графике, получена при фитировании методом наименьших квадратов выражения

$$\frac{d\sigma}{dt'} = \sum_{i=1}^{n=3} A_i e^{b_i t'} (\chi^2 = 5,04 \text{ при } n = 7).$$

Коэффициенты А и b имеют следующие значения:

А мкбарн/(ГэВ/с) ²	Ь (ГэВ/с)-2
6 1 2 <u>+</u> 181	-1 0 <u>+5</u> ,6
529 <u>+</u> 101	-1,6 <u>+</u> 0,3
40 <u>+</u> 23	-0,3 <u>+</u> 0,1

На том же рис. 2 и в табл. З приведена полученная нами зависимость поляризации от квадрата переданного 4 -импульса. Видно, что поляризация имеет небольшое положительное значение при t ′ < 0,2, затем в районе 0.2 < t ' < 0.4 меняет знак и становится отрицательной до t' ~ 1,2. Такой же ход изменения поляризации имеет место для двух- и квазидвухчастичных реакций в л р -взаимодействиях при импульсе налетающего *п*⁻-мезона, равном 4,5 и 6 ГэВ/с^{/1/}. При значении 1,2 < t' < 2 поляризация снова меняет знак и достигает максимального положительного значения в интервале 2 < t' < 3. Этот результат находится в качественном согласии с данными работы /6/. При больших значениях квадрата переданного 4-импульса (3 <t ' < 8) поляризация постепенно уменьшается, оставаясь в пределах ошибок равной нулю. По-видимому, смена знака поляризации может быть связана с изменением наклона в дифференциальном сечении. Эта особенность наблюдалась

также в двух- и квазидвухчастичных реакциях^{/1/}, где провал в дифференциальном сечении и нулевая поляризация в области малых переданных импульсов (t' <0,5) объясняется тем, что обменная реджевская траектория, включающая полюса K*(890) и K*(1420), проходит через a(t) = 0[1]. К сожалению, имеющиеся в литературе расчёты поляризации по модели полюсов Редже сделаны для простейших (двух- и квазидвухчастичных) реакций, и поэтому сравнить наши данные с этими моделями пока не представляется возможным.

Исследования поляризации А-гиперонов в зависимости от числа частиц в конечном состоянии показали,что такая зависимость отсутствует (см.табл.4,гдеп-число частиц в конечном состоянии).

Проследить зависимость поляризации от квадрата переданного 4 –импульса для  $\Sigma^{\pm}$  –гиперонов было невозможно из-за малости статистики. Были определены средние значения *а*  $\bar{\mathbf{P}}$  для  $\Sigma^{-}$ ,  $\Sigma^{+}$  –гиперонов.

Пользуясь выражением (2), записываем

 $a \mathbf{P}_{\mathbf{Y}} = 3 \sum_{i=1}^{n} \cos \phi \mathbf{w}_{i} / \Sigma \mathbf{w}_{i} \pm \sqrt{\frac{3}{N}},$   $a \mathbf{\bar{P}} \Sigma^{-} = 0,18 \pm 0,12,$   $a \mathbf{\bar{P}} \Sigma^{+}, \mathbf{p} \pi^{0} = 0,78 \pm 0,27,$  $\sum_{N \pi^{+}}^{N} = 0,18 \pm 0,23.$ 

Ошибки в а  $\vec{\mathbf{P}}$  статистические. В работе /7/ обсуждаются поляризационные явинклюзивных реакциях типа а + b → c + в ления диаграммной реджионной все. Ha основе предсказания делаются относительно техники 20% - 30%-ной поляризации в области фрагментации мишени в инклюзивных реакциях за счёт вклада ветвлений, а также равенства нулю поляризации в области пионизации и фрагментации налетающей частицы.

Исследование зависимости поляризации от у (где y =1/2 ln  $\frac{E^* + P_1^*}{E^* - P_1^*}$ ) в нашем эксперименте (см. рис. 3) в нашем эксперименте (см. рис. 3) показало, что поляризация всюду в пределах ошибок равна нулю, кроме области фрагментации мишени.

Таким образом, в работе было изучено поведение поляризации гиперонов в инклюзивных процессах. Показа-



но, что для  $\Lambda$  -гиперона в области 0 < t' < 1,2 наблюдается аналогия с поведением поляризации в двух- и квазидвухчастичных реакциях. Наблюдается изменение знака поляризации в интервале 0,3 < t' < 0,6 и 1,2 < t' < 2, что качественно согласуется с данными работы^{/6/}.

Смена знака поляризации, возможно, объясняется изменением наклона в цифференциальном сечении в этих

областях по t′. Отличие от нуля поляризации в области фрагментации мишени не противоречит теоретическим предсказаниям работы^{/7/}.

Таблаца З

	$\wedge^{\circ}$		
интерва.	л по t' (Гэб/с) ²	Ρ̄±ΔΡ	
0 0,05 0,1 0,2 0,6 1,0 1,3 1,9 2,9 5	0,05 0,I 0,2 0,6 I,0 I,3 I,9 2,9 5 7,8	$\begin{array}{c} 0,2 \pm 0,3 \\ 0,35 \pm 0,29 \\ 0,04 \pm 0,24 \\ -0,II \pm 0,I4 \\ -0,28 \pm 0,24 \\ -0,23 \pm 0,29 \\ -0,04 \pm 0,30 \\ 0,59 \pm 0,3I \\ 0,I \pm 0,3 \\ -0,3 \pm 0,3 \end{array}$	



Н

Таблица 4

P=Ap	2	3	4	5	6	все
P ± Op	0 <b>,25<u>+</u>0,</b> 34	-0,05 <u>+</u> 0,24	0,05 <u>+</u> 0,12	-0, <i>2</i> 5 <u>+</u> 0,26	-0,05 <u>+</u> 0,30	-0,II <u>+</u> 0,07

Авторы благодарят Л.Ш.Лапидуса, Е.М.Левина, Б.А.Шахбазяна, Б.З.Копелиовича за полезные обсуждения.

Мы благодарим также всех сотрудников, принимавших участие в работе на ранних этапах эксперимента.

## Литература

- D.J.Crennel, H.A.Gordon. K.-W.Lai et al. Phys.Rev., v. 6D, No. 5 (1972).
- 2. O.J.Dahl, L.M.Hardy, R.I.Hess et al. Phys. Rev., v. 163, No. 5 (1967).
- M.Pepin, W.Beusch, W.E.Fischer et al. Phys.Lett., 26B, 35 (1967).
- T.P.Waugler, A.R.Erwin, W.D.Walker. Phys. Rev., 137B, 414 (1965).
- 5. S.M.Pruss, C.M.Akerlof, D.I.Heyer, S.P.Ying. Phys.Rev.Lett., 23, 189 (1969).
- ⁶. J.Baritsch et al. Nucl.Phys., B40, 103(1972);
  B.Y.Oh et al. Nucl.Phys., B49,13 (1972);
  Ю.Д.Алешин, Г.А.Арутюнянц, И.Л.Киселевич и др. ЯФ, т. 20, в. 5 (1974).
- 7. В.А.Кудрявцев, Е.М.Левин. ЯФ, т. 18, в. 2 (1973).
- A.V.Belonogov, A.A.Belushkina, R.Vinaver et al. Nucl.Inst.and Meth., 20, 114 (1963).
- 9. N.Barasch-Schmidt, A.Barbaro-Galtieri, C.Bricman et al. Rev.Mod.Phys., v.45, No. 2, part II (1973).
- 10. .В.В.Глаголев, Н.К.Душутин, Е.Н.Кладницкая и др. ОНЯИ, Р1-8147, Дубна, 1974.
  - Рукопись поступила в издательский отдел 6 марта 1975 года.

Глаголев В.В., Кузнецов А.А., Пестова Г.Д., P1 - 8666 Сабэу М. Поляризация гиперонов в тр -взаимодействиях при импульсе 5 ГэВ/с Сообщаются результаты исследования поляризации гиперонов в инклюзивных реакциях типа  $\pi^- + \mathbf{p} \rightarrow \Lambda + \mathbf{B}$ се в  $\pi^- \mathbf{p}$  -взаимодействиях при  $P_{\pi} = 5 \Gamma B/c$ . Работа выполнена в Лаборатории высоких энергий ОИЯИ. Препринт Объединенного института ядерных исследований Дубна 1975 P1 - 8666 Glagolev V.V., Kusnetsov A.A., Pestova G.D., Sabeu M. Hyperon Polarization in  $\pi^{-}p$  -Interactions at 5 GeV/c

See the Summary on the reverse side of the title-page.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research Dubna 1975